Текст книги "Новый ум короля: О компьютерах, мышлении и законах физики"
Автор книги: Роджер Пенроуз
Жанры:
Философия
,сообщить о нарушении
Текущая страница: 35 (всего у книги 47 страниц)
Глава 8
В поисках квантовой теории гравитации
Зачем нужна квантовая теория гравитации?
Что еще осталось узнать о мозге и мышлении такого, чего мы не выяснили в предыдущей главе? Хотя мы уже кратко рассмотрели некоторые из всеобъемлющих физических принципов, лежащих в основе направленности воспринимаемого нами «потока времени», нам все же пока не удалось понять не только почему мы воспринимаем время как нечто текущее, но даже почему мы вообще его воспринимаем. Я считаю, что тут необходимы гораздо более радикальные идеи. До сих пор мое изложение особым радикализмом не отличалось, хотя в некоторых случаях расстановка акцентов была далека от традиционной. Мы ознакомились со вторым началом термодинамики, и я попытался убедить читателя в том, что этот закон – данный нам в виде, выбранном самой природой, – уходит своими корнями в чрезвычайно сильное геометрическое ограничение на происхождение вселенной в результате Большого взрыва – гипотезу о вейлевской кривизне . Некоторые космологи предпочитают интерпретировать это исходное ограничение иначе, но такого рода ограничение на начальную сингулярность действительно является необходимым. Выводы, которые я собираюсь сделать из этой гипотезы, будут гораздо менее традиционными, чем сама гипотеза. Я утверждаю, что потребуются изменения в самих основах квантовой теории!
Эти изменения должны сыграть свою роль при объединении квантовой механики с общей теорией относительности, т. е. в рамках искомой квантовой теории гравитации . Большинство физиков не считают необходимым что-либо менять в квантовой теории при ее объединении с общей теорией относительности. Более того, они утверждают, что на пространственных масштабах, имеющих значение для нашего мозга, эффекты любойквантовой теории гравитации пренебрежимо малы! Они отмечают (и весьма резонно), что хотя такого рода физические эффекты действительно могут оказаться существенными на абсурдно малых пространственных масштабах, сравнимых с так называемой планковской длиной [188]188
Это расстояние ( 10 -35 м = √ ħGc -3 ) на котором так называемые «квантовые флуктуации» самой метрики пространства-времени становятся настолько большими, что обычное представление об однородном пространственно-временно́м континууме оказывается неприменимым. (Квантовые флуктуации являются следствием принципа неопределенности Гейзенберга – см. Глава 6. «Принцип неопределенности».)
[Закрыть]что составляет 10 -35 м – т. е. примерно в 100 000 000 000 000 000 000 раз меньше размера самой маленькой из субатомных частиц, – эти эффекты тем не менее никоим образом напрямую не затрагивают явления, происходящие на много-много бо́льших «обычных» пространственных масштабах, от 10 -12 м и более, там, где правят бал химические и электрические процессы, важные для деятельности мозга. Собственно говоря, даже классическая(то есть неквантовая) теория гравитации почти никак не затрагивает эти электрические и химические процессы. Если классической гравитацией можно пренебречь, то какое может иметь значение любая ничтожно малая «квантовая поправка» к классической теории? Более того, поскольку отклоненияот квантовой теории до сих пор не наблюдались, то тем болеепредставляется лишенной всяких оснований сама мысль о каком бы то ни было влияний на процессы мышления любого ничтожно малого гипотетического отклонения от стандартной квантовой теории!
