Текст книги "Большая Советская Энциклопедия (НЕ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 59 (всего у книги 62 страниц)
Существенные дополнения в обычную технологическую схему промысла вносит применение газлифтного способа эксплуатации, при котором на промысле необходима газлифтная компрессорная станция с газораспределительными и газосборными трубопроводами.
На месторождениях, разрабатываемых с помощью искусственного заводнения, сооружают систему водоснабжения с насосными станциями. Воду берут из естественных водоёмов с помощью водозаборных сооружений или преимущественно используют сточные пластовые воды нефтепромысла после их очистки. В некоторых случаях воду извлекают из водоносного пласта в нагнетательной скважине и перепускают её в продуктивный пласт, используя погружной электроцентробежный насос. Для очистки закачиваемой в пласт воды от механических примесей, микроорганизмов, солей железа, сероводорода и углекислоты на водоочистной установке её обрабатывают реагентами, подвергают отстою и пропускают через песчаные фильтры. Для создания напора при закачке воды в нагнетательные скважины на промысле сооружают кустовые насосные станции, которые подают воду через водораспределительные батареи (для измерения и регулирования её расхода). Большое значение на нефтепромысле имеет борьба с потерями лёгких фракций. Наиболее эффективно она осуществляется при закрытой системе сбора Н. на промысле, при которой Н. на всём пути от скважины до откачки на нефтеперерабатывающий завод не имеет контакта с атмосферой (рис. 10 ).
В процессе нефтедобычи важное место занимает внутрипромысловый транспорт продукции скважин, осуществляемый по трубопроводам. От каждой скважины к групповой замерной установке подводится отдельный трубопровод. Отсюда Н. поступает в сборный трубопровод (промысловый коллектор) и далее на установки по её подготовке и в товарные резервуары промысла. Применяются две системы внутрипромыслового нефтетранспорта – самотёчные и напорные. При самотёчных системах, действующих на старых нефтяных промыслах, движение Н. из скважин происходит за счёт превышения отметки устья скважины над отметкой группового сборного пункта. При напорных системах достаточно собственного давления на устье скважин для подачи Н. с газом к центральному сборному пункту промысла, откуда Н. подаётся в товарные резервуары, а газ – на потребление или в переработку. На нефтяных промыслах СССР применяются несколько напорных схем нефтегазосбора: в Азербайджане и Туркмении распространена так называемая однотрубная схема Барояна и Везирова, на месторождениях Сибири – схема внутрипромыслового сбора и транспорта Гипровостокнефти. Наряду с основным технологическим оборудованием на нефтяном промысле имеются системы технического водо– и энергоснабжения, установки для очистки промысловых сточных вод (рис. 11 ), ремонтные мастерские, складские помещения и т. д.
При разработке нефтяных месторождений, приуроченных к континентальным шельфам, создают морские нефтепромыслы .
На нефтяных промыслах проводятся большие работы по автоматизации промысловых технологических установок, широко распространяются индустриальные методы строительства технологических установок. Создаются: групповые замерные установки, которые автоматически переключают скважины на замер, производят замер, контролируют состояние работы скважин и обеспечивают блокировку их при аварийных случаях; автоматизированные сепарационные установки; сепараторы-деэмульсаторы, где происходит одновременное отделение газа и воды; установки для обработки воды и попутного газа, для учёта и сдачи товарной Н., а также кустовые насосные станции, моноблочные автоматические газомотокомпрессоры. Развитие нефтепромыслового строительства основывается на внедрении заводского изготовления отдельных транспортабельных блоков основного технологического оборудования, доставки блоков на промысел и монтирования их на месте. Это даёт возможность в несколько раз ускорить и удешевить сооружение важнейших технологических установок.
