355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (НЕ) » Текст книги (страница 18)
Большая Советская Энциклопедия (НЕ)
  • Текст добавлен: 5 октября 2016, 02:58

Текст книги "Большая Советская Энциклопедия (НЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 18 (всего у книги 62 страниц)

Нейтронная оптика

Нейтро'нная о'птика, раздел нейтронной физики, изучающий ряд явлений, имеющих оптические аналогии и возникающих при взаимодействии нейтронных пучков с веществом или полями (магнитным, гравитационными). Эти явления характерны для медленных нейтронов . К ним следует отнести: преломление и отражение нейтронных пучков на границе двух сред, полное отражение нейтронного пучка от границы раздела (наблюдаемое при определённых условиях), дифракцию нейтронов на отдельных неоднородностях среды (рассеяние нейтронов на малые углы) и на периодических структурах (см. Дифракция частиц ). Для некоторых веществ при отражении и преломлении возникает поляризация нейтронов, с которой (в первом приближении) можно сопоставить круговую поляризацию света . Неупругое рассеяние нейтронов в газах, жидкостях и твёрдых телах имеет аналогию с комбинационным рассеянием света .

  В ряде явлений Н. о. преобладающее значение имеют волновые свойства нейтронов. Длина волны l нейтронов определяется массой нейтронов m = 1,67 10-24г и их скоростью v:

  l = h/mv,      (1)

где h – Планка постоянная (см. Волны де Бройля ). Средняя скорость тепловых нейтронов v = 2,2·105см/сек, для них – длина волны l = 1,8·10-8см, т. е. того же порядка, что и для рентгеновских лучей . Длины волн самых медленных нейтронов (ультрахолодных, см. ниже) такие же, как у ультрафиолетового и видимого света. Аналогию между пучками нейтронов и электромагнитными волнами подчёркивает и тот факт, что нейтроны так же, как и фотоны, не имеют электрического заряда. Вместе с тем природа нейтронных и электромагнитных волн различна. Фотоны взаимодействуют с электронной оболочкой атома, тогда как нейтроны – в основном с атомными ядрами. Нейтрон обладает массой покоя, что позволяет применять для нейтронных исследований методы, не свойственные оптике. Наличие у нейтрона магнитного момента обусловливает магнитное взаимодействие нейтронов с магнитными материалами и магнитными полями, отсутствующее для фотонов.

  Развитие Н. о. началось в 40-х гг. (после появления ядерных реакторов ). Э. Ферми ввёл для описания взаимодействия нейтронов с конденсированными средами понятие показателя преломления n. При прохождении нейтронов через среду происходит их рассеяние атомными ядрами. На языке волн это означает, что падающая нейтронная волна порождает вторичные волны, когерентное сложение которых определяет преломленные и отражённые волны. В результате взаимодействия нейтронов с ядрами изменяется скорость, а, следовательно, длина волны l1 нейтронов в среде по сравнению с длиной волны l в вакууме. В обычных условиях, когда поглощением нейтронов на пути порядка l1 можно пренебречь (так же как в оптике): n = l/l1 . Из соотношения де Бройля следует, что n = l/ l1 = v1 /v.

  Если U – средний по объёму среды потенциал взаимодействия нейтронов с ядрами, то при попадании в среду нейтрон должен совершить работу. Его начальная кинетическая энергия E = mv2 /2 в среде уменьшается: E1 = EU. При U > 0 скорость нейтронов в среде уменьшается v1 < v, l1 > l и n < 1. При U < 0 скорость возрастает и n > 1. Если ввести для нейтронных волн величину, аналогичную диэлектрической проницаемости : e = n2 , то: e = l2 /l12 = v12 /v2 = E1 /E . Потенциал U = h2 Nb /2pm, откуда:

  e = n2 = 1 – h2 Nb/ pm2 v2 .      (2)

Здесь b — когерентная длина рассеяния нейтронов ядрами, a N — число ядер в единице объёма среды. Для большинства веществ b > 0, и формуле (2) можно придать вид:

  Нейтроны со скоростью v < v имеют энергию E < U, для них n2 < 0, т. е. показатель преломления мнимый. Такие нейтроны не могут преодолеть силы отталкивания среды и полностью отражаются от её поверхности. Они получили название ультрахолодных нейтронов . Для металлов v ~ м/сек (например, для Cu v = 5,7 м/сек ).

