Текст книги "Большая Советская Энциклопедия (СС)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 33 (всего у книги 151 страниц)
Наряду с теорией упругости в 30-х гг. начали развиваться новые дисциплины: теория пластичности, теория ползучести и механика грунтов. В теории пластичности были получены теоремы о верхней и нижней оценках несущей способности идеально пластических тел (А. А. Гвоздев). В механике грунтов исследования касались как сыпучих сред (А. А. Новоторцев, В. В. Соколовский), так и консолидации водонасыщенных грунтов (Н. М. Герсеванов, В. А. Флорин).
Исследования в период Великой Отечественной войны относились к контактным задачам теории упругости (Л. А. Галин), теории оболочек (И. Н. Векуа, Власов, Гольденвейзер, Лурье, Новожилов, Ю. Н. Работнов), теорий вязко-упругости и пластичности (А. Ю. Ишлинский, Соколовский). Были получены первые решения упруго-пластических задач (Галин, Соколовский), развита деформационная теория пластичности и предложен метод последовательных приближений для решения её задач (А. А. Ильюшин), даны решения динамических задач о распространении упруго-пластических волн (Х. А. Рахмутулин, Г. С. Шапиро), развита теория распространения возмущений в водонасыщенных средах (Я. И. Френкель).
С 50-х гг. центр тяжести исследований перешёл на новые разделы механики, хотя интенсивно продолжались работы и в классических направлениях. В теории упругости основные достижения относились к построению общей нелинейной теории (Новожилов, Л. И. Седов) и нелинейной теории оболочек (К. З. Галимов, Х. М. Муштари, А. В. Погорелов и др.). Были развиты новые подходы к общей теории упругой устойчивости – с позиций нелинейной (Новожилов) и линейной (Ишлинский) теории упругости, ляпуновской теории устойчивости (В. И. Зубов, А. А. Мовчан), а также статистических методов (В. В. Болотин, А. С. Вольмир, И. И. Ворович, А. Р. Ржаницын). Дальнейшие успехи были достигнуты в теории динамической устойчивости упругих систем под действием периодических сил (Болотин, И. И. Гольденблат и др.) и при динамическом нагружении (Ишлинский, М. А. Лаврентьев и др.).
Разработаны эффективные методы решения задач о распространении упругих волн в слоистых средах (Л. М. Бреховских, В. И. Кейлис-Борок, Г. И. Петрашень и др.). Детально анализировались проблемы колебаний пластинок и оболочек, взаимодействующих с газом или жидкостью (Болотин, Э. И. Григолюк и др.). Предложены вариационные методы теории пластичности (Л. М. Качанов), развивалась теория устойчивости упруго-пластических тел (В. Д. Клюшников и др.).
Интенсивные работы ведутся по теории ползучести металлов, бетона и полимеров (Н. Х. Арутюнян, А. А. Гвоздев, Ильюшин, Качанов, Работнов и др.). Появились обширные исследования по механике композитных сред (Болотин, А. Л. Рабинович, Работнов и др.).
Периодические издания: «Прикладная математика и механика» (с 1933), «Известия Академии наук СССР» – «Отделение технических наук» (1937—58), «Механика и машиностроение» (1959—64), «Механика» (с 1965), «Механика жидкости и газа» (с 1966), «Механика твёрдого тела» (с 1966), «Прикладная механика» (с 1955), «Журнал прикладной механики и технической физики» (с 1960), «Магнитная гидродинамика» (с 1965), «Механика полимеров» (с 1965), «Проблемы прочности» (с 1969).
См. Газовая динамика, Гидравлика, Гидроаэромеханика, Инерциальная навигация, Механика, Упругости теория.
Химические науки
Развитие химии в России началось в середине 18 в. М. В. Ломоносов заложил основы единой корпускулярно-кинетической теории, сформулировал закон сохранения вещества и движения, выполнил множество научных опытов и прикладных исследований по химии. Он же первый дал определение физической химии как науки, объясняющей «на основании положений и опытов физики, что происходит в смешанных телах при химических операциях».
С 1-й половины 19 в. успешно развивалось использование физических методов в химии. В. В. Петров осуществил (1803) первые химические реакции в электрической дуге. Б. С. Якоби разработал (1838) основы гальванотехники. Исследования микроструктуры сталей были начаты П. П. Аносовым в 1831. Изучение тепловых явлений, сопровождающих химические реакции, получило прочную основу после открытия Г. И. Гессом (1840) основного теплового закона химических процессов. Развитию термохимии во многом способствовали последующие работы Н. Н. Бекетова и В. Ф. Лугинина. В области неорганической химии с середины 19 в. проводились работы по изучению природного сырья, свойств элементов и их соединений, в частности платиновых металлов, был открыт новый элемент рутений (К. К. Клаус, 1844).
Успешно разрабатывались методы изучения и синтеза органических веществ; были синтезированы, например, хинон (А. А. Воскресенский, 1838) и анилин (Н. Н. Зинин, 1842). Созданная А. М. Бутлеровым (1861) теория химического строения стала фундаментом органической химии. Развивая теорию Бутлерова, В. В. Марковников установил (1869) порядок присоединения различных веществ к ненасыщенным углеводородам.
Открытие Д. И. Менделеевым (1869) периодического закона, представляющего собой эпоху в развитии химической науки, послужило основанием систематики всех химических элементов и их соединений; одним из следствий этого закона было предсказание существования ряда неизвестных тогда элементов и описание их свойств. Исследования, направленные на обоснование периодического закона, стимулировали развитие представлений о сложном строении атома и его делимости. Большое значение имели исследования растворов, выполненные Д. И. Менделеевым (1865—87), а также Д. П. Коноваловым, установившим (1881—84) связь между составом жидкого раствора и составом и давлением насыщенного пара.
Применению учения о химическом равновесии к различным физико-химическим системам были посвящены работы Н. С. Курнакова, которые наряду с исследованиями других авторов легли в основу физико-химического анализа, сложившегося в конце 19 – начале 20 вв. Исследования зависимости скоростей реакций от состава реагентов и природы растворителя, выполненные Н. А. Меншуткиным (1870—90), имели большое значение для формирования химической кинетики, получившей дальнейшее развитие в работах А. Н. Баха, Н. А. Шилова и др. (конец 19 – начало 20 вв.). В 1903 М. С. Цвет открыл метод хроматографии. В 1906 Л. А. Чугаев установил важные закономерности образования комплексных соединений.
Труды В. В. Марковникова (с 1881) и Н. Д. Зелинского (с 1886) весьма существенно способствовали развитию органической химии и легли в основу новой области химии – нефтехимии. В 80-е гг. 19 в. А. Е. Фаворским начаты работы по изучению непредельных углеводородов. Синтезом сульфопроизводных антрахинона (1891) М. А. Ильинский положил начало химии антрахиноновых красителей. Г. С. Петров разработал и осуществил (1913) промышленное производство фенолоформальдегидной смолы – карболита. Крупный вклад в развитие методов синтеза органических соединений в конце 19 – начале 20 вв. внесли А. М. Зайцев, Г. Г. Густавсон, В. Н. Ипатьев и др.
Основополагающие работы в области геохимии были выполнены В. И. Вернадским и А. Е. Ферсманом, агрохимии и фотосинтеза – Д. Н. Прянишниковым и К. А. Тимирязевым.
Широкие и систематические исследования в области химии и химической технологии развернулись только в годы Советской власти. Уже в 1918—19 были организованы Институт физико-химического анализа, Институт по изучению платины и других благородных металлов, Центральная химическая лаборатория ВСНХ (ныне Физико-химический институт им. Л. Я. Карпова), Институт прикладной химии, а в начале 1920-х гг. – Химико-фармацевтический институт, Институт чистых химических реактивов и др. Одной из задач ленинского плана ГОЭЛРО (1920) явилась химизация народного хозяйства путём ускоренного развития химической промышленности, увеличение её продукции в 1920—30 в 2,5 раза против уровня 1913. Для руководства восстановлением и развитием химической промышленности В. И. Ленин привлек выдающихся химиков страны, вместе с которыми решал вопросы организации новых научных учреждений и создания органов управления химическими заводами. В. И. Ленин непосредственно изучал возможности увеличения производства химических продуктов, был инициатором создания коксохимической промышленности Кузбасса, освоения соляных богатств Сибири и Кара-Богаз-Гола, поиска фосфоритов и калийных солей, организации производства радиевых препаратов и т. д. Большую помощь Ленину в этом оказывал Н. П. Горбунов (в то время управляющий делами СНК, химик по образованию, ученик Л. А. Чугаева).
Исключительно важную роль в развитии химии в СССР сыграли решения партии и правительства, в частности постановление ЦК ВКП(б) о работе Северного химического треста (1929), постановления пленумов ЦК КПСС, партийных съездов и конференций. Большое значение имели решения майского Пленума ЦК КПСС (1958), в которых указывались конкретные задачи по созданию высокопроизводительных процессов получения синтетических материалов, удобрений и других химических продуктов и меры по обеспечению решения этих задач.
С развитием народного хозяйства и культуры изменилась география химических научных учреждений. Освоение природных богатств Сибири и Дальнего Востока, резкое повышение образовательного уровня и появление собственных научных кадров в национальных республиках обусловили расширение сети и децентрализацию научных учреждений. Разработка комплексных проблем химии и химической технологии стала осуществляться по координированным планам научно-исследовательских институтов.
Физическая химия. Исследования, проводимые в СССР, охватывают все разделы физической химии.
Большой вклад в развитие химической кинетики внесён Н. Н. Семеновым и его учениками. В 1926—33 этой школой была создана современная теория цепных реакций. Выдвинута идея о разветвленных цепных реакциях, позволившая объяснить резкое изменение скоростей химических процессов от почти неизмеримо медленных до воспламенения смеси реагентов («цепной взрыв») при малом изменении внешних параметров системы («критические явления»). Н. Н. Семеновым развиты представления об обрыве цепей на стенке и в объёме сосуда. В дальнейшем изучение механизмов цепных разветвленных реакций было выполнено на примерах окисления фосфора (Ю. Б. Харитон, З. С. Вальта), водорода (Н. Н. Семенов, В. Н. Кондратьев, А. Б. Налбандян, В. В. Воеводский), сероуглерода (Н. М. Эмануэль). В. Н. Кондратьевым обнаружены сверхравновесные концентрации атомов Н и радикалов OH в пламени водорода, что явилось первым подтверждением теории цепных реакций. Разработаны тепловая теория распространения пламени (Я. Б. Зельдович, Д. А. Франк-Каменецкий, Н. Н. Семенов) и теория детонации (Я. Б. Зельдович). Тепловая теория применена для объяснения горения конденсированных систем (А. Р. Беляев). Советские физико-химики создали основы теории турбулентного горения.
Исследование газофазного фторирования привело к открытию нового типа цепных процессов – реакций с энергетическим разветвлениями цепей, в которых генерирование свободных радикалов происходит в реакциях возбуждённых частиц, образующихся в экзотермических актах продолжения цепи (А. Е. Шилов, Н. Н. Семенов). Экспериментальное подтверждение возможности осуществления «энергетических цепей» (продолжение цепи с участием возбуждённых частиц) получено в работах С. М. Когарко с сотрудниками. Открыто (А. Д. Абкин и В. И. Гольданский) явление протекания химических реакций вблизи абсолютного нуля. В. И. Гольданским впервые показано существование туннельных переходов целых молекулярных групп в химических реакциях.
Большое развитие получили исследования медленных цепных реакций с вырожденным разветвлением цепей (Н. М. Эмануэль). Создана полная количественная схема механизма автоокисления углеводородов в жидкой фазе: открыты и на количеств. уровне изучены новые элементарные реакции зарождения, продолжения и разветвления цепи окисления. Обнаружено и объяснено существование критических явлений при жидкофазном окислении, установлено влияние гетерогенных факторов на механизм таких процессов.
Е. А. Шиловым высказана идея об образовании в органических реакциях промежуточных циклических комплексов. Важные исследования в области физики элементарного акта химической реакции выполнены Я. К. Сыркиным.
Первые работы в СССР по теории катализа принадлежат Н. Д. Зелинскому и его ученикам (А. А. Баландин, Б. А. Казанский и др.). А. А. Баландиным развита мультплетная теория катализа. Электронная теория катализа на полупроводниках развита С. З. Рогинским и Ф. Ф. Волькенштейном. Гипотеза о возможности цепного механизма гетерогенно-каталитических реакций выдвинута Н. Н. Семеновым, В. В. Воеводским и Ф. Ф. Волькенштейном. В. А. Ройтером наряду с Д. А. Франк-Каменецким, Г. К. Боресковым и др. разработаны основы макрокинетики гетерогенно-каталитических процессов (1930—60). М. И. Тёмкиным предложены теории кинетики реакций на неоднородных поверхностях и кинетики многостадийных стационарных реакций (в том числе и каталитических), которые использованы для описания ряда промышленно важных процессов (синтез аммиака, окисление этилена и др.).
В 1964 открыто явление сопряжения реакций отщепления и присоединения водорода на мембранных катализаторах, проницаемых для водорода (В. М. Грязнов, В. С. Смирнов и сотрудники).
Большую роль в развитии теории катализа сыграли исследования макрокинетики, выполненные с учётом диффузии и «физико-химической гидродинамики». Изучение промышленных катализаторов и создание новых методов их исследования успешно проводятся в АН Азербайджанской ССР (школа М. Ф. Нагиева) и Казахской ССР (Д. В. Сокольский). Советские химики внесли значительных вклад в изучение гомогенно-каталитических реакций, в частности разработали теорию гомогенного катализа карбоновыми кислотами и другими донорно-акцепторными веществами в органических растворителях (Е. А. Шилов и др.). М. Е. Вольпин и А. Е. Шилов показали возможность фиксации атмосферного азота на металлоорганических катализаторах. В результате исследования p-комплексов металлов платиновой группы Я. К. Сыркиным и сотрудниками осуществлено окисление олефинов до карбонильных соединений. Развёрнуты работы в области структурного и функционального моделирования биокаталитических систем (И. В. Березин и др.).
Проводятся систематические исследования радиационно-химических процессов. Теория радиационно-химического окисления создана Н. А. Бах, С. Я. Пшежецким и др. Применение метода электронного парамагнитного резонанса позволило исследовать промежуточные частицы, образующиеся под действием излучения, установить образование стабилизированных электронов в замороженных облученных растворах (В. И. Спицын).
С 1960 успешно развиваются исследования в области плазмохимии. Установлены общие принципы и количеств. соотношения неравновесной кинетики, созданы основы плазмохимические технологии получения ацетилена, пигментной TiO2, материалов для микроэлектроники и др.
Исследованы химические превращения под воздействием ударных волн. Показана возможность использования ударного сжатия для получения алмаза, нитрида бора и других материалов. Изучены химические последствия ядерных процессов. Установлены пути стабилизации «горячих» атомов трития, углерода, азота и других элементов (в различных фазах и средах). Положено начало химии позитрона и позитрония, мюония, а также химии мезоатомов и мезомолекул.
Основополагающие работы в области фотохимии выполнены А. Н. Терениным, который впервые дал чёткое представление о механизме первичного акта фотохимической реакции. Открыт эффект влияния лёгких газов на интенсивность поглощения света сложными молекулами, предложена рациональная классификация на основе внутримолекулярных взаимодействий электронных и колебательных состояний, проведено спектральное изучение межмолекулярных взаимодействий в конденсированных средах и решен вопрос о влиянии растворителей на интенсивность молекулярных спектров. Открытие Терениным (1924) расщепления молекул солей на атомы под действием света содействовало успешному развитию спектроскопии молекул. Исследованиям ИК-спектров и спектров комбинационного рассеяния посвящены работы М. В. Волькенштейна. В. Н. Кондратьев развил учение (1940-е гг.) об элементарных процессах при химических превращениях под действием света. Изучены механизмы фотоионизации в газовой фазе многих фотохимических реакций. Осуществлены фотохимические синтезы многих веществ с заданными свойствами – полиметилметакрилатных стекол (С. Р. Рафиков), сенсибилизаторов (А. И. Киприянов, И. И. Левкоев), ряда фотохромных соединений, полупроводников. Разработана новая химическая система усиления светового сигнала на основе ферментативных реакций.
Большой вклад в развитие электрохимии внесла школа А. Н. Фрумкина. Ещё в
1920-е гг. в его работах были объединены вопросы электрохимии и учения об электрокапиллярных явлениях. Было описано состояние адсорбированного слоя (изотерма Фрумкина) в зависимости от скачка потенциала на границе раздела металл – раствор и развита теория двойного электрического слоя; созданы основы современной электрохимической кинетики; введена в науку новая характерная для металлических электродов константа – потенциал нулевого заряда.
Я. М. Колотыркин выявил роль комплексообразования в процессах коррозии, установил участие молекул воды в электрохимических стадиях растворения металлов и предложил ряд методов противокоррозионной защиты (1950—70-е гг.).
В 1960—70-е гг. достигнуты успехи в исследовании элементарных актов электрохимических процессов на основе квантово-механической теории. Б. П. Никольским и его школой создана теория возникновения потенциала на ионоселективных мембранах и разработаны новые типы электродов.
Школой П. А. Ребиндера разработан ряд новых областей коллоидной химии, в том числе современная физическая химия поверхностно-активных веществ и физико-химическая механика дисперсных систем. Открыто явление облегчения деформации твёрдых тел и понижения их прочности под влиянием активной среды или малых добавок адсорбирующихся веществ (эффект Ребиндера), развиты новые представления о типах пространственных структур в дисперсных системах, установлен ряд реологических особенностей дисперсных систем. Б. В. Дерягин открыл расклинивающее давление тонких слоев в коллоидных системах. Это явление легло в основу теории устойчивости лиофобных растворов, позволило объяснить механизм флотации минеральных частиц и усовершенствовать теорию электрофореза.
Систематические исследования адсорбции проводятся под руководством М. М. Дубинина, продолжившего работы Н. А. Шилова. В результате создана практически универсальная количественная теория сорбции – теория объёмного заполнения. Получены важные результаты по кинетике адсорбции, установлен механизм физической и химической сорбции во многих системах, разработаны методы определения активности и величины поверхности сорбентов.
Начало учению о растворах было положено Д. И. Менделеевым и Д. П. Коноваловым и развито Н. С. Курнаковым, И. А. Каблуковым, В. А. Кистяковским и др. Работами Н. С. Курнакова и его школы развиты представления о сингулярных точках на диаграммах состав – свойство и введено представление о растворах как однофазных системах переменного состава. Физическая картина взаимодействия между ионами и средой систематически изучалась В. К. Семенченко, А. И. Бродским, Н. А. Измайловым, О. Я. Самойловым, А. Ф. Капустинским, К. Б. Яцимирским. Исследован механизм образования водородных связей в растворах, процессы комплексообразования. Открыты (1950) два типа ионной гидратации. Изучены явления полного и незавершённого переходов протона при кислотно-основном взаимодействии, и создана единая теория кислотно-основного титрования в неводных растворах. С. А. Щукарев исследовал (1940) периодичность свойств соединений в растворах. М. И. Усановичем и А. И. Шатенштейном развита (1930—40) одна из наиболее общих теорий кислот и оснований.
Исследования в области кристаллохимии позволили выявить критерии состава упорядоченной системы (Г. Б. Бокий), установить ряд основных закономерностей образования силикатных структур (Н. В. Белов). Органическая кристаллохимия развивается в работах А. И. Китайгородского.
Я. К. Сыркиным и М. Е. Дяткиной были начаты и успешно продолжаются их учениками работы по квантовой химии (расчёт энергий и свойств ряда веществ, исследование характера связей в кристаллах и т.д.). Развита наиболее совершенная теория ароматических p-комплексов. И. Б. Берсукер разработал (1974) новый метод расчёта электронного строения и свойств молекулярных систем, содержащих тяжёлые атомы. Изучена и описана эволюция представлений об основных законах химии и важнейших химических понятий (Б. М. Кедров и др.).
Неорганическая химия. Работы в этой области были направлены на создание научных основ получения металлических сплавов и других практически важных материалов, освоение солевых ресурсов страны и, в частности, создание технологических схем переработки галургического сырья. Изучение реакций в твёрдых растворах послужило основой создания металлохимии (Н. С. Курнаков, Г. Г. Уразов, И. Н. Лепешков, Н. В. Агеев, Г. И. Чуфаров, И. И. Корнилов, Е. М. Савицкий и др.). Работы по химии и технологии вольфрама и молибдена (Т. М. Сербии, Г. А. Меерсон, В. И. Спицын) завершились организацией производства вольфрамовой и молибденовой проволоки. Разработан метод получения металлического бериллия и его соединений (В. И. Спицын), изучены химические свойства и диаграммы плавкости бериллиевых систем (А. В. Новоселова и сотрудники). Разработаны методы получения оксидов, гидридов, нитридов, карбидов, боридов, силицидов металлов и их растворов друг в друге. На этой основе созданы материалы, обладающие особой твёрдостью и жаропрочностью и др. Предложены способы низкотемпературного синтеза оксонитридов, оксоборидов, оксофосфидов переходных металлов (Ю. А. Буслаев).
Весьма плодотворными были исследования в области комплексных соединений. В 1920-х гг. Л. А. Чугаевым синтезированы предсказанные теорией пентаминовые соединения четырёхвалентной платины. Разработаны методы получения всех шести металлов платиновой группы в чистом состоянии. Исследования, ранее успешно проводившиеся Чугаевым, продолжены московской (И. И. Черняев) и ленинградской (А. А. Гринберг) школами. Основные достижения первой школы – разработка теории трансвлияния и развитие химии платины, родия, иридия, урана и трансурановых элементов, второй – создание основ стереохимии палладия и разработка теории кислотно-основных свойств комплексных соединений. Изучен важный класс комплексных веществ – гетерополисоединения молибдена, вольфрама, ниобия и других элементов (А. Л. Давидов, К. А. Бабко, З. Ф. Шахова, В. И. Спицын). Центральным направлением химии комплексных соединений стали исследования взаимного влияния лигандов.
Предложена квантовохимическая интерпретация трансвлияния (А. В. Аблов, И. Б. Берсукер). Раскрыт кинетический эффект во взаимной влиянии лигандов и каналов его передачи в комплексах (К. Б. Яцимирский). Разработаны фторидные процессы аффинажа урансодержащих веществ, предложены новые области применения и методы выделения и очистки редких металлов (И. В. Тананаев, Б. Н. Ласкорин).
Интенсивно развивались работы (с 1940-х гг.) в области химии полупроводников (Н. П. Сажин, Д. А. Петров, И. П. Алимарин, А. В. Новоселова, Я. И. Герасимов и др.). Решены задачи глубокой очистки германия, кремния, селена, теллура. Синтезированы и изучены соединения типа AIIIBV (нитриды, фосфиды, арсениды), AIIBVI (сульфиды и селениды), AIVBVI (халькогениды) и др. Установлены критерии, позволяющие предсказывать наличие полупроводниковых свойств у многих соединений, внедрены методы производства полупроводниковых материалов. Созданы способы производства материалов для лазеров, ведётся поиск новых материалов для хемолазеров и лазеров на основе жидких стеклообразных сред.
Достигнуты существенные результаты в области радиохимии. В 1921 под руководством В. Г. Хлопина и И. Я. Башилова был получен первый в СССР препарат радия; позже были выполнены важные исследования радиоактивных элементов (Б. А. Никитин, А. П. Ратнер, И. Е. Старик и др.). Открыт закон распределения микрокомпонентов между твёрдыми и жидкими фазами, используемый для выделения радиоактивных элементов (В. Г. Хлопин). Разработаны способы обнаружения крайне нестойких молекулярных соединений, в том числе соединений радона. Широко изучена химия плутония, нептуния, америция, кюрия и других трансурановых элементов (В. М. Вдовенко, Б. П. Никольский, В. В. Фомин и др.). Впервые (1967) синтезированы соединения семивалентного нептуния и плутония (Н. Н. Крот, А. Д. Гельман), двухвалентного калифорния, эйнштейния и фермия, одновалентного менделевия (В. И. Спицын, Н. Б. Михеев и сотрудники, 1971). Изучено распределение радиоактивных компонентов в расплавах, на границе двух жидких фаз и на твёрдых адсорбентах. Создан ряд методов получения радиоактивных изотопов и меченых соединений, а также применения их для исследования технически используемых материалов (Ан. Н. Несмеянов). Важные результаты получены в области химии и химической технологии стабильных изотопов лёгких элементов (Н. М. Жаворонков). Синтезированы новые элементы №№ 104—106, предложены пути выделения элементов 106 и 107 (Г. Н. Флёров). Проведён радиохимический анализ космогенных изотопов в лунном реголите, всесторонне изучен лунный грунт, доставленный автоматическими станциями «Луна».
Начатые ещё в 20-х гг. работы по изучению естественных соляных богатств страны получили дальнейшее развитие, создана мощная химическая индустрия по производству соды, кислот и щелочей, минеральных удобрений. С. И. Вольфковичем с сотрудниками разработано (1930-е гг.) производство соды и сульфата аммония на основе природного мирабилита. Созданы научные основы переработки фосфоритов и апатитов в фосфор, фосфорные кислоты и удобрения (с 1936 – Э.. В. Брицке, С. И. Вольфкович и др.). Разработаны способы многотоннажного производства разнообразных важных продуктов на основе калийно-магниевых месторождений Соликамска, соляных залежей Поволжья, Приуралья, Средней Азии, Украины и Белоруссии. Систематические работы в области химии силикатов (Н. Б. Белов, П. П. Будников и др.) послужили основанием для создания промышленности многих строит. материалов. Ведутся работы по математическому моделированию химических реакторов, позволяющие создать эффективные агрегаты большой единичной мощности для химических, нефтехимической и нефтеперерабатывающей промышленности (Г. К. Боресков, М. Г. Слинько и др.).
Аналитическая химия. Предложены и применены новые методы анализа, например дробный и капельный (1922, Н. А. Тананаев), бесстружковый для анализа металлов, кинетический анализ с использованием каталитических реакций (1958—60, К. Б. Яцимирский), ультрамикроанализ (1959—60, И. П. Алимарин). С 1946—49 развёрнуты работы по совершенствованию и внедрению методов хроматографического анализа (А. В. Киселев, К. В. Чмутов, А. А. Жуховицкий). Получили развитие оптические, электрохимические и радиохимические методы анализа. Впервые использован нейтронный радиоактивационный анализ следов примесей в полупроводниковых элементах. В связи с решением проблем геохимии, биогеохимии, а также космохимии большой вклад в развитие современных методов анализа следов элементов и изучение изотопного состава элементов в минералах и метеоритах внесён А. П. Виноградовым. Особенностью работ школы советских аналитиков является изучение проблем, связанных с применением органических реактивов (Л. М. Кульберг, И. М. Коренман, А. П. Терентьев, В. И. Кузнецов, 1946—50).
Органическая химия. Исследования в области органической химии получили в СССР большой размах. Н. Д. Зелинский, С. С. Наметкин, С. В. Лебедев, Ю. Г. Мамедалиев, А. В. Топчиев и их сотрудники систематически изучали углеводороды нефти. Ими были разработаны способы разделения нефти, низкотемпературные процессы получения ацетилена на основе метана, дегидрогенизации бутана и пентанов соответственно до бутадиена и изопрена, этилбензола и изопропилбензола – до стирола и a-метилстирола, циклогексановых углеводородов – до ароматических. Открыты и детально изучены реакции C5– и C6-дегидроциклизации алканов в соответствующие циклопентановые, циклопентеновые и ароматические углеводороды (Н. Д. Зелинский, Б. А. Казанский, Б. Л. Молдавский и др.). Эти реакции наряду с дегидрогенизационным катализом Зелинского представляют важнейшее звено в процессах риформинга, в промышленном синтезе бензола и других индивидуальных ароматических углеводородов. Большое число работ выполнено в области гидрогенизации углеводородов: выяснены закономерности гидрогенизационного катализа (С. В. Лебедев. Б. А. Казанский, 1920—30); синтезированы модельные углеводороды по схеме: спирты – олефины – парафины (А. Д. Петров, Р. Я. Левина и др., 1940-е гг.). Принципиально важным для теории этих синтезов было открытие реакций гидрополимеризации и гидроконденсации (Я. Т. Эйдус и Н. Д. Зелинский, 1926—48).
Работы в области изомерных превращений ацетиленовых углеводородов в школе А. Е. Фаворского, продолжавшиеся более 50 лет (с 1880-х гг.), позволили установить взаимные переходы между ацетиленовыми, алленовыми и диеновыми соединениями, определить условия их устойчивости, изучить механизм изомеризации и полимеризации диенов, найти структурные закономерности, относящиеся к внутримолекулярным перегруппировкам. Исследования димеризации и полимеризации ацетиленовых углеводородов и гидратации полученных продуктов привели к синтезу ряда ацетиленовых спиртов и карбонильных соединений, а также соединений стероидного типа (И. Н. Назаров, 1940-е гг.), и к промышленному синтезу хлоропренового каучука (А. Л. Клебанский, И. М. Долгопольский, 1932—34). Систематические исследования в области нитрования углеводородов привели к получению многих практически важных нитропроизводных (А. И. Титов, С. С. Новиков, А. В. Топчиев, 1940—60).
Разработан т. н. кумольный процесс, позволяющий получать на основе бензола и пропилена (через кумол) ацетон и фенол (П. Г. Сергеев, Р. Ю. Удрис, Б. Д. Кружалов, 1947). Работы в области крекинга и алкилирования углеводородов позволили получать необходимые изоалканы для производства высокооктановых бензинов, а также индивидуальные углеводороды – промежуточные продукты органического синтеза. Универсальные методы синтеза циклопропановых и циклобутановых углеводородов были разработаны Н. Я. Демьяновым, Н. М. Кижнером, Б. А. Казанским и др.