VI. Химический состав и физические свойства. Технологическая характеристика
Н. – сложная смесь алканов (парафиновые или ациклические насыщенные углеводороды), некоторых цикланов (нафтенов) и ароматических углеводородов различной молекулярной массы, а также кислородных, сернистых и азотистых соединений. Углеводородный состав Н. изменяется в различных месторождениях. Бензиновые и керосиновые фракции большинства Н. СССР характеризуются значительным содержанием алканов (свыше 50%). Во фракциях отдельных Н. преобладают нафтеновые углеводороды (50—75%). Содержание ароматических углеводородов в бензиновых и керосиновых фракциях большинства Н. колеблется от 3 до 15% и от 16 до 27% соответственно. Масляные дистилляты иногда значительно различаются по углеводородному составу. Наибольшим содержанием ароматических углеводородов (в некоторых случаях до 53—65%) отличаются фракции высокосернистых Н. Часто Н. характеризуются значительным содержанием твёрдых углеводородов, состоящих в основном из углеводородов нормального строения. Кислородные соединения содержатся в Н. в виде нафтеновых кислот и асфальтово-смолистых веществ, состоящих из асфальтов и смол (на их долю приходится свыше 90% содержащегося в Н. кислорода). К сернистым соединениям относятся сероводород, меркаптаны, сульфиды, дисульфиды, тиофены, тиофаны, а также полициклические сернистые соединения разнообразной структуры. Азотистые соединения – это в основном гомологи пиридина, гидропиридина и гидрохинолина. Компонентами Н. являются также газы, растворённые в Н. (см. Газы нефтяные попутные ), вода и минеральные соли. Газы состоят из углеводородов, содержащих в цепи 1—4 атома углерода; их содержание – в пределах от десятых долей процента до 3% (по массе). Содержание золы (минеральных веществ) в большинстве Н. не превышает десятых долей процента (считая на Н.). В составе нефтяной золы найдены многие элементы (Ca, Mg, Fe, Al, Si, V, Na и др.). По плотности Н. делятся на 3 группы: на долю лёгких Н. (с плотностью до 0,87 г/см3 ) в общемировой добыче Н. приходится около 60% (в СССР – 66%); на долю средних Н. (0,871—0,910 г/см3 ) – в СССР около 28%, за рубежом – 31%; на долю тяжёлых (более 0,910 г/см3 ) — соответственно около 6% и 10%.
Начало кипения Н. обычно выше 28 °С. температура застывания колеблется от + 30 до – 60 °С и зависит в основном от содержания парафина (чем его больше, тем температура застывания выше). Теплоёмкость Н. 1,7—2,1 кдж/кг ×К (0,4—0,5 ккал/кг ×°С), теплота сгорания 43,7—46,2 Мдж/кг (10 400 – 11 000 ккал/кг ), диэлектрическая проницаемость 2—2,5, электрическая проводимость 2×10-10 —0,3×10-18ом-1 ×см-1 . Вязкость изменяется в широких пределах (при 50 °С 1,2—55 сст ) и зависит от химического и фракционного состава Н. и смолистости (содержания в ней асфальтосмолистых веществ). Температура вспышки Н. колеблется в широких пределах (от ниже – 35 до 120 °С) в зависимости от фракционного состава и давления насыщенных паров. Н. растворима в органических растворителях, в воде при обычных условиях практически нерастворима, но может образовывать с ней стойкие эмульсии.
Основу технологической классификации Н. в СССР (ГОСТ 912—66) составляют: содержание серы (класс I – малосернистые Н., включающие до 0,5% S; класс II – сернистые Н. с 0,5—2% S; класс III – высокосернистые Н., включающие свыше 2% S); потенциальное содержание фракций, выкипающих до 350 °С (тип Т1 – нефти, в которых указанных фракций не меньше 45%, тип Т2 – 30—44,9% и тип Т3 – меньше 30%); потенциальное содержание масел (группы M1 , M2 , M3 и M4 ; для M1 содержание масел не меньше 25%, для M4 – меньше 15%); качество масел (подгруппа И1 – нефти с индексом вязкости масла больше 85, подгруппа И2 – нефти с индексом вязкости 40—85); содержание парафина в Н. и возможность получения реактивных, дизельных зимних или летних топлив и дистиллятных масел с депарафинизацией или без неё (вид П1 – нефти с содержанием парафина не выше 1,5%, вид П2 – нефти с 1,51—6% парафина и вид П3 – нефти с содержанием парафина больше 6%). Сочетание обозначений класса, типа, группы, подгруппы и вида составляет шифр технологической классификации Н. Например, доссорская (Казах. ССР) малопарафиновая Н. имеет шифр 1Т1 М1 И1 П1 , т. е. Н. малосернистая с потенциальным содержанием фракций, выкипающих до 350 °С, свыше 45%, потенциальным содержанием масел выше 25%, индексом вязкости масла больше 85 и содержанием парафина менее 1,5%.
