355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Новый ум короля: О компьютерах, мышлении и законах физики » Текст книги (страница 6)
Новый ум короля: О компьютерах, мышлении и законах физики
  • Текст добавлен: 26 сентября 2016, 13:35

Текст книги "Новый ум короля: О компьютерах, мышлении и законах физики"


Автор книги: Роджер Пенроуз



сообщить о нарушении

Текущая страница: 6 (всего у книги 47 страниц)

Двоичная запись цифровых данных

Унарная система чрезвычайно неэффективна для записи больших чисел. Поэтому мы по большей части будем использовать вышеописанную двоичнуюсистему. Однако, сделать это напрямую и попытаться читать ленту просто как двоичное число мы не сможем. Дело в том, что мы не имеем возможности сказать, когда кончается двоичное представление числа и начинается бесконечная последовательность нулей справа, которая отвечает пустой ленте. Нам нужен способ как-то обозначать конец двоичной записи числа. Более того, часто нам будет нужно вводить в машину несколькочисел, как, например, в случае с алгоритмом Евклида, когда требуется парачисел [42]42
  Существует немало других известных в математике способов записи пар, троек и большего количества чисел в виде одного числа, но они менее удобны для наших целей. Например, формула ½((а + Ь)² + 3а + b) однозначно представляет пару (а, Ь) как одно натуральное число. Проверьте сами!


[Закрыть]
. Но в двоичном представлении мы не можем отличить пробелымежду числами от нулей или строчек нулей, входящих в записи этих двоичных чисел. К тому же, помимо чисел нам может понадобиться и запись всевозможных сложных инструкций на той же ленте. Для того чтобы преодолеть эти трудности, воспользуемся процедурой, которую я буду в дальнейшем называть сокращениеми согласно которой любая строчка нулей и единиц (с конечным числом единиц) не просто считывается как двоичное число, но замещается строкой из нулей, единиц, двоек, троек и т. д. таким образом, чтобы каждое число в получившейся строчке соответствовало числу единиц между соседними нулями в исходной записи двоичного числа. Например, последовательность

01000101101010110100011101010111100110

превратится в

Мы теперь можем считывать числа 2, 3, 4… как метки или инструкции определенного рода. Действительно, пусть 2будет просто «запятой», указывающей на пробел между двумя числами, а числа 3, 4, 5… могли бы по нашему желанию символизировать различные инструкции или необходимые обозначения, как, например, «минус», «плюс», «умножить», «перейти в позицию со следующим числом», «повторить предыдущую операцию следующее число раз», и т. п. Теперь у нас есть разнообразные последовательности нулей и единиц, разделенные цифрами большей величины. Эти последовательности нулей и единиц будут представлять собой обычные числа, записанные в двоичной форме. Тогда записанная выше строка (при замене двоек «запятыми») примет вид:

(двоичное число 1001) запятая (двоичное число 11) запятая….

Используя обычные арабские числа «9», «3», «4», «0» для записи соответствующих двоичных чисел 1001, 11, 100и 0, получаем новую запись всей последовательности в виде: 9, 3, 4 (инструкция 3) 3 (инструкция 4) 0.

Такая процедура дает нам, в частности, возможность указывать, где заканчивается запись числа (и тем самым отделять ее от бесконечной полосы пустой ленты справа), просто используя запятую в конце этой записи. Более того, она позволяет закодировать любую последовательность натуральных чисел, записанных в двоичной системе, как простую последовательность нулей и единиц, в которой для разделения чисел мы используем запятые. Посмотрим, как это сделать, на конкретном примере. Возьмем последовательность

5, 13, 0, 1, 1, 4.

В двоичном представлении она эквивалентна последовательности

101, 1101, 0, 1, 1, 100,

что на ленте можно записать с помощью операции расширения(обратной по отношению к описанной выше процедуре сокращения) как

…000010010110101001011001101011010110100011000…

Такое кодирование легко выполнить, если в исходной двоичной записи чисел провести следующие замены:

0 → 0

1 → 10

, → 110

и после этого добавить бесконечные последовательности нулей с обеих сторон вновь полученной записи. Чтобы сделать более понятной эту процедуру в применении к нашему примеру, разделим полученные двоичные числа пробелами:

0000 10 0 10 110 10 10 0 10 110 0 110 10 110 10 110 10 0 0 110 00.

Я буду называть этот способ представления (наборов) чисел расширенной двоичнойзаписью. (Так, в частности, в расширенной двоичной форме записи число 13 выглядит как 1010010.)

Есть еще одно, последнее, замечание, которое надо сделать в связи с этой системой записи. Это не более, чем техническая деталь, но она необходима для полноты изложения [43]43
  В изложенном выше я не вводил никакой метки для начала последовательности чисел (или инструкций и т. п.). Это совершенно не требуется для входных данных, поскольку все начинается в тот момент, когда считана первая единица. Однако для конечного результата может понадобиться что-то дополнительное, поскольку априориникто не может сказать, как долго придется двигаться по ленте, чтобы добраться до первой (т. е. самой левой!) единицы. Хотя при движении налево может встретиться длинная строка нулей, нет никаких гарантий, что еще дальшене встретится единица. В этом случае применимы различные подходы. Можно было бы всегда использовать специальную отметку (допустим, 6, записанную при помощи процедуры «сокращения»), чтобы указывать начало и завершение окончательного ответа. Но для простоты я в своем изложении буду придерживаться другой точки зрения, согласно которой мы всегда «знаем», сколько в действительности ленты обработало наше устройство (например, можно представить, что оно оставляет своего рода «след»), так что не обязательно просматривать ленту до бесконечности, чтобы убедиться в том, что весь ответ считан.


[Закрыть]
. Двоичная (или десятичная) запись натуральных чисел в некоторой степени избыточна в том смысле, что нули, расположенные слева от записи числа, «не считаются» и обычно опускаются, так что 00110010представляет собой то же самое двоичное число, что и 110010(а 0050 – то же самое десятичное число, что и 50). Эта избыточность распространяется и на нуль, который может быть записан и как 000, и как 00, и, конечно, как 0. На самом деле и пустое поле, если рассуждать логически, должно обозначать нуль! В обычном представлении это привело бы к большой путанице, но в описанной выше системе кодирования никаких затруднений не возникает: нуль между двумя запятыми можно записать просто в виде двух запятых, следующих подряд (''). На ленте такой записи будет соответствовать код, состоящий из двух пар единиц, разделенных одним нулем:

…001101100…

Тогда исходный набор из шести чисел может быть записан в двоичной форме как

101,1101''1,1,100,

и на ленте при кодировании в расширенной двоичной форме мы получим последовательность

…00001001011010100101101101011010110100011000.,

в которой на один нуль меньше по сравнению с предыдущим кодом того же набора.

Теперь мы можем рассмотреть машину Тьюринга, реализующую, скажем, алгоритм Евклида в применении к паре чисел, записанных в расширенной бинарной форме. Для примера возьмем ту же пару чисел – 6 и 8, которую мы брали ранее. Вместо прежней унарной записи

…0000011111101111111100000…

воспользуемся двоичным представлением 6 и 8, т. е. 110 и 1000, соответственно. Тогда эта параимеет вид

6, 8, или в двоичной форме 110, 1000,

и в расширенной двоичной записи на ленте она будет выглядеть следующим образом

… 00000101001101000011000000….

Для этой конкретной пары чисел двоичная форма записи не дает никакого выигрыша по сравнению с унарной. Предположим, однако, что мы берем для вычислений (десятичные) числа 1 583 169 и 8610. В двоичной записи они имеют вид

110000010100001000001,

10000110100010.

На ленте при расширенном двоичном кодировании им будет соответствовать последовательность

… 001010000001001000001000000101101000001010010000100110

которая занимает менее двух строк, тогда как для унарной записи пары чисел «1 583 169, 8610» не хватило бы места на страницах этой книги!

Машину Тьюринга, выполняющую алгоритм Евклида для чисел, записанных в расширенной двоичной форме, при желании можно получить из EUCс помощью пары дополнительных алгоритмов, которые переводили бы числа из расширенной двоичной формы в унарную и обратно. Однако, такой подход чрезвычайно неэффективен, ибо громоздкость унарной системы записи была бы по-прежнему «внутренне» присуща всему устройству, что проявилось бы в его низком быстродействии и потребности в огромном количестве «черновиков» (на левой стороне ленты). Можно построить и более эффективную машину Тьюринга для алгоритма Евклида, оперирующую исключительно расширенными двоичными числами, но для понимания принципов ее работы это не особенно важно.

Для того чтобы показать, каким образом машина Тьюринга может работать с числами в расширенном двоичном представлении, обратимся к значительно более простой, чем алгоритм Евклида, процедуре – просто прибавлению единицык произвольному натуральному числу. Ее можно выполнить с помощью следующей машины Тьюринга (которую я назову XN + 1):

0 0 → 0 0R

0 1 → 1 1R

1 0 → 0 0R

1 1 → 10 1R

10 0 → 11 0L

10 1 → 10 1R

11 0 → 10 1.STOP

11 1 → 100 0L

100 0 → 101 1L

100 1 → 100 1L

101 0 → 110 0R

101 1 → 10 1R

110 1 → 111 1R

111 0 → 11 1R

111 1 → 111 0R

И вновь некоторые дотошные читатели могут захотеть проверить, вправду ли эта машина Тьюринга действует так, как должна, если взять, скажем, число 167. Это число имеет двоичное представление 10100111и записывается на ленте как

…0000100100010101011000…

Чтобы прибавить единицу к двоичному числу, мы просто находим в его записи последний нуль и меняем его на единицу, а все непосредственно следующие за ним единицы – на нули. Так что

167 + 1 = 168

в двоичной форме записывается в виде

10100111 + 1 = 10101000.

Таким образом, наша «прибавляющая единицу» машина Тьюринга должна превратить предыдущую запись на ленте в

… 0000100100100001100000

что она и делает.

Обратите внимание, что даже самая простая операция прибавления единицы в такой записи выглядит довольно сложно, включая в себя 15 инструкций и восемь различных внутренних состояний! Конечно, в случае унарной записи все было значительно проще, поскольку тогда «прибавление единицы» означало удлинение строчки единиц еще на одну, поэтому не удивительно, что машина UN +1была более простой. Однако, для очень больших чисел UN + 1была бы слишком медленной из-за чрезмерной длины ленты, и тогда более сложная машина XN + 1, но работающая с более компактным расширенным двоичным представлением, оказалась бы предпочтительнее.

Несколько отступая в сторону, я укажу операцию, для которой машина Тьюринга проще в расширенной двоичной, нежели в унарной форме – это умножение на два. Действительно, машина Тьюринга XN х 2, заданная в виде

0 0 → 0 0R

0 1 → 1 0R

1 0→ 0 1R

1 1 → 10 0R

10 0 → 11 1R

11 0 → 0 1.STOP

запросто выполнит эту операцию в расширенной двоичной форме, тогда как соответствующая унарная машина UN х 2, описанная ранее, гораздо сложнее!

Этот раздел дает определенное представление о том, на что способны в простейших случаях машины Тьюринга. Как и следовало ожидать, при выполнении более или менее сложных операций эти машины могут становиться, и действительно становятся, несравненно более сложными. Каковы же принципиальные возможности таких устройств? Мы рассмотрим этот вопрос в следующем параграфе.

Тезис Черча – Тьюринга

После ознакомления с принципами построения простых машин Тьюринга легко убедиться, что все основные математические операции, такие как сложение двух чисел, их перемножение или возведение одного из них в степень другого, могут на самом деле быть выполнены соответствующими машинами Тьюринга. Построение таких машин в явном виде не представляет больших затруднений, но я не собираюсь сейчас этим заниматься. Машины Тьюринга могут выполнять операции, результат которых выражается парой натуральных чисел, например, деление с остатком, или сколь угодно большим, но конечным множеством чисел. Более того, можно сконструировать такие машины Тьюринга, для которых арифметические операции не предопределены заранее, а могут задаваться инструкциями, вводимыми с ленты. При этом возможно, что та конкретная операция, которая должна быть выполнена, будет зависеть в тот или иной момент от результатов вычислений, которые машина должна была выполнить на предыдущих этапах. («Если результат вычислений больше, чем то-то, надо сделать то-то, в противном случае выполнить то-то».) Убедившись, что можно построить машины Тьюринга, выполняющие арифметические или простые логические операции, уже не так трудно представить себе, какими должны быть машины, выполняющие более сложные задачи алгоритмического характера. «Повозившись» немного с подобными задачами, легко приходишь к убеждению в том, что машина этого типа может выполнять вообще любые механические операции! Тогда с точки зрений математики приобретает смысл определениемеханической операции как такой операции, которую может выполнить подобная машина. Существительное «алгоритм» и прилагательные «вычислимый», «рекурсивный» и «эффективный» используются математиками для обозначения механических операций, которые могут быть выполнены теоретическими устройствами такого рода, т. е. машинами Тьюринга. Если некоторая процедура четко определена и по природе своей механистична, то можно вполне обоснованно предположить, что найдется машина Тьюринга, способная ее выполнить. Это, в конце концов, и есть основной момент наших (то есть Тьюринга) рассуждений, лежащий и в основе самой концепции машины Тьюринга.

С другой стороны, остается ощущение, что принципы построения этих машин содержат излишние ограничения. Разрешение устройству считывать за один раз только одну двоичную цифру ( 0или 1) и передвигаться каждый раз только на один шаг да еще вдоль единственнойодномерной ленты, на первый взгляд, ограничивает возможности машины. Почему бы не разрешить одновременное использование четырех, пяти или, возможно, тысячи разных лент, по которым одновременно двигалось бы большое количество взаимосвязанных считывающих устройств? Почему бы не ввести целую плоскость с нулями и единицами (или, например, трехмерное пространство), вместо того чтобы настаивать на использовании одномерной ленты? Почему бы не использовать другие системы счисления или символы из каких-нибудь более сложных алфавитов? По сути, ни одно из этих изменений ни в малейшей степени не влияет на то, что в принципе может быть достигнуто с помощью машины Тьюринга, хотя некоторые из них отразились бы на экономичности производимых операций (как это наверняка произошло бы, разреши мы использование нескольких лент). Класс осуществляемых операций, попадающих, таким образом, под определение «алгоритма» (или «вычисления», или «выполнимой процедуры», или «рекурсивной операции»), остался бы в точности тем же самым, если мы расширим определение наших машин и включим в него даже все предлагавшиеся выше модификации одновременно!

Мы можем видеть, что нет необходимостив дополнительных лентах, коль скоро устройство может по мере надобности находить свободное место на одной ленте. При этом может потребоваться постоянная перезапись данных с одного места ленты на другое. Это, может быть, «неэффективно», но в принципе не ограничивает возможности машин Тьюринга [44]44
  Один из способов записи информации с двух лент на одну – вставить записи одной из них между записями другой. При этом нечетные отметки на новой ленте могут соответствовать отметкам первой ленты, тогда как четные – отметкам второй. Аналогичная схема работает и для четырех, и для большего числа лент. «Неэффективность» этой процедуры обусловлена тем, что считывающему устройству пришлось бы «прыгать» взад-вперед по ленте, оставляя на ней маркеры как на четных местах, так и на нечетных, с тем чтобы фиксировать свое положение в каждый момент.


[Закрыть]
. Сходным образом, использование более чем одного устройства Тьюринга для параллельных вычислений– идея, ставшая очень популярной в последние годы в связи с попытками более точного моделирования человеческого мозга, – не дает никаких принципиальных преимуществ (хотя при определенных обстоятельствах может увеличиться быстродействие). Использование двух непосредственно не связанных друг с другом устройств не даст выигрыша по сравнению с двумя взаимосвязанными устройствами. Но если два устройства связаны друг с другом, то, в сущности, это уже одно устройство!

А что можно сказать об ограничении Тьюринга, касающегося одномерности ленты? Если мы считаем, что эта лента представляет собой «окружение», то, возможно, мы бы предпочли в качестве такового иметь плоскую поверхность, или, допустим, трехмерное пространство. Может показаться, что плоскость лучше подошла бы для изображения «блок-схемы» вычислений (как в вышеприведенном описании последовательности действий алгоритма Евклида), чем одномерная лента [45]45
  В согласии с предложенным здесь описанием, эта блок-схема была бы скорее частью «устройства», нежели внешнего окружения – «ленты». На ленте мы до сих пор отображали только числа А, В, АВ, и т. п Однако в дальнейшем нам потребуется также возможность описания и самого устройства в линейной одномерной форме. Как мы увидим далее в связи с универсальной машиной Тьюринга, есть тесная взаимосвязь между свойствами конкретного «устройства» и свойствами возможных «данных» (или «программы») для него. Поэтому удобно в обоих случаях придерживаться одномерной формы записи.


[Закрыть]
. Однако запись блок-схемы в «одномерной» форме не представляет принципиальных трудностей (например, можно использовать обычное словесное описание). Двумерное плоское изображение дает только удобство и простоту восприятия, но, по сути, ничего не меняет. Всегда есть возможность преобразовать координаты отметки или объекта на двумерной плоскости или в трехмерном пространстве и явным образом отобразить их на одномерной ленте. (Фактически, использование двумерной плоскости полностью эквивалентно использованию двух лент. Две ленты дают две «координаты», которые нужны для определения местоположения точки на двумерной плоскости; аналогично, три ленты могут выполнять ту же роль для точки в трехмерном пространстве.) И хотя эта одномерная запись может вновь оказаться «неэффективной», принципиальные возможности устройства это никак не ограничивает.

Несмотря на все это, по-прежнему остается вопрос о том, действительно ли понятие машины Тьюринга охватывает все логические или математические операции, которые мы могли бы назвать «механическими». В то время, когда Тьюринг написал свою основополагающую работу, ситуация была гораздо менее ясной, чем сегодня, поэтому Тьюринг справедливо посчитал необходимым предоставить развернутое изложение этого вопроса. Детально рассмотренная Тьюрингом проблема получила дополнительное обоснование благодаря тому, что совершенно независимо от Тьюринга (и на самом деле несколько ранее) американский логик Алонзо Черч (совместно со Стивеном Клини), стремясь найти решение проблемы алгоритмической разрешимости Гильберта, предложил свою схему лямбда-исчисления. Хотя то, что это была всеобъемлющая полностью механическая схема, было не так очевидно, как в случае с подходом Тьюринга, ее несомненным преимуществом была удивительная компактность математической структуры. (Я буду рассматривать замечательный анализ Черча в конце главы.) Независимо от Тьюринга были предложены и другие подходы к решению задачи Гильберта (см. Ганди [1988]), среди которых можно выделить работу американского логика польского происхождения Эмиля Поста (опубликованную несколько позже работы Тьюринга, но содержащую идеи, более близкие идеям Тьюринга, нежели Черча). В скором времени было доказано, что все эти схемы совершенно эквивалентны.

Это значительно укрепило точку зрения, известную как тезис Черча – Тьюринга , которая утверждает, что машина Тьюринга (или ее эквивалент) на самом деле определяет то, что в математике понимают под алгоритмической (или выполнимой, или рекурсивной, или механической) процедурой. Сегодня, когда быстродействующие электронные компьютеры прочно вошли в нашу жизнь, немного найдется тех, кто считает необходимым ставить под сомнение эту теорию в ее изначальной формулировке. Вместо этого сейчас исследователи обратили внимание на вопрос, какие логические и математические операции могут выполнять реальные физические системы (возможно, включающие и человеческий мозг), подчиняющиеся точным физическим законам: точно такие же, что и машины Тьюринга, или же их возможности больше или меньше? Что касается меня, то я с удовольствием принимаю исходную математическуюинтерпретацию тезиса Черча – Тьюринга. С другой стороны, вопрос о его отношении к поведению реальных физических систем заслуживает отдельного рассмотрения и будет занимать в дальнейшем центральное место в наших рассуждениях.

Числа, отличные от натуральных

В предыдущих параграфах мы рассматривали действия над натуральнымичислами и отметили тот замечательный факт, что машина Тьюринга может оперировать с натуральными числами произвольной величины, несмотря на то, что каждая машина имеет фиксированное и конечноечисло внутренних состояний. Однако часто возникает необходимость в операциях с более сложными числами, такими как отрицательные числа, обыкновенные дроби и бесконечные десятичные дроби. Первые две категории (т. е. числа вида -597/26) легко поддаются обработке машинами Тьюринга, причем и числители, и знаменатели могут быть сколь угодно большими. Все, что для этого нужно – какой-нибудь подходящий код для знаков «-»и « , который можно легко выбрать при использовании расширенной двоичной записи (например, « 3» = 1110для знака «-», а « = 11110– для знака « ). Таким образом, отрицательные числа и обыкновенные дроби рассматриваются как конечные наборы натуральных чисел, и с точки зрения общих вопросов вычислимости ничего нового не дают.

То же можно сказать и о конечныхдесятичных выражениях с произвольным числом знаков после запятой, поскольку они представляют собой лишь частный случай обыкновенных дробей. Так, например, конечная десятичная аппроксимация иррационального числа π , заданная числом 3,14159265, есть просто дробь 314 159 265/100 000 000. Однако бесконечныедесятичные выражения, такие как полная запись числа π

π  = 3,14159265358979…,

представляют определенные трудности. На самом деле, ни входные, ни выходные данные машины Тьюринга не могут быть бесконечными десятичными выражениями. Можно было бы думать, что нашлась бы машина Тьюринга, способная выдавать одну за другой все последовательные цифры – 3, 1, 4, 1, 5, 9… в десятичной записи числа  π и переносить их на выходную ленту, а мы просто позволим этой машине работать бесконечно долго. Но это запрещенодля машин Тьюринга. Мы должны дождаться остановки машины (сопровождаемой звонком колокольчика!), прежде чем сможем ознакомиться с результатом. До того момента, пока машина не выполнит команды STOP, выходные данные могут изменяться и поэтому не являются достоверными. С другой стороны, после полной остановки машины результат должен быть с необходимостью конечным.

Существует, однако, «законная» процедура для того, чтобы заставить машину Тьюринга последовательно воспроизводить цифры примерно так, как это предлагалось выше. Если мы хотим получить бесконечную десятичную запись, скажем, числа π , мы могли бы заставить машину Тьюринга сначала рассчитать его целую часть, 3, используя на входе 0, затем – первую цифру дробной части, 1, используя на входе 1, затем – вторую цифру дробной части, 4, используя на входе 2, потом – третью цифру, 1, используя 3 и т. д. Вообще говоря, машина Тьюринга для получения всех цифр десятичной записи числа  π в этом смысле действительно существует, хотя реализовать ее в явном виде было бы затруднительно. Подобное же замечание относится и ко многим другим иррациональным числам, таким, например, как √2 = 1,414213562… Однако оказывается – и мы увидим это в следующей главе, – что некоторые иррациональные числа принципиально не могут быть получены с помощью машины Тьюринга. Числа, которые можнополучить таким образом, называются вычислимыми(Тьюринг [1937]), а остальные (в действительности абсолютное большинство!) – невычислимыми. Я еще вернусь к этой теме и затрону ряд смежных вопросов в последующих главах. К нам это имеет отношение в связи с вопросом о том, может ли реальный физический объект (например, человеческий мозг) быть адекватно описан в терминах вычислимых математических структур в соответствии с нашими физическими теориями.

Проблема вычислимости важна для математики в целом. Не следует думать, что она относится только к числамкак таковым. Ведь машины Тьюринга могут непосредственно оперировать математическими формулами, например, алгебраическими или тригонометрическими выражениями, или выполнять формальные действия математического анализа. Все, что для этого нужно, это некий способ точного кодирования всех используемых математических символов в виде последовательностей нулей и единиц, которые позволят применить соответствующую машину Тьюринга. Именно это Тьюринг имел в виду, когда он взялся за проблему алгоритмической разрешимости, в которой требуется найти алгоритмическую процедуру для ответа на самые общие математические вопросы. Очень скоро мы вновь обратимся к этой теме.


    Ваша оценка произведения:

Популярные книги за неделю