  Скорость тепловых нейтронов в несколько сот раз больше, чем ультрахолодных, и n близко к 1 (1 – n » 10-5 ). При скользящем падении на поверхность плотного вещества пучок тепловых нейтронов также испытывает полное отражение, аналогичное полному внутреннему отражению света. Это имеет место при углах скольжения j £ jкр , т. е. при углах падения

Критический угол определяется из условия:

  Например, для меди jкр = 9,5'. Можно показать, что условие полного отражения (4) эквивалентно требованию: vz £ v , где vz компонента скорости нейтрона, нормальная к отражающей поверхности. Скорость холодных нейтронов в несколько раз меньше, чем тепловых, а угол jкр – соответственно больше.

  Полное отражение используется для транспортировки тепловых и холодных нейтронов с минимальными потерями от ядерного реактора к экспериментальным установкам (расстояния ~ 100 м ). Это осуществляется с помощью зеркальных нейтроноводов – вакуумированных труб, внутренняя поверхность которых отражает нейтроны. Зеркальные нейтроноводы делают из меди или стекла (с напыленным металлом или без него).

  В действительности коэффициент отражения нейтронов всегда немного меньше единицы. Это связано с тем, что ядра не только рассеивают нейтроны, но и поглощают их. Учёт поглощения приводит к уточнению формулы (3):

  Здесь s – эффективное поперечное сечение всех процессов, приводящих к ослаблению нейтронного пучка. Для холодных и ультрахолодных нейтронов существенна сумма сечений захвата и неупругого рассеяния, величина которых обратно пропорциональна скорости v. Поэтому произведение sv не зависит от v. Это означает, что e и n для нейтронов, как и в оптике, комплексные величины: e = e’ + i e’’, n = n’ + in’’. Для ультрахолодных нейтронов действительная часть e, т. е. e' < 0 и n’’ > n’. В случае света это характерно для металлов, и отражение ультрахолодных нейтронов от многих веществ аналогично отражению света от металлов с чрезвычайно высокой отражательной способностью (см. Металлооптика ). Если b < 0, то в формуле (5) перед членом v2 /v2 стоит знак + и e > 1 (возрастает с уменьшением v ). Такие вещества отражают и преломляют очень медленные нейтроны, как диэлектрики свет.

  Формулу (2) легко обобщить на случай присутствия в среде магнитного поля, добавив к энергии U взаимодействия нейтронов со средой энергию магнитного взаимодействия ± mВ, где m – магнитный момент нейтрона, В — магнитная индукция (знаки ± относятся к двум возможным ориентациям магнитного момента нейтрона относительно вектора В, т. е. к двум поляризациям нейтронного пучка):

  n2 = 1 – h2Nb /pm2v2 ± 2mB /mv2      (6)

  Выбором материала для отражающего зеркала, магнитного поля и угла скольжения можно добиться того, чтобы нейтроны одной из двух поляризаций испытывали полное отражение, а другой – нет. Подобное устройство используется для получения пучков поляризованных нейтронов и для определения степени их поляризации.

  На принципах Н. о. основан ряд устройств, используемых как в экспериментальной технике, так и для решения практических задач: нейтронные зеркала, прямые и изогнутые нейтроноводы полного внутреннего отражения, нейтронные кристаллические монохроматоры, зеркальные и кристаллические поляризаторы и анализаторы нейтронов, устройства, позволяющие фокусировать нейтронные пучки, преломляющие призмы, нейтронный интерферометр и т.д. Дифракция нейтронов широко применяется для исследования субмикроскопических свойств вещества: атомно-кристаллической структуры, колебаний кристаллической решётки , магнитной структуры и её динамики (см. Нейтронография ).

  Лит.: Ферми Э., Лекции по атомной физике, пер. с англ., М., 1952; Юз Д., Нейтронная оптика, пер. с англ., М., 1955; Гуревич И. И., Тарасов Л. В., Физика нейтронов низких энергии, М., 1965; Франк И. М., Некоторые новые аспекты нейтронной оптики, «Природа», 1972, № 9. См. также лит. при ст. Нейтронография .

