Текст книги "Большая Советская Энциклопедия (СТ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 14 (всего у книги 89 страниц)
Старая Синява
Ста'рая Синя'ва, посёлок городского типа, центр Старосинявского района Хмельницкой области УССР. Расположен на р. Иква (приток Южного Буга), в 12 км от ж.-д. станции Адамполь (на линии Староконстантинов – Калиновка). Сахарный завод.
Старая Торопа
Ста'рая Торо'па, посёлок городского типа в Западнодвинском районе Калининской области РСФСР. Ж.-д. станция на линии Москва – Рига. Лесозаготовки. Филиал Торопецкого мебельного комбината, сыродельный завод.
Старгард-Щециньски
Ста'ргард-Щеци'ньски (Stargard Szczecinski), город в Польше, в Щецинском воеводстве, на р. Ина. 49,9 тыс. жителей (1974). Транспортный узел. Ж.-д. мастерские; пищевая и швейная промышленность.
Старевич Владислав Александрович
Старе'вич Владислав Александрович [27.7(8.8).1882, Москва, – 1965, Париж], русский художник, оператор и режиссёр кино. Основоположник русского мультипликационного кино . С 1911 проводил эксперименты с покадровой съёмкой, развивал технический принцип объёмной, позже графической мультипликации. Снял объёмные фильмы – «Прекрасная Люканида», «Месть кинематографического кинооператора» (оба в 1912), «Четыре чёрта» (1913) и др. Наиболее значителен фильм «Стрекоза и Муравей» (1913, по И. А. Крылову). Использовал графическую мультипликацию и в игровом кино – «Ночь перед Рождеством» (1913, по Н. В. Гоголю) и др. С. добился значительных художественных успехов, разработал приёмы съёмки движущейся камерой, трюковые и комбинированные съёмки, наплыв и др. С 1919 работал в Париже. Снимал объёмные мультипликационные фильмы, наиболее известный из которых «Рейнеке Лис» (1939).
Старение
Старе'ние, закономерно возникающие в процессе развития особи возрастные изменения, начинающиеся задолго до старости и приводящие к постепенно нарастающему сокращению приспособительных возможностей организма. С. – заключительный этап онтогенеза . Изучением С. занимается геронтология . Интенсивность С., т. е. темп его развития, определяет как продолжительность жизни животных различных видов (которая генетически запрограммирована), так и то или иное соотношение обменных, структурных и функциональных проявлений, возникающих в различных системах организма.
Развитие представлений о сущности С. неразрывно связано с борьбой различных философских школ по проблемам происхождения жизни , эволюции животного мира, соотношения жизни и смерти в индивидуальном развитии. Определение связи категорий жизни и смерти было дано Ф. Энгельсом: «... жизнь всегда мыслится в отношении к своему неизбежному результату, заключающемуся в ней постоянно в зародыше, – смерти». С. – неотъемлемая часть индивидуального развития, в ходе которого могут возникать проявления, сходные с ранними этапами онтогенеза, но имеющие иной механизм. Общепринятого объяснения механизмов С. нет. Выдвинуто свыше 300 гипотез о механизмах С. Многие из них имеют чисто исторический интерес. Большинство современных гипотез могут быть разделены на 2 большие группы. В соответствии с первой группой гипотез С. – запрограммированный процесс количественных и качественных изменений, закономерно возникающих в генетическом аппарате, контролирующийся генами , как и все др. этапы развития организма. В соответствии со второй группой гипотез С. – результат нарушения, повреждения генетического аппарата в ходе жизнедеятельности, процесс накопления в нём «ошибок», вызываемых множеством причин – перекрестными связями, свободными радикалами и продуктами метаболизма клеток. Высказывается и компромиссная точка зрения: первичные генетически запрограммированные изменения создают «уязвимые» места, на которые повреждающе воздействуют накапливающиеся в ходе жизнедеятельности метаболиты. Большое внимание в гипотезах придаётся экзогенным и эндогенным факторам, которые способствуют развитию С. Различные гипотезы С. пытаются выяснить последовательность развивающихся при этом возрастных изменений. Предполагается, что первичные механизмы С. (американский учёный Х. Кёртис, английский – Г. Майнот, советский – И. И. Шмальгаузен) определяют