Технологическая классификация может быть использована для сортировки Н. (при направлении для переработки на заводах), учёта качества при планировании добычи и переработки и при проектировании новых заводов. За рубежом Н. сортируют в основном по плотности и содержанию серы.
VII. Переработка
Начало применения Н. археологи относят к 6-му тыс. до н. э. В 3-м тыс. до н. э. в государствах Двуречья и Египте асфальт использовали как связующее и водонепроницаемое вещество вместе с песком и известью для изготовления мастики, применяемой при сооружении зданий из кирпича и камня, дамб, причалов и дорог. Н. сжигали в светильниках и применяли в качестве лекарства. Её использовали в военном деле как воспламеняющееся вещество вместе с селитрой, серой и смолой для изготовления «огненных стрел» и «огненных горшков».
В средние века упоминания о Н. встречаются у писателей Ближнего и Среднего Востока, Средней Азии и Западной Европы. В 16—17 вв. Н. была предметом торговли. В коммерческих словарях указывалось, что она привозится в Марсель из Лангедока (приморской области Франции), турецкого г. Смирны и сирийского г. Алепно (до 4,5 т в год). В 18 в. появляются первые научные труды о Н. В 1721 греческий учёный Эйрини д'Эйринис, живший во Франции, опубликовал результаты исследования Н. и асфальта.
Состояние Бакинского нефтяного промысла в 13 в. описано Марко Поло. Он указывает, что Бакинская Н. применялась для освещения и в качестве лекарства от кожных болезней. В центральные районы России в 16—17 вв. Н. привозилась из Баку. Её применяли в медицине, живописи в качестве растворителя при изготовлении красок, а также в военном деле для изготовления гранат, негасимых ветром свечей и «светлых» ядер для «огнестрельных потешных стрельб».
Перегонка Н. была известна в начале нашей эры. Этот способ очистки применялся для уменьшения неприятного запаха Н. при использовании её в лечебных целях. В иностранных и рус. лечебниках 15—17 вв. Н. рекомендуется как наружное и внутреннее средство. Считалось, что Н. помогает при воспалительных процессах. В лечебниках даётся также описание способа перегонки Н. по опытам римского врача Кассия Феликса и арабского учёного 11 в. Авиценны. О перегонке бакинской Н. впервые упоминает хорезмийский географ 13 в. Бекран. Большое внимание перегонке Н. уделялось в 18 в. в связи с поисками и изучением нефтяных месторождений. В 1748 в лаборатории Берг-Коллегии в Москве перегонялась Н., найденная на р. Ухте. В той же лаборатории перегонялась Н., добытая на р. Соке в 1754. В небольшом количестве Н. перегоняли в колбах, а в большем – в кубах. Нефтеперегонный завод с кубами периодического действия был впервые в мире построен крепостными крестьянами братьями Дубиниными вблизи г. Моздока в 1823. Из 40 вёдер Н., заливаемой в куб, они получали 16 вёдер перегнанной. В 1837 началась перегонка грозненской Н. на заводе откупщика В. Швецова. В этом году было отправлено в Москву 1000 пудов (16,38 т ) перегнанной Н. Завод для перегонки бакинской Н. был построен в Балаханах Н. И. Воскобойниковым. На заводе в 1837—39 было переработано 19,4 т Н. В 1859 в Сураханах промышленники В. А. Кокорев, Н. Е. Торнау и П. И. Губонин приступили к строительству завода для получения фотогена из бакинского кира . На этом заводе была начата (1860) переработка Н. и введена кислотно-щелочная очистка фотогена (позже слово «фотоген» было заменено словом «керосин»). В 1866 на нефтеперегонных заводах бывшей Бакинской губернии было получено 1600 т керосина. Через 3 года в Баку было 23 нефтеперегонных завода, а в 1873 – 80 заводов, способных дать 16 350 т керосина в год.