  Ю. М. Останевич, И. М. Франк.

Нейтронная радиография

Нейтро'нная радиогра'фия, получение изображения образца в результате воздействия на фоточувствительный слой вторичных излучении, возникающих в образце при облучении его нейтронами. Н. р. применяется главным образом для исследования металлов, сплавов, минералов с целью выявления наличия и размещения в них различных примесей (см. Дефектоскопия ). В результате захвата нейтрона ядра становятся радиоактивными (см. Нейтронная спектроскопия , Медленные нейтроны ). Метод Н. р. основан на разной вероятности захвата нейтронов различными атомными ядрами. Если облученный нейтронами образец (обычно тонкая пластинка) совместить с фотоплёнкой, то на проявленном снимке получаются участки с различной степенью почернения (нейтронная фотография). Более тёмные участки соответствуют ядрам, которые сильнее поглощают нейтроны. Наличие и размещение некоторых примесей в образце можно определять не только по вторичным излучениям, но также по ослаблению первичного нейтронного потока в результате поглощения нейтронов ядрами примесей. Между образцом и фотослоем помещают фольгу из элемента, который становится под действием нейтронов b-активным (Ag, Dy, In). В этом случае более светлые пятна соответствуют более сильному поглощению нейтронов.

  Лит.: Радиография. Сб. статей, М., 1952.

  Л. В. Тарасов.

Нейтронная спектроскопия

Нейтро'нная спектроскопи'я, нейтронная спектрометрия, область ядерной физики, охватывающая исследования зависимости эффективного поперечного сечения взаимодействия нейтронов с атомными ядрами от энергии нейтронов.

  Характерной особенностью энергетической зависимости сечений о взаимодействия медленных нейтронов с ядрами является наличие так называемых нейтронных резонансов – резкого увеличения (в 10—105 раз) поглощения и рассеяния нейтронов вблизи определённых энергий (рис. 1 ). Избирательное (резонансное) поглощение нейтронов определённых энергий впервые было обнаружено Э. Ферма с сотрудниками в 1934. Ими же было показано, что способность поглощать медленные нейтроны сильно меняется от ядра к ядру.

  Образующееся после захвата нейтрона высоковозбуждённое (резонансное) состояние ядра нестабильно (время жизни ~10-15 сек): ядро распадается с испусканием нейтрона (резонансное рассеяние нейтронов) или g-кванта (радиационный захват). Значительно реже испускаются a-частица или протон. Для некоторых очень тяжёлых ядер (U, Pu и др.) происходит также деление возбуждённого ядра на 2, реже на 3 осколка (см. Ядра атомного деление ).

  Вероятности различных видов распада резонансного состояния ядра характеризуются так называемыми ширинами резонансов (нейтронной Гд , радиационной Гg , делительной Гg, a-шириной Гa и т.д.). Эти ширины входят в качестве параметров в формулу Брейта – Вигнера, которая описывает зависимость эффективного сечения взаимодействия нейтрона с ядром от энергии нейтрона E вблизи резонансной энергии E. Для каждого вида (i ) распада формула Брейта – Вигнера приближённо может быть записана в виде:

  Здесь Г = Гn + Гg + Гa +...– полная ширина нейтронного резонанса, равная ширине резонансного пика на половине высоты, g статистический фактор, зависящий от спина и чётности резонансного состояния ядра.

  Эффективные сечения измеряются с помощью нейтронного спектрометра, основными элементами которого являются источник И моноэнергетических нейтронов с плавно изменяемой энергией и детектор Д нейтронов или вторичного излучения. Полное сечение Г определяется из отношения отсчётов нейтронного детектора Д с мишенью М, расположенной на пути пучка и вне пучка (рис. 2 , а). При измерении парциальных сечений регистрируется вторичное излучение (g-лучи, вторичные нейтроны, осколки деления и т.д.) из мишени, помещенной на пути нейтронов. В области энергии £ 10 эв в качестве нейтронного источника иногда используются кристаллические нейтронные монохроматоры, которые устанавливаются на канале ядерного реактора и выделяют пучки нейтронов с определённой энергией (рис. 2 , б). Поворачивая кристалл, изменяют энергию нейтронов (см. Дифракция частиц ). Для энергии ³ 30 кэв обычно используют ускорители Ван-де-Граафа (см. Электростатический ускоритель ), в которых моноэнергетические нейтроны образуются в результате ядерных реакций типа 7 Li (p, n)7 Be. При изменении энергии протонов изменяется энергия вылетающих нейтронов (энергетический разброс DE ~ 1 кэв ).