постмитотические (см. Митоз ), высокодифференцированные клетки. По мнению Л. Хейфлика, митотически активные клетки обладают ограниченным потенциалом к делению, что также приводит к первичному С. организма. Наиболее изучены процессы С. у человека и позвоночных животных. По мнению одних исследователей, С. начинается вместе с оплодотворением клетки, её первым делением (советский учёный М. С. Мильман), по мнению других – вслед за прекращением роста (Г. Биддер), согласно третьим, С. происходит во все возрастные периоды (советские учёные Л. В. Нагорный, В. И. Никитин, И. Н. Буланкин), развивается в климактерический период (И. В. Давыдовский). В организме встречаются клетки с различной способностью к делению, разной длительностью жизни, неодинаковым сроком наступления в них С. Теснейшая взаимосвязь и взаимозависимость возрастных изменений на разных уровнях организации живого, различных уровнях жизнедеятельности и определяют, с одной стороны, возникновение С. вместе с зарождением животного организма, с другой – развитие С. на более поздних этапах онтогенеза.
Ещё С. П. Боткин и И. И. Мечников обосновали необходимость разграничения физиологического (естественного) и преждевременного (патологического) С. Преждевременное С., по мнению многих исследователей, развивается под влиянием неблагоприятных факторов среды, перенесённых заболеваний. Существенные изменения в ходе С. развиваются на клеточном уровне. Они выражаются в снижении возбудимости, лабильности клеток, увеличении длительности потенциала действия , в сдвигах синаптического проведения. При С. ослабляются нервные влияния на клетки и ткани, повышается их чувствительность к ряду гуморальных факторов. Это связано со сдвигами в обмене медиаторов . Характерно снижение уровня тканевого дыхания, что связано как с уменьшением количества активных клеточных элементов и числа митохондрий в них, так и с ослаблением окислительной способности митохондрий. Рост интенсивности гликолиза не может компенсировать недостаточное образование энергии при окислительно-восстановительных процессах в организме, и это приводит к уменьшению содержания и скорости обновления макроэргических соединений . Изменяется реакционная способность активных групп белка; в клетках накапливаются инертные белковые молекулы. Изменения наступают и в различных системах организма, в том числе в нервной. Раньше других страдает процесс внутреннего торможения. С возрастом ослабляются субординационные влияния высших отделов центральной нервной системы на низшие, снижается лабильность нервных центров, повышается их чувствительность к некоторым гуморальным факторам, изменяются соотношения между центрами и периферией. Сдвиги нейродинамики лежат в основе изменений психики и поведения старого человека, снижения его работоспособности, способности к концентрации внимания, эмоциональной неустойчивости и др. С возрастом артериальное давление нередко повышается, несколько замедляется ритм сердечных сокращений, уменьшается величина сердечного выброса, растет периферическое сопротивление, падает эластичность сосудистой стенки. Снижается лёгочная вентиляция и жизненная ёмкость лёгких. Особенно отчётливо возрастные различия в гемодинамике и дыхании выявляются в условиях напряжённой деятельности, например при мышечной работе. Ослабляются ферментативная активность пищеварительных соков, интенсивность всасывания жирных кислот. аминокислот, глюкозы, ослабевает двигательная способность желудочно-кишечного тракта, антитоксическая функция печени. В соответствии с адаптационно-регуляторной теорией (В. В. Фролькис), С. внутренне противоречиво: наряду со снижением, ослаблением при С. одних процессов, в результате мобилизации важных приспособительных механизмов происходит усиление других. К таким механизмам можно отнести увеличение числа ядер в ряде клеток при изменении активности генетического аппарата каждого ядра, рост активности гликолиза на фоне снижения интенсивности тканевого дыхания, гипертрофию одних клеток при атрофии других, повышение чувствительности тканей к ряду гормонов в условиях ослабления функции желёз внутренней секреции и др.
В С. сложного организма, в развитии его приспособительных механизмов важнейшее значение имеют изменения нейро-гуморальной регуляции функций, сосудистой проницаемости (И. П. Павлов, А. А. Богомолец, Н. Б. Маньковский и др.). Обменные и функциональные показатели при С. изменяются не однонаправленно, плавно, постепенно, а разнонаправленно, неравномерно, в различном темпе. Одни из них (например, сократительная способность миокарда, функция пищеварительной, щитовидной, половых желёз, острота зрения и слуха и др.) прогрессивно снижаются с возрастом; другие (уровень сахара в крови, мембранный потенциал многих клеток, некоторые показатели морфологического состава крови и др.) существенно не изменяются; третьи (синтез некоторых гормонов гипофиза, чувствительность многих клеток к гуморальным факторам, активность некоторых ферментов и др.) возрастают. Неравномерность сдвигов при С. заключается в том, что возрастные изменения в органах и тканях развиваются и протекают неодинаково в разные возрастные периоды (особенно в климактерический). Например, вилочковая железа функционирует активно в детстве, деятельность половых желёз ослабляется у женщин к 50 годам, а некоторые функции гипофиза сохраняются даже в глубокой старости. Нарастающие в ходе С. сдвиги ограничивают приспособительные возможности организма, способствуют развитию многих заболеваний, частота которых увеличивается в старости. В профилактике С. человека значительное место отводится правильному чередованию труда и отдыха, полноценному, разумно организованному питанию.
Лит.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с 610; Нагорный А. В., Никитин В. Н., Буланкин И. Н., Проблема старения и долголетия, М., 1963; Давыдовский И. В., Геронтология, М., 1966; Бердышев Г. Д., Эколого-генетические факторы старения и долголетия, Л., 1968; Дильман В. М., Старение, климакс и рак, Л., 1968; Фролькис В. В., Регулирование, приспособление и старение, Л., 1970; его же, Старение и биологические возможности организма, М., 1975; Маньковский Н. Б., Минц А. Я., Старение и нервная система, К., 1972.
В. В. Фролькис.
Старение растений имеет много общего со С. у человека и животных. Для С. характерно преобладание дегенеративных процессов над регенеративными. Сопровождается структурными изменениями в органах растений, постепенным разрушением всех клеточных органелл: хлоропластов, митохондрий, рибосом, эндоплазматического ретикулума, диктиосом и др. При С. снижается интенсивность основных функций организма, таких как фотосинтез, синтез белка, нуклеиновых кислот и других биологически важных соединений. Падает активность большинства ферментов (активность протеолитических может повышаться). Различные факторы внешней среды – элементы питания, освещённость, температура, патогенные бактерии, грибы и т.п. – могут ускорить или задержать С. В регуляции С. особенно важна роль фитогормонов . Например, с помощью цитокининов можно достигнуть даже вторичного «омоложения» органов растений. Ускорить С. можно с помощью абсцизовой кислоты – природного ингибитора роста. У растений С. (в отличие от С. животных и человека) сочетается с новообразованием отдельных его органов, которое часто продолжается всю жизнь. Существуют растения, все органы которых стареют и гибнут одновременно (например, агава после цветения); у других (деревья средней полосы) происходит циклическое, сезонное отмирание листьев при сохранении жизнеспособности др. органов; у многих травянистых растений С. нижних листьев сопровождается новообразованием верхушечных, молодых листьев и т.п. Теория циклического С. и омоложения Н. П. Кренке лежит в основе многих практических приёмов (отбор по морфологическим признакам скороспелых сортов, омоложение плодовых деревьев и кустарников при помощи глубокой подрезки и т.п.), используемых в сельском хозяйстве.
Лит.: Кренке Н. П., Теория циклического старения и омоложения растений..., М., 1940; Биология развития растений, М., 1975.