Я же буду рассуждать совсем иначе. Меня интересует не столько влияние квантовой механики на теорию структуры пространства-времени (теорию относительности Эйнштейна), сколько возможное обратноевлияние эйнштейновской теории пространства-времени на саму структуру квантовой механики. Я хочу подчеркнуть, что предлагаемая мною точка зрения нетрадиционна.Нетрадиционным является предположение о самой возможности влияния общей теории относительности на структуру квантовой механики! Традиционная физика относится с большим предубеждением к любым попыткам что-либо изменить в стандартной структуре квантовой механики. Несмотря на, по-видимому, непреодолимые трудности, возникающие при попытках непосредственного применения правил квантовой механики к теории Эйнштейна, работающие в этой области исследователи, как правило, делали отсюда вывод о необходимости корректировки теории Эйнштейна, а не квантовой механики [189]189
Вот самые распространенные корректировки этого типа: ( I ) замена уравнений Эйнштейна РИЧЧИ= ЭНЕРГИЯ(используя лагранжианы более высоких порядков); ( II ) замена четырехмерного пространства-времени на пространство-время с бо́льшим числом измерений (как в случае так называемых «теорий Калуцы – Клейна»); ( III ) введение «суперсимметрии» (идея, заимствованная из квантового поведения бозонов и фермионов, сведенного в единую схему, и примененная, не совсем последовательно, к пространственно-временны́м координатам); ( IV ) теория струн (очень популярная сейчас теория, в которой «мировые линии» заменяются на «истории струн» – обычно в сочетании с идеями ( II ) и ( III )). Все эти предложения, несмотря на их популярность, следует рассматривать как заведомо ПРОБНЫЕсогласно терминологии главы 5.
[Закрыть]. Я же придерживаюсь практически противоположной точки зрения и считаю, что проблемы самой квантовой теории носят фундаментальный характер. Вспомним о несовместимости двух основных ее процедур – Uи R( Uподчиняется совершенно детерминистскому уравнению Шредингера – это так называемое уравнение унитарнойэволюции, a Rпредставляет собой вероятностную редукцию вектора состояния, необходимость в которой возникает всякий раз, когда предполагается, что было сделано «наблюдение»). По-моему, эту несовместимость нельзяадекватно разрешить простой подходящей «интерпретацией» квантовой механики (хотя эта точка как раз и является господствующей), – ее устранение возможно лишь в рамках новой теории, коренным образом отличной от существующей, в которой процедуры Uи Rбудут рассматриваться как различные (и очень хорошие) приближения к более всеобъемлющей и точной единойпроцедуре. Моя точка зрения, следовательно, состоит в том, что даже такая изумительно точная теория, как квантовая механика, потребует изменений, и что именно теория относительности Эйнштейна позволит лучше всего понять характер этих изменений. Я пойду еще дальше, утверждая, что речь идет именно об искомой квантовой теории гравитации , одним из компонентов которой должна как раз стать предполагаемая единая процедура U/ R.
С другой стороны, с общепринятой точки зрениялюбые прямые следствия квантовой теории гравитации должны иметь более эзотерический характер. Я уже упоминал об ожидаемом радикальном изменении структуры пространства-времени на абсурдно малых масштабах порядка планковской длины. Существует мнение (и, по-моему, вполне обоснованное), что квантовая теория гравитации должна сыграть фундаментальную роль в окончательном установлении природы наблюдаемого «зоопарка элементарных частиц». Например, сейчас у нас нет хорошей теории, которая бы объяснила, почему массы частиц именно таковы, каковы они есть – а ведь понятие «массы» теснейшим образом связано с понятием гравитации. (Действительно, единственное действие массы – быть «источником» гравитации.) К тому же не без оснований считается, что (согласно идее, выдвинутой где-то около 1955 года шведским физиком Оскаром Клейном) правильная квантовая теория гравитации обязана устранить расходимости, преследующие обычную квантовую теорию поля (см. Глава 6. «Квантовая теория поля»). Физика представляет собой единое целое, и правильнаяквантовая теория гравитации, когда она, наконец, будет построена, должна стать основой нашего досконального понимания универсальных законов природы.
Мы, однако, пока еще далеки от такого понимания. Более того, вне всякого сомнения любая гипотетическая квантовая теория гравитации не будет иметь практически никакого отношения к явлениям, управляющим поведением мозга. Особеннодалеки от деятельности мозга могут оказаться те (общепринятые) аспекты квантовой теории гравитации, которые необходимы для выхода из тупика, в который мы попали в предыдущей главе, а именно для разрешения проблемы пространственно-временны́х сингулярностей– сингулярностей классической теории Эйнштейна, которые возникают в момент большого взрываи в черных дырах, а также при большом коллапсе– если наша вселенная решит в конце концов сколлапсировать сама на себя. Конечно же, эта роль квантовой теории гравитации вполне может показатьсядалекой [от проблем деятельности мозга]. Я, однако, утверждаю, что тут все же имеется почти неуловимая, но важная логическая связь. Постараемся выяснить, в чем она состоит.
Что скрывается за гипотезой о вейлевской кривизне?