  Более распространённым методом в Н. с. является метод времени пролёта, в котором используются нейтронные источники с широким энергетическим спектром, испускающие нейтроны в виде коротких вспышек длительностью t. Специальное электронное устройство, называемое временным анализатором, фиксирует интервал времени t между нейтронной вспышкой и моментом попадания нейтрона в детектор, т. е. время пролёта нейтронами расстояния L от источника до детектора. Энергия нейтронов E в эв связана со временем t в мксек соотношением:

E = (72,3L )2 /t2 .     (2)

  При измерении парциальных сечений методом времени пролёта детектор располагают непосредственно около мишени.

  Так как вторичная частица испускается практически одновременно с захватом нейтрона, то фиксируется момент захвата нейтрона ядром, а, следовательно, определяется энергия нейтрона по времени t пролёта. Энергетическое разрешение DE нейтронного спектрометра по времени пролёта приближённо можно представить в виде:

  DE /E = 2t/t .     (3)

  Импульсными источниками нейтронов обычно служат ускорители заряженных частиц или стационарные ядерные реакторы с механическими прерывателями, периодически пропускающими нейтроны в течение времени t ~ 1 мксек. Один из лучших нейтронных спектрометров по времени пролёта создан в Ок-Ридже (США). Он содержит линейный ускоритель электронов с энергией 140 Мэв. Электроны за счёт тормозного g-излучения выбивают из мишени 1011 нейтронов за время электронного импульса (t = 10-8сек ) при частоте повторения импульсов до 1000 в 1 сек. Разрешение DE такого спектрометра при L = 100 м и E = 100 эв составляет 3·10-3эв. В Н. с. часто используются детекторы, вырабатывающие сигнал, величина которого пропорциональна энергии регистрируемой частицы (см. Полупроводниковый детектор , Пропорциональный счётчик , Сцинтилляционный счётчик ). Это позволяет измерить энергетический спектр вторичных частиц, вылетающих из мишени, что значительно расширяет объём информации о возбуждённых состояниях ядер и механизмах различных ядерных переходов и т.д.

  Анализ экспериментальных данных позволяет определять такие характеристики резонанса, как энергия E , полная Г и парциальные ширины, спин и чётность резонансных состояний ядер. Для большинства стабильных ядер эти характеристики известны (по крайней мере E и Гn ) для десятков, а иногда и сотен резонансов. При более высоких энергиях нейтронов разрешающая способность нейтронных спектрометров становится недостаточной для выделения отдельных резонансов. В этом случае исследуются усреднённые полные и парциальные сечения, которые дают сведения о средних характеристиках резонансов.

  Величины энергетических интервалов D между соседними резонансами ядра флуктуируют. Среднее значение может сильно меняться при переходе от ядра к ядру. Общей закономерностью является уменьшение с увеличением массового числа А (от 104эв для А = 30 до 1 эв для U и более тяжёлых ядер). При переходе от ядер с нечётным А к соседним чётным происходит скачкообразное увеличение , что связано с изменением энергии связи захватываемого нейтрона. Нейтронные ширины резонансов Гn также флуктуируют от резонанса к резонансу для данного ядра. Кроме того, Гn растут в среднем пропорционально E1/2 , поэтому обычно пользуются приведёнными нейтронными ширинами Г°n = Гn /E1/2 . Средние значения нейтронных ширин <Гn > коррелируют с величинами . Каждая из них для разных ядер может отличаться в 103 —104 раз, но их отношение S = < Гn /E>/ , называется силовой функцией, слабо и плавно изменяется от ядра к ядру. Зависимость S от А хорошо объясняется с помощью оптической модели ядра (см. Ядерные модели ).

  После захвата нейтрона ядро переходит в высоковозбужденное состояние, ниже которого обычно расположено множество др. состояний. Его распад с испусканием g-квантов может происходить многими путями через различные промежуточные уровни. Это приводит к тому, что полная радиационная ширина Гg – для каждого резонанса является усреднённой по большому числу путей распада, а следовательно, мало изменяется от резонанса к резонансу и плавно меняется от ядра к ядру. Обычно полная радиационная ширина при переходе от средних ядер (A » 50) к тяжёлым (А » 250) изменяется примерно от 0,5 эв до 0,02 эв. В то же время радиационные ширины, характеризующие вероятность g-перехода на данный промежуточный уровень, сильно флуктуируют от резонанса к резонансу, как и нейтронные ширины. Спектр g-лучей распада нейтронных резонансов даёт информацию о распадающемся состоянии (спин, чёткость, набор парциальных ширин). Кроме того, энергии отдельных g-переходов позволяют определить энергии нижележащих уровней, а интенсивности g-переходов – спин и чётность, иногда и природу уровня.

  Делительные ширины Гд также заметно флуктуируют от резонанса к резонансу. Помимо осколков, при делении ядер под действием нейтронов испускаются g-кванты и вторичные нейтроны. Число нейтронов составляет 2—3 на 1 акт деления и практически не меняется от резонанса к резонансу. Эта величина, а также отношение вероятностей радиационного захвата и деления играют важную роль при конструировании ядерных реакторов.

  У полутора десятков ядер обнаружено испускание a-частиц после захвата медленных нейтронов. Для лёгких ядер (В, Li) этот процесс является преобладающим. В средних и тяжёлых ядрах он затруднён кулоновским барьером ядра. Здесь в наиболее благоприятных случаях Гa в 104 109 раз меньше Гg. Н. с. даёт в этом случае информацию о высоковозбуждённых состояниях ядер, о механизме a-распада.

  Данные Н. с. важны не только для ядерной физики. Реакторостроение нуждается в точных сведениях о взаимодействии нейтронов с делящимися материалами, а также материалами конструкции и защиты реакторов. Данные Н. с. используются для определения элементного и изотопного состава образцов без их разрушения (см. Активационный анализ ). В астрофизике они необходимы для понимания распространённости элементов во Вселенной.

  Методы Н. с. нашли широкое применение в исследованиях структуры твёрдых тел и жидкостей, а также динамики различных процессов, например колебаний кристаллической решётки (см. Нейтронография ).

  Лит.: Юз Дж. Д., Нейтронные эффективные сечения, пер. с англ., М., 1959; Рей Е. Р., Экспериментальная нейтронная спектроскопия, «Проблемы физики элементарных частиц и атомного ядра», 1971, т. 2, в. 4, с. 861; Франк И. М., Развитие и применение в научных исследованиях импульсного реактора ИБР, там же, с. 805; Боллингер Л. М., Гамма-кванты при захвате нейтронов, там же, с. 885; Попов Ю. П., (N, a) – реакция – новый канал для изучения природы нейтронных резонансов, там же, с. 925; Физика быстрых нейтронов, под ред. Дж. Мариона. и Дж. Фаулера, пер. с англ., т. 2, М., 1966.

  Л. Б. Пикельнер, Ю. П. Попов.

Рис. 1. Зависимость суммарного эффективного сечения s поглощения и рассеяния нейтронов от их энергии Е .

Рис. 2. Схемы нейтронных спектрометров: а – с моноэнергетическим источником И, б – с кристаллическим монохроматором на канале ядерного реактора; Д – нейтронный детектор; М – поглощающая или рассеивающая мишень; К – коллиматор.