Н. Л. Клячко.
Старение коллоидов
Старе'ние колло'идов, самопроизвольное медленное изменение свойств коллоидных систем . С. к. проявляется, например, в укрупнении частиц дисперсной фазы (коагуляция , коалесценция ), седиментации , структурообразовании (застудневании ), синерезисе , рекристаллизации и др.
Старение магнитное
Старе'ние магни'тное, изменение магнитных свойств ферромагнетика со временем. С. м. может быть вызвано изменением доменной структуры ферромагнетика (обратимое С. м.) или его кристаллической структуры (необратимое С. м.). Обратимое С. м. обусловлено перестройкой доменной структуры (см. Домены ) под влиянием внешних воздействий: магнитных полей, температурных колебаний, механических вибраций и т.п.; оно наиболее четко проявляется в ферромагнетиках с намагниченностью остаточной . Повторное намагничивание устраняет последствия обратимого С. м. и восстанавливает первоначальную намагниченность ферромагнитного образца. Необратимое С. м. вызывается переходом кристаллической структуры ферромагнетика из метастабильного состояния в более равновесное; оно происходит независимо от того, размагничен образец или обладает остаточной намагниченностью. Необратимое С. м. ускоряется с повышением температуры.
Для повышения магнитной стабильности ферромагнитные изделия подвергают искусственному старению. Стабилизация кристаллической структуры осуществляется путём выдержки изделий при повышенной температуре. Наиболее простым способом стабилизации магнитной доменной структуры изделий, работающих, в состоянии остаточной намагниченности, является частичное размагничивание их переменным магнитным полем. Наибольшая стабильность намагниченности образца достигается тогда, когда при искусственном старении применяются те же размагничивающие действия, которым изделие подвергается в процессе эксплуатации.
И. Е. Старцева, Я. С. Шур.
Старение металлов
Старе'ние мета'ллов, изменение механических, физических и химических свойств металлов и сплавов, обусловленное термодинамической неравновесностью исходного состояния и постепенным приближением структуры к равновесному состоянию в условиях достаточной диффузной подвижности атомов. При быстром охлаждении от высоких температур (при закалке или после кристаллизации и горячей пластической деформации) металлы и сплавы полностью или частично сохраняют атомную структуру, характерную для высокотемпературного состояния. В чистых металлах неравномерность этой структуры состоит в избыточной (для низких температур) концентрации вакансий и наличии др. дефектов кристаллической структуры. В сплавах неравновесность структуры может быть связана с сохранением фаз, неустойчивых при низких температурах. Наиболее важно старение сплавов, обусловленное процессами распада пересыщенного твёрдого раствора . Состояние пересыщения твёрдого раствора возникает после охлаждения сплавов от высоких температур, поскольку обычно с повышением температуры растворимость примесей (или специально вводимых легирующих элементов) растет.
Имеется большое число сплавов, для которых старение проводится как специальная операция термической обработки и обеспечивает получение комплекса важных механических или физических свойств. Старение, или «дисперсионное твердение», – основной способ упрочняющей термическую обработки сплавов на основе Al (см. Алюминиевые сплавы ), Mg, Cu, Ni. Кроме высокой прочности, стареющие сплавы могут приобретать и др. ценные свойства, например высокую коэрцитивную силу.