С начала 70-х гг. 19 в. на нефтеперегонных заводах наблюдался рост числа кубов и их размеров без значительного изменения конструкции. Такая технология не соответствовала всё возрастающим потребностям в нефтепродуктах. Кроме того, кубы периодического действия не обеспечивали надёжного разделения Н. на фракции, улучшения отбора керосина и смазочных масел и повышения их качества. На необходимость непрерывной перегонки Н. указывал Д. И. Менделеев в 1863, когда он посетил завод А. В. Кокорева в Сураханах. В 1873 нефтепромышленник А. А. Тавризов разработал конструкцию аппарата непрерывного действия, являющегося прототипом ректификационной колонны. Непрерывная перегонка Н. в кубовых батареях была осуществлена в 1883 на заводе братьев Нобель в Баку. На этих кубах были установлены дефлегматоры, устроенные в виде двух цилиндров, вложенных один в другой. Непрерывнодействующий перегонный аппарат был предложен В. Г. Шуховым и Ф. А. Инчиком (1886). Этот аппарат был установлен на заводе С. М. Шибаева в Баку. Новая установка позволяла ежесуточно перегонять количество Н., равное 27 объёмам аппарата, тогда как в кубе периодического действия можно было перегнать только полтора объёма, а в кубовой батарее – четыре. Основные технические принципы, заложенные в конструкции этого аппарата, используются в современных нефтеперегонных установках. Оригинальные установки для непрерывной перегонки Н. были разработаны О. К. Ленцем, Г. В. Алексеевым, Ю. В. Лермонтовой и др. русскими инженерами и химиками. Наиболее широкое распространение получили кубовые батареи непрерывного действия, вытеснившие периодические кубы. В 1893 непрерывнодействующих кубов было 15,7%, а в 1899 – 60% от общего числа кубов в нефтеперерабатывающей промышленности. Основными продуктами нефтеперерабатывающей промышленности были керосин и мазут. На долю керосина в 1899 приходилось 30—33%; кроме того, получали смазочных масел 2—3%, бензина 3%, остальное составлял мазут.
Нефтеперегонные заводы в 40-х гг. 19 в. появляются в др. странах: Дж. Юнг начал перегонку Н. на заводе в Великобритании в 1848, в 1849 С. М. Киром был построен завод по перегонке Н. в Пенсильвании (США). На этом заводе была введена кислотно-щелочная очистка нефтепродуктов. Во Франции первый нефтеперегонный завод построен А. Г. Гирном в Эльзасе (1854). На заводе из Н. и асфальта получали смазочные масла. При перегонке Н. на заводе применялся перегретый пар. В 1866 Дж. Юнг взял патент на способ получения керосина из тяжёлых Н. при перегонке под давлением. Этот способ перегонки был назван крекингом . К 1869 давление во время перегонки Н. на лабораторной установке было доведено до 3,7×105н/м2 (около 3,8 ам ). При обычной перегонке из Н. различных месторождений Юнг получал 2,5—20% керосина, а при крекинге 28– 60%.
В дореволюционной России вследствие слабого развития автомобильной и авиационной промышленности спрос на бензин вполне удовлетворялся бензином прямой перегонки. Однако к началу 20 в. русские учёные и инженеры подробно изучили процесс переработки Н., сопровождающийся разложением исходных углеводородов под влиянием высокой температуры и давления. В 1875 А. А. Летний проводил опыты по получению ароматических углеводородов пиролизом Н. Работа Летнего завершилась созданием промышленной установки на Константиновском заводе В. И. Рагозина. Ароматические углеводороды из Н. были необходимы для получения красителей, используемых в развивавшейся в то время текстильной промышленности. С той же целью пиролиз Н. и нефтяных остатков изучали Ю. В. Лермонтова, Б. В. Марковников, К. И. Лисенко, Г. В. Алексеев, Н. Д. Зелинский.
В 1891 В. Г. Шухов и С. Гаврилов разработали аппарат для крекинг-процесса. Они впервые предложили осуществлять нагревание Н. не в цилиндрических кубах, а в трубах при её вынужденном движении. Их научные и инженерные решения были повторены У. М. Бартоном и др. при сооружении крекинг-установки в США в 1915—18. Основным способом переработки Н. в России до 1917 была непрерывная перегонка Н. в кубовых батареях. О переработке Н. в СССР см. в ст. Нефтеперерабатывающая промышленность .