Как я уже отмечал, даже согласно традиционной точке зрения именно квантовая теория гравитации должна прийти на помощь классической общей теории относительности и решить проблему пространственно-временны́х сингулярностей. Так, квантовая теория гравитации должна дать непротиворечивое физическое описание взамен бессмысленного «бесконечного» результата классической теории. Я безусловно согласен с этой точкой зрения: это как раз та самая ситуация, где квантовая теория гравитации должна проявить себя в полной мере. Однако, теоретики не могут смириться с тем поразительным фактом, что проявления квантовой теории гравитации вопиющим образом асимметричны во времени! В случае Большого взрыва – прошлой сингулярности– квантовая теория гравитации должна требовать выполнения условия типа
ВЕЙЛЬ= 0
в тот момент, когда приобретает смысл описание в терминах классических понятий геометрии пространства-времени. С другой стороны, для сингулярностей, расположенных внутри черных дыр, и (возможно) для сингулярности большого коллапса – т. е. для будущих сингулярностей– такого рода ограничение отсутствует, и мы полагаем, что по мере приближения к такой сингулярности тензор Вейля стремится к бесконечности:
ВЕЙЛЬ→ ∞.
Я считаю это обстоятельство несомненным свидетельством асимметричности во времени искомой истинной теории. Итак:
искомая квантовая теория гравитации асимметрична во времени.
Хочу предупредить здесь читателя, что приведенный вывод, несмотря на его очевидность, с неизбежностью вытекающей из изложенных выше рассуждений, не является, тем не менее, общепринятым! Большинство исследователей, работающих в рассматриваемой области науки, крайне неохотно встают на эту точку зрения. Причина, по-видимому, кроется в отсутствии ясного способа, каким привычные и (насколько можно судить) хорошо нами понятые процедуры квантования могли бы породить асимметричную во времени [190]190
Хотя процедуры квантования не всегда сохраняют симметрию классической теории (см. Трейман [1985]; Аштекар и др. [1989]), здесь требуется нарушение всех четырехсимметрии, обычно обозначаемых как Т, РТ, СТ и СРТ. Это (особенно нарушение СРТ симметрии) выходит за пределы возможностей обычных методов квантования.
[Закрыть]квантовую теорию при том, что классическая теория, к которой упомянутые процедуры применяются (стандартная общая теория относительности или ее модификации), сама по себе симметрична во времени. Соответственно, эти специалисты по квантованию гравитации вынуждены (если они вообще задаются подобными вопросами – что случается не так уж и часто) искать другие «объяснения» малого значения энтропии при Большом взрыве.
Многие физики могут возразить, что гипотезы, подобные предположению о нулевом начальном значении вейлевской кривизны, – представляя собой выбор «граничного условия», а не динамические законы, – находятся за пределами наших возможностей объяснения. Они утверждают, по сути, что в данном случае мы имеем дело с «актом Творца» и нечего даже и пытаться понять, почему нам дано именно это граничное условие, а не какое-нибудь другое. Однако, как мы уже убедились выше, ограничение, накладываемое рассматриваемой гипотезой на «булавку Творца», по своей исключительности и точности не уступает той потрясающей и тончайшим образом организованной хореографии динамических законов, к пониманию которых мы пришли через уравнения Ньютона, Максвелла, Эйнштейна, Шредингера, Дирака и др. Хотя второе начало термодинамики и может показаться нечетким и статистическим по своей природе, оно тем не менее вытекает из чрезвычайно точного геометрического ограничения. Поскольку научное осмысление доказало свою ценность как способ понимания динамических уравнений, мне представляется неразумным впадать в отчаяние и терять всякую надежду на научное постижение ограничений, действовавших в случае «граничного условия», каким являлся Большой взрыв. С моей точки зрения, как одно, так и другое являются частью науки, хотя и той частью, которая нами – пока еще – недостаточно понята.
История науки продемонстрировала, насколько ценной для физики оказалась идея отделения динамических уравнений(законов Ньютона, уравнений Максвелла и т. д.) от так называемых граничных условий– то есть условий, необходимых для выделения из огромного множества решений того, что имеет физический смысл. Исторически простые формулировки были найдены именно для динамических уравнений. Движения частиц подчиняются простым законам, а вот о встречающихся во вселенной реальных конфигурацияхчастиц это, похоже, можно сказать нечасто. Иногда эти конфигурации на первый взгляд выглядят простыми – как, например, в случае планетных орбит, эллиптическая форма которых была установлена Кеплером, – но простота их в дальнейшем оказалась следствиемдинамических законов. Более глубокое понимание всегда достигалось через динамические законы, а простые конфигурации, подобные вышеописанной, как правило оказывались просто приближениями к более сложным конфигурациям вроде возмущенных (уже не совсем эллиптических) реально наблюдаемых движений планет, которые находят свое объяснение в динамических уравнениях Ньютона. Граничные условия служат для «запуска» рассматриваемой системы, после чего за дело принимаются динамические законы. Сам факт возможности отделения проблемы динамического поведения от вопроса о конфигурации реального содержимого вселенной представляет собой одно из важнейших достижений физической науки.
Я сказал, что исторически это разделение на динамические уравнения и граничные условия сыграло чрезвычайно важную роль. Сама же возможность такого разделения представляет собой свойство конкретноготипа уравнений (дифференциальных уравнений), который, как кажется, всегда возникает в физике. Но я не верю, что это разделение сохранится навечно. По-моему, когда нам удастся окончательно постичь законы или принципы, в действительностиуправляющие поведением нашей вселенной, – а не просто те изумительные приближения, к пониманию которых мы уже пришли и которые суть составные части наших ПРЕВОСХОДНЫХ современных теорий, то увидим, как различие между динамическими уравнениями и граничными условиями исчезнет, уступив место потрясающе согласованной всеобъемлющей схеме. Разумеется, утверждая это, я выражаю исключительно свое собственное мнение, с которым многие могут не согласиться. Но именно эту точку зрения я имею в виду, когда стараюсь нащупать следствия из пока неизвестной квантовой теории гравитации. (Под этим углом будут рассмотрены также некоторые наиболее спекулятивные рассуждения последней главы.)
Как же можно изучать следствия неизвестной еще теории? Это, однако, не обязательно столь безнадежно, как кажется. Главное здесь – быть последовательными! Сначала я попрошу вас допустить, что наша гипотетическая теория, далее называемая ПКТГ(«правильная квантовая теория гравитации»), должна объяснить гипотезу о вейлевской кривизне ( ГВК). Это значит, что в непосредственном ближайшем будущем начальнаясингулярность должна удовлетворять условию ВЕЙЛЬ= 0 . Это ограничение не должно противоречить законам ПКТГи поэтому обязано соблюдаться для любойначальной сингулярности, а не только той, что мы называем Большим взрывом. При этом я никоим образом не утверждаю существование в нашей реальной вселенной каких бы то ни было других начальных сингулярностей, отличных от Большого взрыва, но всего лишь говорю, что такая сингулярность, если бы она существовала, должна удовлетворять ограничению, накладываемому ГВК. Начальная сингулярность – это сингулярность, из которой, в принципе, могут возникать частицы. Такие сингулярности ведут себя противоположно черным дырам – конечнымсингулярностям, в которые частицы могут падать.
Одним из возможных примеров начальной сингулярности, отличной от Большого взрыва, может быть сингулярность белой дыры, которая, как мы помним из главы 7, представляет собой обращенную во времени черную дыру (см. рис. 7.14). Но, как мы уже видели, сингулярности внутри черных дыр удовлетворяют условию ВЕЙЛЬ→ ∞, поэтому и для белых дыр должно выполняться ВЕЙЛЬ→ ∞. Однако теперь сингулярность стала начальной и для нее, согласно ГВК, должно выполняться условие ВЕЙЛЬ= 0 . Таким образом, ГВКделает существование белых дыр в нашей вселенной невозможным! (К счастью, этот результат не только желателен из термодинамических соображений – поскольку белые дыры были бы вопиющим нарушением второго начала термодинамики – но к тому же согласуется с наблюдательными данными! Время от времени разными астрофизиками предпринимались попытки объяснить некоторые явления, предполагая существование белых дыр, но такие гипотезы всегда создавали гораздо больше проблем, чем решали.) Заметьте, что сам Большой взрыв я не называю «белой дырой». Белая дыра должна содержать локализированнуюначальную сингулярность, для которой выполнение условия ВЕЙЛЬ = 0 невозможно, в то время как всеобъемлющий Большой взрыв может удовлетворять условию ВЕЙЛЬ= 0 , и существование такого взрыва допускается ГВКпри условии выполнения соответствующего ограничения.
Примером еще одного вида начальных сингулярностей является точка взрыва черной дыры, окончательно исчезающей, после, скажем, 10 64 лет хокинговского испарения (см. Глава 7. «Насколько особым был Большой взрыв?», а также Глава 8. «Ящик Хокинга: связь с гипотезой о вейлевской кривизне?»)! Точная природа этого (весьма правдоподобно аргументированного) явления является предметом многочисленных теоретических гипотез. Я думаю, что никакого противоречия с ГВКздесь нет. Такого рода (локализированный) взрыв может быть практически мгновенным и симметричным, и я не вижу здесь никакого конфликта с гипотезой ВЕЙЛЬ= 0 . Во всяком случае, если предположить, что черных мини-дыр не существует (Глава 7. «Насколько особым был Большой взрыв?»), то первый такой взрыв вряд ли произойдет раньше, чем вселенная просуществует в 10 54 раз больше современного возраста Т . Чтобы получить представление о величине 10 54 х Т , мысленно уменьшим Т до самого короткого измеримого промежутка времени, равного времени распада самой короткоживущей из нестабильных частиц. В полученной таким образом шкале времени современный возраст вселенной окажется меньше 10 54 х Т в миллион миллионов раз!
Кто-нибудь может посмотреть на все это с другой точки зрения. Мне могут возразить [191]191
Насколько я смог понять, именно такая точка зрения неявно содержится в выдвигаемых сейчас Хокингом предложениях по квантово-гравитационному объяснению рассматриваемых проблем (Хокинг [1987, 1988]). Гипотеза Хартли и Хокинга [1983] о квантово-гравитационной природе начального состояния, возможно, относится к тем гипотезам, что могут подвести теоретическую базу под начальное условия типа ВЕЙЛЬ= 0 , но эти идеи пока что лишены чрезвычайно важного (по моему мнению) компонента, каким является асимметрия во времени.
[Закрыть], что ПКТГне обязана быть асимметричной во времени, а должна лишь допускать на самом деле два типа сингулярностей, для одних из которых должно выполняться равенство ВЕЙЛЬ= 0 , а для вторых возможно ВЕЙЛЬ→ ∞. В нашей вселенной оказалась сингулярность первого типа, и наше восприятие направления течения времени (в силу вытекающего отсюда второго начала термодинамики) помещает эту сингулярность туда, где находится наше так называемое «прошлое», а не «будущее». По-моему, однако, соображение это в таком виде не выдерживает критики. Оно не объясняет отсутствие другихначальных сингулярностей типа ВЕЙЛЬ→ ∞ (а также отсутствие других начальных сингулярностей типа ВЕЙЛЬ= 0 ). Почему, если согласиться с этой точкой зрения, вселенная не усеяна белыми дырами? Поскольку она, как мы предполагаем, кишит черными дырами, отсутствие белых дыр требует объяснения [192]192
Некоторые могут на это возразить (совершенно справедливо), что наблюдения не подтверждают однозначным образом мое утверждение о существовании во вселенной черных дыр и отсутствии белых. Но мой довод, в основном, теоретического характера. Черные дыры не противоречат второму началу термодинамики, а белые дыры противоречат! (Разумеется, можно просто постулировать второе начало термодинамики и отсутствие белых дыр, но мы хотим достичь более глубокого понимания сути вещей, происхождения второго начала термодинамики.)
[Закрыть].
Другое соображение, иногда привлекаемое в связи с рассматриваемой проблемой, – это так называемый антропный принцип (см. Барроу, Типлер [1986]). Согласно этому соображению, конкретная вселенная, обитателями которой мы сейчас являемся, выбрана из всех возможныхвселенных потому, что в ней должны существовать мы (или, по крайней мере какие-нибудь чувствующие существа), чтобы ее было кому наблюдать! (Я вернусь к обсуждению антропного принципа в главе 10.) На этом основании утверждается, что разумные существа могут населять только вселенные с Большим взрывом очень определенного типа – и поэтому следствием этого принципа должно быть что-то вроде ГВК. Однако, это соображение не позволяет и близко подойти к числу,
полученному в главе 7 («Насколько особым был Большой взрыв?»), которое характеризует степень «специфичности» Большого взрыва. Путем очень грубого расчета можно установить, что порождение солнечной системы со всем ее населением в результате случайных столкновений частиц обойдется гораздо «дешевле», а именно: соответствующая степень «невероятности» (измеряемая в терминах фазовых объемов) соответствует «всего лишь» одной доле из много менее чем.
Это все, что может дать антропный принцип, и нам еще чудовищно далеко до требуемого числа. Более того, соображения, основанные на антропном принципе, не в состоянии объяснить, как и обсуждавшаяся перед этим концепция, отсутствия белых дыр.
Временна́я асимметрия в редукции вектора состояния
По-видимому, нам действительно ничего не остается, как заключить, что ПКТГдолжна быть асимметричной во времени теорией, одним из следствий которой является ГВК(или что-то вроде этого). Как же асимметричная во времени теория может получиться из симметричных во времени ингредиентов: квантовой теории и общей теории относительности? Есть, оказывается, несколько технических способов достижения этой цели, и ни один из них не исследовался достаточно глубоко (см. Аштекар и др. [1989]). Но я собираюсь подойти к проблеме с другой стороны. Как я уже отмечал, квантовая теория «симметрична во времени», но это в действительности относится только к части Uтеории (уравнению Шредингера и т. д.). Обсуждая временну́ю симметрию физических законов в начале главы 7, я умышленно избегал упоминания части R(коллапс волновой функции). Согласно преобладающей точке зрения Rтоже должна быть, по-видимому, симметричной во времени. Своим существованием эта точка зрения может, в частности, быть обязана нежеланию признавать в Rреальный независимый от U«процесс», вследствие чего из временно́й симметрии Uдолжна бы также вытекать временная симметрия R. Я хотел бы возразить, что это не так : R асимметричнаво времени – по крайней мере, если считать Rпросто процедурой, принятой физиками для расчета квантово-механических вероятностей.
Я сначала напомню вам используемую в квантовой механике так называемую процедуру редукции вектора состояния ( R) (см. рис. 6.23). Рис. 8.1 иллюстрирует (условно) характер предполагаемой эволюции вектора состояния | ψ ) в квантовой механике.
Рис. 8.1.Временная эволюция вектора состояния: гладкая унитарная эволюция U (в соответствии с уравнением Шредингера), перемежаемая с разрывной редукцией R вектора состояния
Как видим, этот характер довольно своеобразный: считается, что бо́льшую часть времени эволюция происходит в соответствии с унитарнойэволюционной процедурой U(уравнение Шредингера), но в некоторые моменты времени, когда предполагается, что происходит «наблюдение» (или «измерение»), применяется R– процедураи вектор состояния скачком переходит в другой вектор состояния, | X ), где | X ) представляет собой одну из двух или нескольких ортогональных альтернативных возможностей | X ), | ψ ), | θ )…, определяемых природой конкретного производимого наблюдения О. Тогда вероятность р скачкообразного перехода от | ψ ) к | X ) определяется уменьшением квадрата длины | ψ ) 2 вектора | ψ ) при проекции | ψ ) (в гильбертовом пространстве) на направление вектора | X ) (Математически это равно величине уменьшения | X ) 2 при проекции вектора | X ) на направление | ψ ).) В таком виде эта процедура оказывается асимметричной во времени, поскольку сразу же послевыполнения наблюдения Овектор состояния должен принадлежать к заданному множеству| X ), | ψ ), | θ )…, возможных значений, определяемых О, в то время как непосредственно переднаблюдением Овектор состояния должен был иметь значение | ψ ), которое не обязано быть равным ни одному из элементов упомянутого множества. Однако, это всего лишь кажущаяся асимметричность и она может быть устранена, если посмотреть на эволюцию вектора состояния с другой точки зрения. Рассмотрим квантово-механическое решение, обращенное во времени. Это экстравагантное описание проиллюстрировано на рис. 8.2.
Рис. 8.2.Более экстравагантное изображение эволюции вектора состояния, описанное вспять по времени. Расчетная вероятность, связывающая наблюдение в точке О с наблюдением в точке О', такая же, как и в случае, изображенном на рис. 8.1, но к чему относится это вычисленное значение?
Мы предполагаем, что вектор состояния равен | X ) непосредственно перед О, а не сразу после этого наблюдения, и применим процедуру унитарной эволюции вспять по времени вплоть до момента предыдущего наблюдения О '. Предположим, что в результате обратной эволюции мы получим состояние, описываемое вектором | X') (сразу же после наблюдения О '). В нормальном описании эволюции вперед во времени, изображенном на рис. 8.1, сразу же вслед за О 'мы имели другое состояние | ψ') (результат наблюдения О ', при котором эволюция вперед во времени вектора | ψ') переводит его в | ψ ) в момент наблюдения О). Теперь в нашем обращенном во времени описании у вектора | ψ') тоже есть своя роль: он представляет состояние системы непосредственно перед О '. Вектор состояния | ψ') соответствует состоянию, фактически наблюдавшемуся в точке О ', так что с «обращенной» точки зрения мы рассматриваем | ψ') как результат наблюдения О 'в обращенном вспять времени. Расчетное значение квантовомеханической вероятности р', связывающее результаты наблюдений в точках Ои О ', теперь определяется уменьшением величины | X'| 2при проекции | X') в направлении | ψ') (что равно уменьшению | ψ'| 2при проекции | ψ') в направлении | ψ')). То, что мы получим то же самое значение, что и раньше, является фундаментальным свойством оператора U [193]193
Это станет несколько более понятным, если использовать операцию скалярного произведения ( ψ | X ) упомянутую в примечании 151 к главе 6. В случае описания вперед по времени вероятность р рассчитывается как:
Тождественность двух выражений следует из ( ψ'| X') = ( ψ | X ), а это, в сущности, и подразумевается под «унитарной эволюцией».
[Закрыть].
Таким образом, может создаться видимостьустановления симметричности во времени квантовой теориидаже в случае, когда помимо обычной процедуры унитарной эволюции Uучитывается также и разрывный процесс, описываемый процедурой редукции Rвектора состояния. Это, однако, неверно . Квантовая вероятность р описывает – независимо от того, как она рассчитывается – вероятность получить результат (а именно, | X )) в точке Опри условии определенного результата (а именно, | ψ')) в точке О '. Эта вероятность не обязательно равна вероятности получить данный результат в точке О ' при условииданного результата в точке О, а ведь именно последнюю вероятность [194]194
Возможно, некоторым читателям сложно понять, что имеется в виду под вероятностью прошлого события при условии, что имело место определенное событие в будущем. Однако это совсем не сложно. Вообразите себе всю историю нашей вселенной, отображенной в пространстве-времени. Чтобы найти вероятность события р при условии, что произошло событие q , мысленно рассмотрим все случаи, когда имело место событие q , и сосчитаем, в какой доле этих случаев имело место также и событие р . Это и есть требуемая вероятность. При этом не важно, относится ли q к событиям, которые обычно происходят после события р , или до него.
[Закрыть]и должна определить обращенная во времени квантовая механика. Просто удивительно, до чего много физиков молчаливо полагают эти две вероятности равными друг другу. (Я сам этим грешил – см. Пенроуз [1979б], с. 584.) Однако наиболее вероятно, что эти две вероятности совершенно различны и только первая из них правильно определяется в рамках квантовой механики!
Давайте поясним эту ситуацию на простом конкретном примере. Предположим, что у нас есть лампа L и фотоэлемент (то есть, детектор фотонов) Р . Между L и P разместим полупосеребренное зеркало М, наклонив его под углом равным, скажем, 45 ° к линии, соединяющей точки L и Р (рис. 8.3).
Рис. 8.3.Необратимость во времени R– процедурыв простом квантовом эксперименте. Вероятность регистрации фотона фотоэлементом при условииизлучения фотона источником равна в точности одной второй, но вероятность излучения фотона источником при условии, что фотоэлемент зарегистрировал фотон, заведомо не равна одной второй
Предположим, что лампа время от времени случайным образом испускает фотоны, и что конструкция ее такова (в ней используются параболические зеркала), что фотоны всегда оказываются очень точно нацеленными на Р . При каждом попадании фотона на фотоэлемент последний регистрирует это событие, причем мы предполагаем, что устройство срабатывает со 100 %-ной надежностью. Предположим также, что каждый факт излучения фотона регистрируется в точке L и тоже со 100 %-ной надежностью. (Ни одно из этих идеализированных требований не противоречит принципам квантовой механики, хотя практическое достижение такой эффективности может представлять определенные трудности.)
Свойства полупосеребренного зеркала М таковы, что оно отражает в точности половину попадающих на него фотонов и пропускает остальную половину. Правильнее рассматривать это с точки зрения квантовой механики. Волновая функция фотона падает на зеркало и расщепляется на две волновых функции. Амплитуда отраженной части волны равна 1 /√ 2 , а амплитуда прошедшей части волны тоже равна 1 /√ 2 . Обе части волновой функции должны считаться «сосуществующими» (при нормальном описании вперед по времени) до того момента, когда предполагается имевшим место «наблюдение». В этой точке ситуация с одновременно сосуществующими альтернативами разрешается (в пользу одной или другой) фактически реализованнойальтернативы с вероятностями, равными квадратам (модулей) соответствующих амплитуд, а именно ( 1 /√ 2 ) 2 = 1 / 2 в обоих случаях. После выполнения наблюдения вероятности отражения или прохождения фотона действительно оказываются равными одной второй.
Посмотрим теперь, как все это соотносится с нашим экспериментом. Предположим, что зарегистрирован факт излучения фотона лампой L . Волновая функция фотона расщепляется на зеркале и приходит в точку Р с амплитудой, равной 1 /√ 2 , поэтому фотоэлемент либо регистрирует фотон, либо не регистрирует его – и то и другое с вероятностью, равной одной второй. Другая часть волновой функции фотона попадает в точку А на лабораторной стене(см. рис. 8.3) и тоже с амплитудой 1 /√ 2 . Если фотоэлемент Р не регистрирует событие, то фотон следует считать попавшим в лабораторную стену в точке А . Если бы в точке А находился другой фотоэлемент, то он регистрировал бы фотон всякий раз, когда фотоэлемент Р не регистрирует фотон, и не регистрировал бы фотон всякий раз, когда фотоэлемент регистрирует фотон. В этом смысле нет никакой необходимости устанавливать фотоэлемент в точке А . Мы можем определить, что сделал бы фотоэлемент в точке А , будь он там установлен, просто глядя на фотоэлементы в точках L и Р .
Теперь должно стать ясно, как выполняются расчеты в квантовой механике. Зададимся вопросом:
«Если известно, что лампа L сработала, то какова вероятность того, что сработал фотоэлемент Р ?»
Для ответа на этот вопрос учтем, что имеется амплитуда, равная 1 /√ 2 для фотона, прошедшего путь LMP , и амплитуда, равная 1 /√ 2 , для фотона, прошедшего путь LMA . Возведя эти амплитуды в квадрат, получаем соответствующие вероятности, равные 1 / 2 и 1 / 2 , попадания фотона в точки Р и А соответственно. Следовательно, на наш вопрос квантовая механика дает ответ, равный
« одной второй ».
И действительно, именно такой результат получился бы в случае проведения реального эксперимента.
Мы могли бы с таким же успехом использовать экстравагантную процедуру «с обращенным вспять временем» и получили бы тот же самый результат. Предположим, что мы зафиксировали факт срабатывания фотоэлемента в точке Р . Рассмотрим направленную вспять во времени волновую функцию фотона в предположении, что фотон в конце концов приходит в точку Р . Отслеживая эволюцию процесса назад во времени, мы видим, что фотон движется назад от Р , пока не достигнет зеркала М . В этой точке происходит бифуркация волновой функции и мы имеем амплитуду 1 /√ 2 того, что фотон достигнет лампы L , и амплитуда 1 /√ 2 того, что фотон претерпит отражение в точке М и придет в другую точку на лабораторной стене, а именно в точку В на рис. 8.3. Возводя соответствующие амплитуды в квадрат, мы снова получаем для обеих вероятностей значения, равные одной второй. Следует, однако, отдавать себе отчет в том, на какие именно вопросы отвечают эти вероятности. А вопросы следующие: «Если известно, что лампа L сработала, то какова вероятность срабатывания фотоэлемента Р ?» – тот же самый вопрос, что мы рассматривали до этого; и более экстравагантный вопрос: «Какова вероятность срабатывания фотоэлемента Р при условии, что известен факт испускания фотона из стены в точке В ?»