При достаточно большой степени пересыщения твёрдый раствор оказывается полностью нестабильным и его расслоение идёт во всей массе материала с образованием сначала неоднородного твёрдого раствора с непрерывно меняющимся составом, а затем периодически расположенных частиц с чёткими границами раздела. Распад такого типа называется спинодальным и наблюдается в ряде технически важных сплавов (сплавы для постоянных магнитов типа кунифе). Более общим для стареющих сплавов является метастабильное состояние твёрдого раствора, распад которого должен идти путём образования и роста зародышей новой фазы, а процесс зарождения требует преодоления энергетического барьера. Этот барьер оказывается существенно пониженным при образовании когерентных частиц, т. е. частиц, у которых кристаллическая решётка упруго сопряжена с решёткой исходного твёрдого раствора. При сравнительно низких температурах распад твёрдых растворов часто останавливается на стадии образования зон – весьма дисперсных областей, обогащенных избыточным компонентом и сохраняющих кристаллическую структуру исходного раствора, впервые обнаруженных по эффектам диффузного рассеяния рентгеновских лучей (зоны Гинье – Престона). С помощью электронной микроскопии зоны Гинье – Престона наблюдали в сплавах Al – Ag в виде сферических частиц диаметром ~10Å , в сплавах Al – Cu – в виде пластин толщиной порядка периодов решётки (<10Å). Образование зон характерно для т. н. естественного старения, которое протекает при комнатных температурах в случае сплавов на основе Al, а также низкоуглеродистой стали или технического железа, где имеется твёрдый раствор (феррит ), пересыщенный углеродом или азотом. В некоторых случаях зоны можно рассматривать как зародыши фазы выделения.
Понятию «естественное старение» противопоставляется «искусственное старение», которое в случае алюминиевых сплавов (исторически первых материалов, упрочняемых старением) проводилось при повышенных температурах (выше 100°С); в современной литературе вместо этих терминов чаще используются термины «низкотемпературное старение» и «высокотемпературное старение». В связи с различиями процесса распада в разных температурных интервалах для некоторых сплавов оптимальный комплекс свойств достигается после сложного старения в определенной последовательности при низкой и при более высокой температурах.
Различают 2 основных механизма распада пересыщенного твёрдого раствора: непрерывный, который идёт путём образования и роста отдельных зародышей – частиц фазы, содержащей избыточный компонент твёрдого раствора, и прерывистый (или ячеистый), при котором возникают и растут ячейки или колонии, состоящие обычно из равновесных фаз – новой фазы, обогащенной избыточным компонентом, и обеднённого (равновесного) твёрдого раствора. В первом случае частицы образуются по всему объёму и их рост сопровождается постепенным и непрерывным обеднением матричного твёрдого раствора. Во втором случае происходит движение границы раздела колония – непревращённая область твёрдого раствора. Колонии имеют обычно пластинчатое строение, зарождаются на границе зерна, и их движущийся фронт представляет собой подвижную высокоугловую границу с зерном исходного твёрдого раствора.
При распаде твёрдых растворов в условиях высокой концентрации дефектов кристаллического строения (дислокаций и др.), которые создаются предварит. сильной холодной деформацией, получают особенно высокие значения прочности (см. Термомеханическая обработка металлов). Процессы распада твёрдых растворов могут приводить и к нежелательным изменениям свойств сплавов, например к ухудшению пластичности и охрупчиванию низкоуглеродистой котельной стали, к увеличению коэрцитивной силы и потерь на перемагничивание электротехнического железа. Некоторые сплавы склонны к т. н. «деформационному старению». Сравнительно слабая холодная пластическая деформация, сама по себе не очень сильно меняющая свойства материала, существенно ускоряет процессы размежевания компонентов твёрдого раствора, которые приводят к образованию сегрегатов (а затем выделений) возле дислокаций. Этот суммарный эффект деформации и старения («деформационное старение») резко ухудшает вязкость и пластичность сплавов, что особенно нежелательно для материалов, подвергаемых глубокой штамповке (например, листовая сталь для автомобилестроения). Специальным легированием и термической обработкой можно существенно снизить вредные эффекты старения.
Лит.: Скаков Ю. А., Старение металлических сплавов, в сборнике: Металловедение (Материалы симпозиума), М., 1971; Захарова М. И., Атомно-кристаллическая структура и свойства металлов и сплавов, М., 1972; Новиков И. И., Теория термической обработки металлов, М., 1974: Тяпкин Ю. Д., Гаврилова А. В., Старение сплавов, в сборнике: Итоги науки и техники. Серия Металловедение и термическая обработка металлов, т. 8, М., 1974.
Ю. А. Скаков.