Перед переработкой Н. подвергают обессоливанию и одновременно обезвоживанию. С этой целью на нефтеперерабатывающих заводах применяют электрообессоливающие установки. Н. при тщательном перемешивании промывают небольшим количеством пресной воды с добавкой деэмульгатора, образующуюся эмульсию подогревают до 100—140 °С, а иногда и до 160 °С и подают в непрерывнодействующие электродегидраторы. Под воздействием электрического поля высокого напряжения (1,5—3 кв/см ), деэмульгатора и нагревания эмульсия быстро разрушается, вода с растворёнными в ней солями отстаивается и удаляется. После электрообессоливания содержание влаги в Н. снижается до 0,05—0,2% и хлоридов до 0,5—5 мг/л.
Многие лёгкие Н. после обезвоживания и обессоливания подвергают стабилизации – отгонке пропан-бутановой, а иногда частично и пентановой фракции углеводородов. Удаление этих фракций необходимо для того, чтобы снизить потери ценных углеводородов при транспортировке и хранении Н., а также обеспечить постоянное давление паров Н., поступающей на нефтеперегонные установки. Стабилизацию Н. производят на комплексных установках в сочетании с обезвоживанием и обессоливанием или на специальных установках с колонкой для отбора пропан-бутановой фракции. Получаемая при стабилизации Н. пропан-бутановая фракция является ценным сырьём для нефтехимической промышленности.
Основным процессом переработки Н. (после обезвоживания, обессоливания и стабилизации) является перегонка, при которой из Н. сначала отбираются в зависимости от поставленной цели следующие нефтепродукты: бензины (авиационный или автомобильный), реактивное топливо , осветительный керосин , дизельное топливо и мазут. Мазут служит в качестве сырья для получения дистиллятных масел (см. Масла нефтяные ), парафина , битумов , для крекинга или может быть использован в качестве жидкого котельного топлива . Остаток (концентрат, гудрон ) после отгонки от мазута масляных дистиллятов служит для получения остаточных масел или как сырьё для различных деструктивных процессов, а после окисления может быть использован в качестве дорожного и строительного битума или в качестве компонента котельного топлива.
Значительный рост потребления нефтепродуктов и всё более жёсткие требования к их качеству вызвали необходимость в так называемой вторичной переработке Н., связанной с изменением структуры углеводородов, входящих в её состав, а также получением функциональных производных, содержащих кислород, азот, хлор и др. элементы. К числу вторичных процессов переработки относятся термический, термо-контактный и каталитический крекинг, термический и каталитический риформинг , гидрокрекинг , платформинг , алкилирование , изомеризация, дегидроциклизация, полимеризация , деструктивная гидрогенизация , пиролиз , коксование . В результате вторичной переработки из Н. получают исходные вещества для производства важнейших продуктов: каучуков синтетических , волокон синтетических , пластических масс , поверхностно-активных веществ , моющих средств , пластификаторов , присадок , красителей и многих др.
Для удаления нежелательных компонентов (сернистых, смолистых и кислородсодержащих соединений, а также полициклических ароматических углеводородов) нефтепродукты, полученные при прямой перегонке и при вторичных процессах, подвергаются очистке с помощью различных физических и физико-химических методов (см. Очистка нефтепродуктов ).
Сырьё, необходимое для нефтехимической промышленности , получают из, Н. с использованием: а) физических методов; (перегонки, экстракции, кристаллизации, адсорбции и т. д.), а также карбамидной и низкотемпературной депарафинизаций – при помощи этих методов из Н. выделяют индивидуальные углеводороды или их классы; б) так называемых вторичных процессов переработки, в результате чего получаются углеводороды, не присутствующие в сырой Н. или присутствующие в незначительном количестве (ненасыщенные и ароматические углеводороды). Из парафиновых (алканы) углеводородов наибольшее применение для нефтехимической промышленности нашли газообразные (при нормальных условиях) или жидкие низкокипящие углеводороды: метан, этан, пропан, бутан и пентаны, а также высокомолекулярные углеводороды с 10—20 атомами углеводорода в молекуле. Из нафтеновых углеводородов важнейшим исходным материалом для нефтехимической промышленности является циклогексан, из ароматических – бензол , толуол , ксилолы , этилбензол . Из ненасыщенных углеводородов в качестве сырья для нефтехимической промышленности служат главным образом этилен , пропилен и ацетилен .
Лит.: Геология нефти, Справочник, т. 1, под ред. Н. А. Еременко, М; Еременко., 1960Н. А., Геология нефти и газа, 2 изд., М., 1968; Карцев А. А., Основы геохимии нефти и газа, М., 1969; Леворсен А., Геология нефти и газа, пер. с англ., 2 изд., М., 1970; Вассоевич Н. Б., Источник нефти – биогенное углеродистое вещество, «Природа», 1971, № 3; Горючие ископаемые. Проблемы геологии и геохимии нефтидов, М., 1972 (Международный геологический конгресс. XXIV сессия. Доклады советских геологов. Проблема 5); Мелик-Пашаев В. С., Методика разведки нефтяных месторождений, М., 1968; Теоретические основы и методы поисков и разведки скоплений нефти и газа, М., 1968; Поисковые критерии прогноза нефтегазоносности, Л., 1969; Лисичкин С. М., Очерки по истории развития отечественной нефтяной промышленности, М. – Л., 1954; Проектирование разработки нефтяных месторождений, М., 1962; Технология и техника добычи нефти и газа, М., 1971; Крылов А. П., Назаретов М. Б., Технический прогресс в добыче нефти и его роль в развитии нефтяной промышленности, «Нефтяное хозяйство», 1973, № 1; Лутошкин Г. С., Сбор и подготовка нефти, газа и воды к транспорту, М., 1972; Surface operations in petroleum production, ed. G. V. Chilingar, C. М. Beeson, N. Y., 1969; Сергиенко С. Р., Очерк развития химии и переработки нефти, М., 1955; Трошин А. К., История нефтяной техники в России (XVII в. – вторая половина XIX в.), М., 1958; Кострин К. В., Почему нефть называется нефтью, М., 1967; Redwood В., Petroleum, 4 ed., v. 1—3, L., 1922; Forbes R. J., Bitumen and petroleum in antiquity, Leiden, 1936; его же, Studies in early petroleum history, Leiden, 1958; History of petroleum engineering, ed. D. V. Carter, N. Y., 1961; Наметкин С. С., Химия нефти, М., 1955; Добрянский А. Ф., Химия нефти, Л., 1961; Нефти восточных районов СССР, Л., 1958; Новые нефти восточных районов СССР, М., 1967; Нефти СССР. Справочник, под ред. З. В. Дриацкой [и др.], т. 1—3, М., 1971—; Соколов В. А., Бестужев М. А., Тихомолова Т. В., Химический состав нефтей и природных газов в связи с их происхождением, М., 1972; «Chemical Age of India», 1968, v. 19, № 10; Petroleum processing handbook, ed. F. William, [a. o.], N. Y., 1967; Эмульсии нефти с водой и методы их разрушения, М., 1967; Каспарьянц К. С., Промысловая подготовка нефти, М., 1966; Эрих В. Н., Химия нефти и газа, 2 изд., Л., 1969; International Petroleum Encyclopedia, Tulsa (Oklahoma), 1973.
Вассоевич Н. Е. (Общие сведения. Происхождение и условия залегания),
Резникова И. М. (Общие сведения),
Вассоевич Н. Б. и Калинко М. К. (Нефтегазоносные бассейны, области, районы, месторождения),
Абрикосов И. Х. (Разведка),
Крылов А. П., Назаретов М. Б. (Добыча),
Трошин А. К. (История добычи и переработки нефти),
Дриацкая З. В. и Левченко Д. Н. (Химический состав и физические свойства. Технологическая характеристика. Переработка).
Рис. 2. Распределение мировых запасов нефти и её суммарной добычи в капиталистическом мире (по обзору «Бритиш петролеум компани», 1971).
Рис. 3. Соотношение добычи и потребления нефти в капиталистических странах (по обзору «Бритиш петролеум компани», 1971).