Нейтронные детекторы

Нейтро'нные дете'кторы, приборы для регистрации нейтронов. Действие Н. д. основано на регистрации вторичных частиц, образующихся в результате взаимодействия нейтронов с атомными ядрами. Для регистрации медленных нейтронов используются ядерные реакции расщепления лёгких ядер под действием нейтронов [10 В (n, a) 7Li,6 Li (n, a) 3 H и 3 He (n, p)1 H] с регистрацией a-частиц и протонов; деления тяжёлых ядер с регистрацией осколков деления (см. Ядра атомного деление ); радиационный захват нейтронов ядрами (n, g) с регистрацией g-квантов, а также возбуждения искусственной радиоактивности. Для регистрации a-частиц, протонов и осколков деления применяются ионизационные камеры и пропорциональные счётчики , которые заполняют газообразным BF3 и др. газами, содержащими В или 3 H, либо покрывают их стенки тонким слоем твёрдых В, Li или делящихся веществ. Конструкция и размеры таких камер и счётчиков разнообразны. Пропорциональные счётчики могут достигать 50 мм в диаметре и 2 м длины (СНМ-15). Наибольшей эффективностью к тепловым нейтронам обладают Н. д., содержащие 10 B или 3 He. Для регистрации медленных нейтронов используются также сцинтилляционные счётчики (на кристаллах Lil с примесью Eu, на сцинтиллирующих литиевых стеклах, либо смеси борсодержащих веществ и сцинтиллятора ZnS). Эффективность регистрации тепловых нейтронов в этом случае может достигать 40—60%. В Объединённом институте ядерных исследований создан сцинтилляционный Н. д., в котором регистрируются акты радиационного захвата. Он предназначен для нейтронов с энергией до 10 кэв и имеет эффективность – 20—40%.

  Эффективность регистрации быстрых нейтронов перечисленными детекторами в сотни раз меньше, поэтому быстрые нейтроны предварительно замедляют в парафиновом блоке, окружающем Н. д. (см. Замедление нейтронов ). Специально подобранные форма и размеры блоков позволяют получить практически постоянную эффективность регистрации нейтронов в диапазоне энергии от нескольких кэв до 20 Мэв (всеволновой счётчик). При непосредственном детектировании нейтронов с энергиями ~ 100 кэв обычно используется упругое рассеяние нейтронов в водороде или гелии или регистрируются ядра отдачи. Так как энергия последних зависит от энергии нейтронов, то такие Н. д. позволяют измерять энергетический спектр нейтронов. Сцинтилляционные Н. д. также могут регистрировать быстрые нейтроны по протонам отдачи в органических и водородсодержащих жидких сцинтилляторах. Некоторые тяжёлые ядра, например 238 U и 232 Th, делятся только под действием быстрых нейтронов. Это позволяет создавать пороговые Н. д., служащие для регистрации быстрых нейтронов на фоне тепловых.

  Для регистрации продуктов ядерных реакций нейтронов с ядрами В и Li, протонов отдачи и осколков деления используются также ядерные фотографические эмульсии . Этот метод особенно удобен в дозиметрии , так как позволяет определить суммарное число нейтронов за время облучения. При делении ядер энергия осколков столь велика, что они производят заметные механические разрушения. На этом основан один из способов их обнаружения: осколки деления замедляются в стекле, которое затем травится плавиковой кислотой; в результате следы осколков можно наблюдать под микроскопом.

  Возбуждение искусственной радиоактивности под действием нейтронов используется для регистрации нейтронов, особенно при измерениях плотности потока нейтронов, так как число распадов (активность) пропорционально потоку нейтронов, прошедшему через вещество (измерение активности можно производить после прекращения облучения нейтронами). Существует большое количество различных изотопов, применяемых в качестве радиоактивных индикаторов нейтронов разных энергий E. В тепловой области энергий наибольшее распространение имеют 55 Mn, 107 Ag, 197 Au: для регистрации резонансных нейтронов применяют 55 Mn (E = 300 эв ), 59 Co (E =100 эв), 103 Rh, 115 In (E = 1,5 эв ), 127 I (E= 35 эв ),107 Ag, 197 Au (E = 5 эв ). В области больших энергий используют пороговые детекторы 12 C (E = 20 Мэв ), 32 S (E= 0,9 Мэв ) и 63 Cu (E = 10 Мэв ) (см. Нейтронная спектроскопия ).

  Лит.: Аллен В. Д., Регистрация нейтронов, пер. с англ., М., 1962; Власов Н. А., Нейтроны, 2 изд., М., 1971.

  Б. Г. Ерозолимский, Ю. А. Мостовой.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache