355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (СТ) » Текст книги (страница 27)
Большая Советская Энциклопедия (СТ)
  • Текст добавлен: 19 сентября 2016, 13:15

Текст книги "Большая Советская Энциклопедия (СТ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 27 (всего у книги 89 страниц)

Статистический анализ случайных процессов

Статисти'ческий ана'лиз случа'йных проце'ссов, раздел математической статистики, посвященный методам обработки и использования статистических данных, касающихся случайных процессов (т. е. функций X (t ) времени t , определяемых с помощью некоторого испытания и при разных испытаниях могущих в зависимости от случая принимать различные значения). Значение x (t ) случайного процесса X (t ), получаемое в ходе одного испытания, называется реализацией (иначе – наблюдённым значением, выборочным значением или траекторией) процесса X (t ); статистические данные о X (t ), используемые при статистическом анализе этого процесса, обычно представляютсобой сведения о значениях одной или нескольких реализаций x (t ) в течение определенного промежутка времени или же о значениях каких-либо величин, связанных с процессом X (t ) (например, о наблюденных значениях процесса Y (t ), являющегося суммой X (t ) и некоторого «шума» N (t ), созданного внешними помехами и ошибками измерения значений x (t )). Весьма важный с точки зрения приложений класс задач С. а. с. п. представляют собой задачи обнаружения сигнала на фоне шума, играющие большую роль при радиолокации. С математической точки зрения эти задачи сводятся к статистической проверке гипотез : здесь по наблюденным значениям некоторой функции требуется заключить, справедлива ли гипотеза о том, что функция эта является реализацией суммы шума N (t ) и интересующего наблюдателя сигнала X (t ), или же справедлива гипотеза о том, что она является реализацией одного лишь шума N (t ). В случаях, когда форма сигнала X (t ) не является полностью известной, задачи обнаружения часто включают в себя и задачи статистической оценки неизвестных параметров сигнала; так, например, в задачах радиолокации очень важна задача об оценке времени появления сигнала, определяющего расстояние до объекта, породившего этот сигнал. Задачи статистической оценки параметров возникают и тогда, когда по данным наблюдений за значениями процесса X (t ) в течение определённого промежутка времени требуется оценить значения каких-то параметров распределения вероятностей случайных величин X (t ) или же, например, оценить значение в фиксированный момент времени t = t1 самого процесса Х (t ) (в предположении, что t1 лежит за пределами интервала наблюдений за этим процессом) или значение y (t1 ) какого-либо вспомогательного процесса Y (t ), статистически связанного с Х (t ) (см. Случайных процессов прогнозирование ). Наконец, ряд задач С. а. с. п. Относится к числу задач на непараметрические методы статистики; так обстоит дело, в частности, когда по наблюдениям за течением процесса X (t ) требуется оценить некоторые функции, характеризующие распределения вероятностей значений этого процесса (например, плотность вероятности величины Х (t ), или корреляционную функцию Ex (t ) X (s ) процесса Х (t ), или, в случае стационарного случайного процессаX (t ), его спектральную плотность f (l )

  При решение задач С. а. с. п. всегда требуется принять те или иные специальные предположения о статистической структуре процесса X (t ), т. е. как-то ограничить класс рассматриваемых случайных процессов. Очень ценным с точки зрения С. а. с. п. является допущение о том, что рассматриваемый процесс X (t ) является стационарным случайным процессом; при этом допущении, зная значения единственной реализации x (t ) в течение промежутка времени 0 £t £ T , можно уже получить целый ряд статистических выводов о вероятностных характеристиках процесса X (t ). В частности, среднеарифметическое значение

 

  в случае стационарного случайного процесса X (t ) при весьма широких условиях является состоятельной оценкой математического ожидания Ex (t ) = m (т. е.  сходится при Т ®¥ к истинному значению оцениваемой величины m ); аналогично этому выборочная корреляционная функция

  ,

  где t > 0, при широких условиях является состоятельной оценкой корреляционной функции B (t)= Ex (t ) X (t + t).

  Однако Фурье преобразование функции  – так называемая периодограмма IT (l) процесса X (t ) – уже не представляет собой состоятельной оценки спектральной плотности f (l), являющейся преобразованием Фурье функции В (t); при больших значениях Т периодограмма IT (l) ведёт себя крайне нерегулярно и при Т ® ¥ она не стремится ни к какому пределу. Поэтому С. а. с. п. включает в себя ряд специальных приёмов построения состоятельных оценок спектральной плотности f (l) по наблюдённым значениям одной реализации стационарного процесса X (t ), большинство из которых основано на использовании сглаживания периодограммы процесса по сравнительно узкой области частот l.

  При исследовании статистических свойств оценок вероятностных характеристик стационарных случайных процессов очень полезными оказываются дополнительные допущения о природе X (t ) (например, допущение о том, что все конечномерные распределения значений процесса X (t ) являются нормальными распределениями вероятностей). Большое развитие получили также исследования по С. а. с. п., в которых предполагается, что изучаемый процесс X (t ) является марковским процессом того или иного типа, или компонентой многомерного марковского процесса, или компонентой многомерного процесса, удовлетворяющего определённой системе стохастических дифференциальных уравнений.

  Лит.: Дженкинс Г., Ватте Д., Спектральный анализ и его приложения, пер. с англ., в. 1—2, М., 1971—72; Хеннан Э., Анализ временных рядов, пер. с англ., М., 1964; его же, Многомерные временные ряды, пер. с англ., М., 1974: Липцер Р. Ш., Ширяев А. Н., Статистика случайных процессов (нелинейная фильтрация и смежные вопросы), М., 1974.

  А. М. Яглом.

Статистический ансамбль

Статисти'ческий анса'мбль, совокупность сколь угодно большого числа одинаковых физических систем многих частиц («копий» данной системы), находящихся в одинаковых макроскопических состояниях; при этом микроскопические состояния системы могут принимать все возможные значения, совместимые с заданными значениями макроскопических параметров, определяющих её макроскопическое состояние. Примеры С. а. – энергетически изолированные системы при заданном значении полной энергии (микроканонический ансамбль ), системы в контакте с термостатом заданной температуры (канонический ансамбль ), системы в контакте с термостатом и резервуаром частиц (большой канонический ансамбль). С. а. – основное понятие статистической физики , позволяющее применить методы теории вероятностей.

Статистический вес

Статисти'ческий вес, в квантовой механике и квантовой статистике – число различных квантовых состояний с данной энергией, т. е. кратность состояния. Если энергия принимает непрерывный ряд значений, под С. в. понимают число состояний в данном интервале энергий. В классической статистике С. в. называют величину элемента фазового объёма системы. См. Статистическая физика .

Статистический институт

Статисти'ческий институ'т международный, занимается развитием и усовершенствованием статистических методов и их применением в различных областях знаний. Основан в 1885. Организационная работа С. и. выполняется Постоянным бюро, которое находится в Гааге. В составе С. и. (середина 70-х гг.) свыше 700 действительных членов более чем из 70 стран (в т. ч. из СССР и др. социалистических стран), специалисты в области социально-экономической и математической статистики, а также руководители национальных статистических учреждений и организаций. Каждые 2 года С. и. проводит сессии, на которых заслушиваются и обсуждаются научные сообщения по проблемам различных отраслей статистики. Первая сессия состоялась в Риме в 1887, 40-я – в 1975 в Варшаве. Материалы сессий С. и. печатаются в «Бюллетенях института». Статьи по отдельным проблемам статистики (в основном математической) и текущая информация о научной жизни публикуются в журнале «Международное статистическое обозрение» («International statistical review», с 1933). До 1-й мировой войны 1914—18 С. и. был центром, международной статистики, занимался сбором и обработкой статистических данных отдельных стран, готовил рекомендации по сопоставимости данных. В 1919—33 он осуществлял эту деятельность параллельно с органами Лиги Наций . С созданием статистического аппарата ООН С. и. полностью переключился на вопросы статистической теории и методологии. Институт готовит кадры статистиков для развивающихся стран. В 70-е гг. сформировались 3 ассоциации как автономные секции С. и.: Международная ассоциация по применению статистики в физических науках, Международная ассоциация муниципальных статистиков, Международная ассоциация специалистов по выборочному методу.

  Лит.: Рябушкин Т., Международная статистика, М., 1965.

  Т. В. Рябушкин.

Статистический оператор

Статисти'ческий опера'тор, матрица плотности, оператор, с помощью которого можно вычислить среднее значение любой физической величины в квантовой статистической физике и, в частности, в квантовой механике . С. о. описывает состояние системы, не основанное на полном (в смысле квантовой механики) наборе данных о системе (смесь состояний ).