Рис. 11. Схема очистки сточных вод нефтепромыслов по закрытой системе: 1 – напорный горизонтальный отстойник; 2 – дегазатор; 3 – напорный кварцевый фильтр; 4 – промежуточная ёмкость; 5 – насосы для подачи воды в систему заводнения; 6 – насос для промывки кварцевых фильтров; 7 – резервуар очищенной воды для промывки кварцевых фильтров; 8 – резервуар-отстойник для воды от промывки фильтров; 9 – насос для перекачивания воды после промывки фильтров; 10 – сброс ливневых вод. УПН – установка подготовки нефти; 11 – приёмная камера насоса; 12 – насос для перекачивания промышленных и ливневых вод в резервуар-отстойник; 13 – аварийная ёмкость; 14 – резервуар-отстойник для промышленных и ливневых вод; 15 – насос для перекачивания промышленных и ливневых вод на фильтрование или в поглощающие скважины.
Рис. 8. Схема разделения разреза многопластового месторождения на этажи разведки: 1 – нефтенасыщенные песчаники; 2 – водонасыщенные песчаники; 3 – нефтенасыщенные известняки; 4 – водонасыщенные известняки.
Рис. 4. Распределение мировых запасов нефти (в крупных и средних месторождениях) по глубинам залегания (по Н. Б. Вассоевичу, 1973): 1 – интенсивность генерации нефти (в условных единицах); 2 – запасы нефти (%). ГЗН – главная зона нефтеобразования.
Рис. 6. Геологический разрез месторождений Локбатан (по А. М. Ахмедову и Б. К. Бабазаде): 1 – песчаники; 2 – глины; 3 – нефть; 4 – газ.
Рис. 5. Различного типа залежи нефти в гидравлически незамкнутых (1—3) и замкнутых (4—6) ловушках: 1 – пластовые сводовые нефтяные и газонефтяные залежи; 2 – массивная сводовая газонефтяная залежь; 3 – нефтяная залежь в выступе палеорельефа, первичного (напр., рифа) или вторичного (эрозионного); 4 – нефтяная залежь, экранированная стратиграфическим несогласием; 5 – нефтяная залежь в ловушке первичного (фациального, литологического) выклинивания коллектора; 6 – тектонически экранированная залежь нефти; а – нефть; б – газ; в – вода.
Нефтегазоносные осадочные бассейны мира (разведанные и перспективные).
Рис. 10. Схема автоматизированной высоконапорной системы промыслового сбора и подготовки нефти, газа и воды для больших по площади месторождений: 1 – трубопроводы от скважин; 2 – автоматизированная установка по замеру продукции; 3 – сборный коллектор для нефтегазоводяной смеси; 4 – первая ступень сепарации; 5 – трубопровод для подачи нефтеводяной смеси на центральный пункт обезвоживания; 6 – подача газа на газобензиновый завод; 7 – сепаратор – делитель потока жидкости для равномерного распределения эмульсии по сепараторам-деэмульсаторам; 8 – сепаратор-деэмульсатор; 9 – установка подготовки сточной воды; 10 – сборный водовод сточной воды; 11 – сборный нефтепровод товарной нефти; 12 – компрессорная станция; 13 – газобензиновый завод; 14 – герметизированные резервуары товарной нефти; 15 – нефтяной насос для создания дополнительного напора; 16 – автоматизированная установка сдачи товарной нефти «Рубин-4»; 17 – возврат некондиционной нефти на доочистку; 18 – насосная магистрального нефтепровода; 19 – магистральный нефтепровод; 20 – водяной насос.
Рис. 9. Схема расположения скважин при разработке нефти с заводнением пластов: 1 – внешний контур нефтеносности; 2 – внутренний контур нефтеносности; 3 – нагнетательные внутриконтурные скважины; 4 – нагнетательные законтурные скважины; 5 – эксплуатационные скважины.
Рис. 1. Состав нефти в недрах (в весовых %).
Рис. 7. Схема заложения поисковых скважин: а – сводовые пластовые залежи; б – пластовые литологически экранированные залежи (1 – нефтенасыщенные песчаники; 2 – водонасыщенные песчаники; 3 – шток каменной соли).