Статистических испытаний метод

Статисти'ческих испыта'ний ме'тод , метод вычислительной и прикладной математики, основанный на моделировании случайных величин и построении статистических оценок для искомых величин; то же, что Монте-Карло метод . Принято считать, что С. и. м. возник в 1944, когда в связи с работами по созданию атомных реакторов американские учёные Дж. фон Нейман и С. Улам начали широко применять аппарат теории вероятностей для решения прикладных задач с помощью ЭВМ. Первоначально С. и. м. использовался главным образом для решения сложных задач теории переноса излучения и нейтронной физики, где традиционные численные методы оказались мало пригодными. Затем его влияние распространилось на больший класс задач статистической физики, очень разных по своему содержанию. С. и. м. применяется для решения задач теории игр, теории массового обслуживания и математической экономики, задач теории передачи сообщений при наличии помех и т.д. Для решения детерминированной задачи по С. и. м. прежде всего строят вероятностную модель, представляют искомую величину, например многомерный интеграл, в виде математического ожидания функционала от случайного процесса, который затем моделируется на ЭВМ. Хорошо известны вероятностные модели для вычисления интегралов, для решения интегральных уравнений 2-го рода, для решения систем линейных алгебраических уравнений, для решения краевых задач для эллиптических уравнений, для оценки собственных значений линейных операторов и т.д. Выбором вероятностной модели можно распорядиться для получения оценки с малой погрешностью. Особую роль в различных приложениях С. и. м. играет моделирование случайных величин с заданными распределениями. Как правило, такое моделирование осуществляется путём преобразования одного или нескольких независимых значений случайного числа a, распределённого равномерно в интервале (0,1). Последовательности «выборочных» значений a обычно получают на ЭВМ с помощью теоретико-числовых алгоритмов, среди которых наибольшее распространение получил «метод вычетов». Такие числа называются «псевдослучайными», они проверяются статистическими тестами и решением типовых задач. Если в расчёте по С. и. м. моделируются случайные величины, определяемые реальным содержанием явления, то расчёт представляет собой процесс «прямого моделирования». Такой расчёт неэффективен, если изучению подлежат редкие события, т.к. реальный процесс содержит о них мало информации. Эта неэффективность обычно проявляется в слишком большой величине вероятностной погрешности (дисперсии) случайных оценок искомых величин. Разработано много способов уменьшения дисперсии указанных оценок в рамках С. и. м. Почти все они основаны на модификации моделирования с помощью информации о «функции ценности» значений случайных величин относительно вычисляемых величин. С. и. м. оказал и продолжает оказывать существенное влияние на развитие др. методов вычислительной математики (например, на развитие методов численного интегрирования) и при решении многих задач успешно сочетается с др. вычислительными методами и дополняет их. Более специальные математические вопросы, связанные с С. и. м., см. в ст. Статистическое моделирование .

  Лит.: Метод Монте-Карло в проблеме переноса излучений, М., 1967; Метод статистических испытаний (Метод Монте-Карло), М., 1962; Решение прямых и некоторых обратных задач атмосферной оптики методом Монте-Карло, Новосиб., 1968; Ермаков С. М., Метод Монте-Карло и смежные вопросы, М., 1971; Михайлов Г. А., Некоторые вопросы теории методов Монте-Карло, Новосиб., 1974.

  Г. И. Марчук.

Статистических решений теория

Статисти'ческих реше'ний тео'рия, часть математической статистики и игр теории , позволяющая единым образом охватить такие разнообразные задачи, как статистическая проверка гипотез , построение статистических оценок параметров и доверительных границ для них, планирование эксперимента и др. В основе С. р. т. лежит предположение, что распределение вероятностей F наблюдаемой случайной величины XF принадлежит некоторому априори данному множеству . Основная задача С. р. т. состоит в отыскании наилучшего статистического решения или решающего правила (функции) d = d (x ), позволяющего по результатам наблюдений х над Х судить об истинном (но неизвестном) распределении F. Для сравнения достоинств различных решающих правил вводят в рассмотрение функцию потерь W [F, d (x )], представляющую убыток от принятия решения d (x ) (из заданного множества D ), когда истинное распределение есть F. Естественно было бы считать решающее правило d* = d* (x ) наилучшим, если средний риск r (F, d* ) =MF W [F, d (X )] (MF усреднение по распределению F ) не превышает r (F, d ) для любого F Î  и любого решающего правила d = d (x ). Однако такое «равномерно наилучшее» решающее правило в большинстве задач отсутствует, в связи с чем наибольший интерес в С. р. т. представляет отыскание т. н. минимаксных и бейесовских решений. Решение  называется минимаксным, если

 

  Решение  называется бейесовским (относительно заданного априорного распределения n на множестве ), если для всех решающих правил d

,

где

  между минимаксными и бейесовскими решениями существует тесная связь, заключающаяся в том, что в весьма широких предположениях о данных задачи минимаксное решение является бейесовским относительно «наименее благоприятного» априорного распределения p.

  Лит.: Вальд А., Статистические решающие функции, в сборнике: Позиционные игры, М., 1967: Леман Э., Проверка статистических гипотез, пер. с англ., М., 1964.

  А. Н. Ширяев.

Статистическое моделирование

Статисти'ческое модели'рование, численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления, это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки «наблюдений» модели. Например, требуется рассчитать потоки тепла в нагреваемой тонкой металлической пластине, на краях которой поддерживается нулевая температура. Распределение тепла описывается тем же уравнением, что и расплывание пятна краски в слое жидкости (см. Теплопроводность , Диффузия ). Поэтому моделируют плоское броуновское движение частиц «краски» по пластине, следя за их положениями в моменты k t, k = 0, 1, 2,... Приближённо принимают, что за малый интервал t частица перемещается на шаг h равновероятно во всех направлениях. Каждый раз направление выбирается случайным образом, независимо от всего предыдущего. Соотношение между t и h определяется коэффициентом теплопроводности. Движение начинается в источнике тепла и кончается при первом достижении края (наблюдается налипание «краски» на край). Поток Q (C) тепла через участок С границы измеряется количеством налипшей краски. При общем количестве N частиц согласно больших чисел закону такая оценка даёт случайную относительную ошибку порядка  (и систематическую ошибку порядка h из-за дискретности выбранной модели).

  Искомую величину представляют математическим ожиданием числовой функции f от случайного исхода w явления: , т. е. интегралом по вероятностной мере Р (см. Мера множества ). На оценку , где w1 ,..., wN -смоделированные исходы, можно смотреть как на квадратурную формулу для указанного интеграла со случайными узлами wk и случайной погрешностью RN обычно принимают , считая большую погрешность пренебрежимо маловероятной; дисперсия Df может быть оценена в ходе наблюдений (см. Ошибок теория ).

  В разобранном выше примере f (w)= 1, когда траектория кончается на С; иначе f (w) = 0. Дисперсия . Интеграл берётся по пространству ломаных со звеньями постоянной длины; он может быть выражен через кратные интегралы.

  Проведение каждого «эксперимента» распадается на две части: «розыгрыш» случайного исхода w и последующее вычисление функции f (w). Когда пространство всех исходов и вероятностная мера Р слишком сложны, розыгрыш проводится последовательно в несколько этапов (см. пример). Случайный выбор на каждом этапе проводится с помощью случайных чисел, например генерируемых каким-либо физическим датчиком; употребительна также их арифметическая имитация – псевдослучайные числа (см. Случайные и псевдослучайные числа ). Аналогичные процедуры случайного выбора используются в математической статистике и теории игр.

  С. м. широко применяется для решения на ЭВМ интегральных уравнений, например при исследовании больших систем . Они удобны своей универсальностью, как правило, не требуют большого объёма памяти. Недостаток – большие случайные погрешности, слишком медленно убывающие при увеличении числа экспериментов. Поэтому разработаны приёмы преобразования моделей, позволяющие понижать разброс наблюдаемых величин и объём модельного эксперимента.

  Лит.: Метод статистических испытаний (Метод Монте-Карло), М., 1962; Ермаков С. М., Метод Монте-Карло и смежные вопросы, М., 1971.

  Н. Н. Ченцов.

Статистическое наблюдение

Статисти'ческое наблюде'ние, см. Выборочное наблюдение , Наблюдение сплошное .

Статистическое оценивание

Статисти'ческое оце'нивание, совокупность способов, употребляемых в математической статистике для приближённого определения неизвестных распределений вероятностей (или каких-либо их характеристик) по результатам наблюдений. В наиболее распространённом случае независимых наблюдений их результаты образуют последовательность

  X1 , X2 ,..., Xn ,... (1)

независимых случайных величин (или векторов), имеющих одно и то же (неизвестное) распределение вероятностей с функцией распределения F (x ). Часто предполагают, что функция F (x ) зависит неизвестным образом от одного или нескольких параметров и определению подлежат лишь значения самих этих параметров [например, значительная часть теории, особенно в многомерном случае, развита в предположении, что неизвестное распределение является нормальным распределением , у которого все параметры или какая-либо часть их неизвестны (см. Статистический анализ многомерный )]. Два основных вида С. о. – т. н. точечное оценивание и оценивание с помощью доверительных границ . В первом случае в качестве приближённого значения для неизвестной характеристики выбирают какую-либо одну функцию от результатов наблюдений, во втором – указывают интервал значений, с высокой вероятностью «накрывающий» неизвестное значение этой характеристики. В более общих случаях интервалы, образуемые доверительными границами (доверительные интервалы), заменяются более сложными доверительными множествами.

  О С. о. функции распределения F (x ) см. Непараметрические методы в математической статистике; о С. о. параметров см. Статистические оценки .

  Разработаны также методы С. о. и для случая, когда результаты наблюдений (1) зависимы, и для случая, когда индекс n заменяется непрерывно меняющимся аргументом t, т. е. для случайных процессов . В частности, широко используется С. о. таких характеристик случайных процессов, как корреляционная функция и спектральная функция. В связи с задачами регрессионного анализа был развит новый метод С. о. – стохастическая аппроксимация . При классификации и сравнении способов С. о. исходят из ряда принципов (таких, как состоятельность, несмещенность, инвариантность и др.), которые в их наиболее общей форме рассматривают в Статистических решений теории .

  Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975; Рао С. Р., Линейные статистические методы и их применения, пер. с англ., М., 1968.

  Ю. В. Прохоров.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache