355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Новый ум короля: О компьютерах, мышлении и законах физики » Текст книги (страница 44)
Новый ум короля: О компьютерах, мышлении и законах физики
  • Текст добавлен: 26 сентября 2016, 13:35

Текст книги "Новый ум короля: О компьютерах, мышлении и законах физики"


Автор книги: Роджер Пенроуз



сообщить о нарушении

Текущая страница: 44 (всего у книги 47 страниц)

Детерминизм и жесткий детерминизм

До сих пор было мало сказано о вопросе «свободы воли», который обычно считается неотъемлемым при рассмотрении активнойсоставляющей проблемы «ум – тело». Вместо этого, я уделил основное внимание предположению о наличии существенно неалгоритмическойсоставляющей в той роли, которую играет осознанное действие. Обычно тема свободы воли обсуждается в связи с детерминизмом в физике. Вспомним, что в большинстве существующих ПРЕВОСХОДНЫХ теорий типа существует явно выраженный детерминизм: если известно состояние системы в определенный момент времени [221]221
  В случае специальной или общей теории относительности под «временами» следует понимать «одновременные пространства» или «пространственно-подобные поверхности» (см. гл. 5 «Специальная теория относительности Эйнштейна и Пуанкаре» и гл.5 «Релятивистская причинность и детерминизм»).


[Закрыть]
, то оно полностью определяется в любой более поздний (или ранний) момент из уравнений теории. Таким образом, по-видимому, для «свободы воли» не остается места, поскольку будущее поведение системы кажется полностью обусловленным физическими законами. Даже Uчастьквантовой механики имеет такой же полностью детерминистский характер. Однако Rчасть, связанная с «квантовым скачком», не является детерминистской, внося элемент случайности в эволюцию системы во времени. Был момент, когда исследователи старались найти именно здесь свободу воли, полагая, что действие сознания может непосредственно влиять на «скачок» отдельной квантовой системы. Но если Rчасть действительнослучайна, то это тоже нам не слишком поможет, если мы хотим конструктивное применение нашей свободе воле.

Моя собственная точка зрения (правда, не очень четко сформулированная в этом случае) заключается в том, что должен быть применен некий новый подход ( ПКТГ; см. главу 8), который работал бы на границе между квантовой и классической физикой, интерполируя между Uи R(каждая из которых теперь рассматривается как аппроксимация); и этот подход должен содержать существенно неалгоритмический элемент. А это подразумевает, что будушее не будет вычислимым на основе настоящего, даже если оно им и определяется . Я пытался по возможности наиболее ясно определить смысловые различия терминов «вычислимость» и «детерминизм» в главе 5. Мне кажется, что ПКТГможет быть детерминистской, но невычислимой теорией [222]222
  Стоит отметить, что существует по меньшей мере один подход к квантовой теории гравитации, который, по-видимому, включает элемент невычислимости (Герох, Хартли [1986]).


[Закрыть]
. (Вспомним невычислимую «игрушечную модель», которую я описал в главе 5, «Вычислима ли жизнь в бильярдном мире?».)

Многие при этом считают, что даже классический (или Uквантовый) детерминизм не является детерминизмом в полномсмысле этого слова, поскольку исходные условия в принципе не могут быть известны с такой точностью, которая действительно позволила бы просчитать будущее. Иногда совсем небольшие изменения исходных условий могут привести к очень значительным различиям в конечном результате. Именно так возникает «хаос» в (классической) детерминистской системе – явление, приводящее, например, к неопределенностям в прогнозе погоды. Однако очень трудно поверить, что этот вид классической неопределенности может позволить нам сохранять (иллюзорную?) веру в существование свободы воли. Будущее поведение все равно будет детерминированнымв каждый момент времени, начиная с Большого взрыва, даже если мы окажемся не в состоянии его вычислить (см. гл.5 «Гамильтонова механика»).

То же самое возражение может быть выдвинуто и против моей идеи о том, что невычислимостьсвязана скорее с особенностями законов динамики – которые в этом случае считаются исходно неалгоритмическими – чем с нехваткой информации о начальных условиях. Невычислимоебудущее, согласно этой точке зрения, все равно будет полностью обусловленопрошлым – вплоть до момента Большого взрыва. На самом деле я не настолько привержен догмам, чтобы настаивать на том, что методы ПКТГдолжны быть по сути детерминистскими, но невычислимыми. Я полагаю, что искомая теория должна иметь более тонкий характер, вследствие чего подобное грубое описание будет к ней просто неприменимо. Единственное, на чем я настаиваю – так это на необходимости присутствия в ней существенно неалгоритмических элементов.

Завершая этот раздел, я хотел бы упомянуть еще об одном представлении о природе детерминизма, причем из числа весьма радикальных. Я называю его жестким детерминизмом (Пенроуз [19876]). Согласно этой теории, не просто будущее предопределяется прошлым – вся история вселеннойоказывается раз и навсегдаопределенной в соответствии с некоторой точной математической схемой. Такая концепция могла бы привлечь тех, кто склонен каким-нибудь образом отождествлять мир Платона с физическим миром – ибо застывший навеки мир Платона с его однозначной определенностью не оставляет в этом случае вселенной никаких «альтернативных возможностей»! (Я иногда задаю себе вопрос: мог ли Эйнштейн иметь в виду подобную схему, когда он писал: «Что меня собственно интересует, это следующее: мог ли Бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты» (письмо Эрнсту Штрауссу; см. Кузнецов [1980], с. 363).)

С одним из вариантов жесткого детерминизма мы сталкиваемся в квантово-механической концепции « множественности миров» (см. главу 6, «Различные точки зрения на существующую квантовую теорию»). В соответствии с ней, вышеупомянутая точная математическая схема определяла бы не единственную отдельную историю вселенной, а всю совокупность из мириадов мириадов «возможных» историй вселенной. Несмотря на малопривлекательный характер (по крайней мере для меня) такой схемы и множество проблем и несоответствий, которые она в себе несет, мы все же не имеем права сбрасывать ее со счетов как потенциально возможную.

Мне кажется, что, если принять жесткий детерминизм, но без множественности миров, то математическая схема, которая управляет структурой вселенной, вероятно, должнабыть неалгоритмической [223]223
  Однако в случае пространственно-бесконечной вселенной есть затруднения, поскольку тогда возникает (как и в случае множественных миров) бесконечное количество копий наблюдателя и его непосредственного окружения! Будущее поведение каждой копии может несколько отличаться, и никто не в состоянии сказать наверняка, какой из приблизительных копий самого себя, смоделированных математическим путем, он мог бы на самом деле «быть»!


[Закрыть]
. Ибо в противном случае можно было бы, в принципе, просчитать свои будущие действия, а затем вдруг «решить» сделать нечто совершенно другое – получаем очевидное противоречие между «свободой воли» и жестким детерминизмом нашей теории. Вводя невычислимость, можно избежать этого противоречия, хотя должен признаться, что я не вполне уверен в адекватности решения такого типа и предвижу в будущем гораздо более тонкое описание «реально действующих» (неалгоритмических) правил, которым подчиняется наш мир!

Антропный принцип

Насколько важно сознание для вселенной в целом? Могла бы вообще вселенная существовать без населяющих ее сознательных существ? Намеренно ли законы физики задумывались такими, чтобы обеспечить существование сознательной жизни? Является ли наше место во вселенной – как в пространстве, так и во времени – каким-то особенным? Вот вопросы, которые ставит перед нами научная гипотеза, известная как « антропный принцип ».

Этот принцип может принимать различные формы (см. Барроу, Типлер [1986]). Наиболее приемлемая из них затрагивает только вопрос пространственно-временно́го расположения сознательной (или «разумной») жизни во вселенной. Это – « мягкий» антропный принцип. Он может использоваться для объяснения того, почему условия оказались именно такими, что в современную эпоху стала возможна жизнь на Земле. Ответ прост: ведь если бы не было подходящих условий, то мы должны были бы находиться где-то в другом месте, и в иное (благоприятное) время. Этот принцип был очень эффективно использован Брэндоном Картером и Робертом Диком, чтобы разрешить вопрос, остававшийся для физиков загадкой на протяжение многих лет. Вопрос касается существования определенных числовых соотношений между физическими константами (гравитационная постоянная, масса протона, возраст вселенной и т. д.). Интригующим в этих закономерностях был тот факт, что некоторые из них сложились только в настоящую эпоху истории Земли, тем самым указывая на некую – быть может, случайную – исключительность нашего положения во времени (с точностью до нескольких миллионов лет, разумеется!). Впоследствии Картер и Дик нашли этому следующее объяснение: предположили, что эта эпоха совпадает с временем жизни так называемых звезд главной последовательности, одной из которых является наше Солнце. В любую другую эпоху, согласно их утверждениям, нигде и близко не было бы разумной жизни, чтобы измерить те самые физические константы – так что совпадение должнобыло иметь место просто потому, что разумная жизнь возникла бы только в то время, когда естьподобное совпадение!

«Жесткий» антропоцентрический принцип идет еще дальше. В этом случае мы рассматриваем наше уникальное положение в пространстве-времени не только этой вселенной, но и бесконечного множества других возможныхвселенных. Исходя их этого, мы можем сделать ряд предположений относительно того, почему физические константы – или, в более широком смысле, законы физики – как будто специально были спроектированы так, чтобы разумная жизнь вообще могла существовать. Допустим, что константы (или законы) отличались бы от наблюдаемых – тогда мы просто не могли быпоявиться в этой вселенной и должны были быоказаться в некоторой другой! По моему мнению, достоинства «жесткого» антропоцентрического принципа несколько сомнительны, и теоретики прибегают к нему всякий раз, когда не находят адекватной теории для объяснения наблюдаемых фактов (в первую очередь, это касается теорий физики частиц, где за отсутствием разумного объяснения массам частиц, предполагается, что если бы их значения отличались от настоящих, то жизнь, вероятнее всего, была бы вообще невозможна, и т. д.). С другой стороны, «мягкий» антропный принцип представляется мне безупречным при условии, что им пользуются крайне осмотрительно.

Взяв на вооружение антропный принцип – либо в «жесткой», либо в «мягкой» формах, – можно попытаться показать, что зарождение сознания было неизбежноблагодаря тому факту, что сознательные существа, то есть «мы», должны были присутствовать, чтобы наблюдать этот мир – так что нет необходимости предполагать, как это делал я, будто способность осознавать дает какое-то преимущество в процессе естественного отбора! По моему мнению, этот довод технически корректен, и доказательство, опирающееся на «мягкий» антропный принцип (по крайней мере), могло быуказать на причину, по которой сознание существует в нашем мире независимо от благоволения к нему естественного отбора. С другой стороны, я не могу поверить в то, что антропный принцип и есть та настоящая(или единственная) причина, которая обеспечивает эволюцию сознания. Существует достаточно много самых разнообразных свидетельств, способных утвердить меня во мнении, что сознание на самом деле являетсясильным преимуществом в процессе естественного отбора, и что, следовательно, совсем необязательно апеллировать к антропному принципу.

«Плиточные» структуры и квазикристаллы

Теперь я отойду от масштабных обсуждений последних нескольких разделов и сосредоточусь на обсуждении вопросов, которые, хотя и являются до некоторой степени дискуссионными, все же гораздо более научны и «осязаемы». Возможно, вначале эти рассуждения покажутся отклонением от темы, однако, их важность для нас станет очевидной уже в следующем разделе.

Вспомним примеры «плиточных» замощений, изображенные на рис. 4.12 (гл.4 «Некоторые примеры нерекурсивной математики»). Эти образцы интересны потому, что они «почти» нарушают общепринятую математическую теорему о кристаллических решетках, которая утверждает, что для кристаллических решеток возможны только симметрии с осью второго, третьего, четвертого и шестого порядков. Под кристаллической решеткой я подразумеваю дискретную систему точек, которая обладает трансляционной симметрией . Это означает, что можно определенным образом перемещать решетку без вращения так, чтобы она переходила сама в себя (иными словами, в результате такого сдвига она не изменяется) – а, значит, у такой решетки будет существовать параллелограмм периодов(см. рис. 4.8). Примеры «плиточных» замощений с этими разрешенными теорией типами вращательной симметрии показаны на рис. 10.2.

Рис. 10.2.Периодические плиточные замощения с разными типами симметрии (где в каждом случае центр симметрии совпадает с центром плитки): 1) с осью второго порядка; 2) с осью третьего порядка; 3) с осью четвертого порядка; 4) с осью шестого порядка

С другой стороны, покрытия на рис. 4.12, как и изображенные на рис. 10.3

Рис. 10.3.Квазипериодическая плиточная структура (следует заметить, что она образована посредством объединения образцов с рис. 4.11) с кристаллографически «невозможной» квазисимметрией с осью пятого порядка

(которые, в сущности, представляют собой замощения, образованные соединением решеток, изображенных на рис. 4.11 (гл.4 «Некоторые примеры нерекурсивной математики»), почти имеют трансляционную симметрию и почти обладают симметрией вращения с осью пятого порядка, где «почти» означает, что можно найти такие движения решеток (соответственно, трансляционные и вращательные), при которых решетка переходит сама в себя с любой наперед заданной точностью (кроме 100 %-ной). Не стоит углубляться, что точно означает это утверждение. Единственное, что нам здесь важно – это если в нашем распоряжении есть вещество, в котором все атомы расположены в узлах кристаллической решетки с подобной структурой, то оно будет выглядеть, как кристалл, обладая при этом запрещенной симметрией с осью пятого порядка!

В декабре 1984 году израильский физик Дэни Шехтман, работавший вместе с коллегами в Национальном бюро стандартов в США, в Вашингтоне, объявил об открытии фазы алюминиево-марганцевого сплава, который был похож на кристаллоподобное вещество – теперь называемое квазикристаллом – с осью пятого порядка. На самом деле, у этого квазикристаллического вещества наблюдалась симметрия не только на плоскости, но и в трех измерениях – так что в итоге получалась запрещенная икосаэдральная симметрия (Шехтман и др. [1984]). (Икосаэдральный трехмерный аналог моей плоской «плиточной» структуры с осью пятого порядка был открыт Робертом Амманном в 1975 году; см. Гарднер [1989].) Сплавы Шехтмана образовывали только крошечные микроскопические квазикристаллы, достигавшие примерно 10 -3 мм в поперечном сечении, но позднее были найдены другие квазикристаллические вещества, в частности – алюминиево-литиево-медный сплав, у которого икосаэдрально симметричные образования могут вырастать до размеров порядка миллиметра, т. е. становятся вполне различимы невооруженным глазом (рис. 10.4).

Рис. 10.4.Квазикристалл (сплав ALLiСu) с, казалось бы, невозможной кристаллической симметрией. (Из Гэйл [1987].)

Замечательным свойством этих квазикристаллических «плиточных» структур является то, что процесс их составления имеет существенно нелокальныйхарактер. Иными словами: при построении подобного покрытия необходимо время от времени проверять состояние кристаллической решетки на расстоянии многих и многих «атомов» от места сборки, чтобы избежать серьезных ошибок при соединении составных частей. (Это чем-то напоминает то почти «сознательное нащупывание», которое я связывал с естественным отбором.) Наличие такого свойства является одной из причин серьезных разногласий, возникающих сегодня в связи с вопросом о квазикристаллических структурах и их выращивании, так что было бы неразумно пытаться делать окончательные выводы до тех пор, пока не будут разрешены некоторые основополагающие проблемы. Тем не менее, никто не запрещает нам выдвигать предположения; поэтому я рискну высказать здесь свою собственную точку зрения. Во-первых, я полагаю, что некоторые из этих квазикристаллических веществ действительно имеют сложное внутреннее строение, и что расположение атомов в их структуре довольно точно повторяет строение тех плиточных структур, которыми я занимался. Во-вторых, отсюда я делаю (всего лишь гипотетическое) заключение о том, что их образование не может совершаться за счет последовательного добавления атомов, как это происходит в рамках классическойкартины роста кристаллов – но с необходимостью должна опираться на нелокальныеи непременно квантово-механические принципы построения [224]224
  Даже в ходе реального роста некоторых кристаллов могут возникать подобные проблемы – например, там, где исходная клетка кристаллической решетки содержит несколько сот атомов (случай так называемых «фаз Фрэнка-Каспера»). С другой стороны, следует упомянуть, что теоретический «почти локальный» (хотя все же нелокальный) процесс роста квазикристаллов с осью пятого порядка был предложен Онодой, Стайнхардтом, Ди Винченцо и Соколаром [1988].


[Закрыть]
.

Механизм такого роста я представляю себе следующим образом: вместо присоединения отдельных атомов к постоянно движущейся линии роста (в случае классического роста кристаллов), происходит квантовая линейная суперпозиция большого числа различных альтернативных сочетаний присоединяющихся атомов (путем квантовой операции U). В самом деле, согласно квантовой механике, все именно так и должно (почти всегда) происходить! В каждый момент времени существует не одна возможная структура, но множество альтернативных расположений атомов в сложной линейной суперпозиции. Некоторые из этих структур вырастают в гораздо более крупные образования, так что в определенный момент различия между гравитационными полями альтернативных структур превзойдут «одногравитонный предел» (или его более подходящий в данном случае аналог; см. главу 8, «Когда происходит редукция вектора-состояния?»). На этой стадии одна из них – или, скорее, это снова будет суперпозиция, но уже в несколько урезанном виде – выделиться в качестве истинной структуры ( квантовая операция R). В этот процесс роста, сопровождающийся последовательным отказом от наименее «значимых» на каждом этапе альтернатив, будут вовлекаться все бо́льшее и бо́льшее количество исходного вещества, пока наконец не сформируется достаточно крупный квазикристалл.

Обычно, когда природа ищет кристаллическую конфигурацию, из всех возможных она выбирает ту, которая характеризуется наименьшим уровнем энергии(считая фоновую температуру нулевой). Нечто аналогичное, по-моему, должно происходить и в процессе роста кристаллов, с той только разницей, что такое состояние с наименьшей энергией гораздо труднее обнаружить, а «наилучшее» расположение атомов не может быть получено просто последовательным добавлением каждый раз одного атома в надежде на то, что индивидуальному атому для этого будет достаточно решить свою собственнуюзадачу минимизации. Вместо этого нам предстоит решать эту же задачу для всей совокупности атомов, а значит, потребуется их совместноеусилие. Такое взаимодействие, в моем представлении, должно иметь квантово-механическую природу; и достигаться оно должно при помощи множества различных комбинаций атомных структур, которые одновременно «проверяются» в линейной суперпозиции (примерно так же, как это, вероятно, происходит в квантовом компьютере, упомянутом в конце главы 9).

Условием для выбора подходящего (хотя, возможно, не лучшего) решения задачи минимизации должно быть выполнение «одногравитонного критерия» (или приемлемой в данном конкретном случае альтернативы), что, предположительно, имеет место только при соответствующих физических условиях.

Возможная связь с пластичностью мозга

Позвольте мне продолжить эти рассуждения и спросить, могут ли они иметь непосредственное отношение к процессам, происходящим в мозге. Насколько я могу судить, наиболее правдоподобно будет выглядеть связь с пластичностью мозга. Давайте вспомним, что мозг, на самом деле, похож скорее не на обычный компьютер, а на компьютер, который постоянно изменяется. За эти изменения, по-видимому, отвечают процессы активации или деактивации синапсов, которые, в свою очередь, происходят вследствие роста или сокращения дендритных шипиков (см. главу 9, «Пластичность мозга»; рис. 9.15). Здесь я наберусь смелости и выскажу предположение о том, что этот рост или сокращение теоретически могут подчиняться принципам наподобие тех, которые управляют квазикристаллическим ростом. При этом «тестируется» не одно из возможных альтернативных расположений, а сложная линейная суперпозиция большого числа таких расположений. До тех пор, пока эффект каждой из этих альтернатив не превышает «одногравитонного уровня» (или некоторого его аналога), они будут существовать одновременно (более того: должны сосуществовать, коль скоро справедливы законы Uквантовоймеханики). Пока не превзойден одногравитонный уровень, могут начать одновременно выполняться суперпозиции разных вычислений, что вполне соответствует принципам действия квантового компьютера. Однако, вряд ли такие суперпозиции смогут существовать достаточно долго, поскольку нервные сигналы создают электрические поля, которые должны вносить значительные возмущения в окружающую среду (хотя их миелиновые оболочки являются своего рода изоляторами). Давайте допустим, что такие суперпозиции расчетов все-таки способны существовать в течение определенного минимального времени, которое необходимо для получения какого-нибудь действительноважного результата, т. е. что вплоть до этого момента «одногравитонный уровень» (или что-то подобное) в системе не достигается. Успешное завершение такого расчета будет в нашем случае той самой «целью», которая представляет собой аналог более простой «цели» минимизации энергии при квазикристаллическом росте. Таким образом, достижение этой цели будет подобно успешному росту квазикристалла!

В этих рассуждениях, конечно, много неясного и спорного, но я верю, что они описывают принципиально возможную аналогию. Рост кристалла или квазикристалла существенно зависит от концентрации нужных атомов и ионов в окрестности точек роста. Точно также можно предположить, что процессы роста или сокращения семейств дендритных шипиков, в свою очередь, находятся в прямой зависимости от степени концентрации вокруг них различных нейромедиаторов (например, таких, чья концентрация зависит от испытываемых эмоций). Какие бы расположения атомов в конце концов ни были выделены в качестве реальной структуры получившегося квазикристалла – каждый раз этому должно предшествовать решение задачи минимизации энергии. Тогда я осмелюсь по аналогии предположить, что конкретная мысль, которая возникает на поверхности мозга, тоже возникает в результате решения некоторой задачи, только на сей раз не просто задачи минимизации энергии. Эта задача будет гораздо более сложной, требующей учета желаний и намерений, которые, в свою очередь, напрямую связаны с вычислительными свойствами и функциями мозга. Я полагаю, что сознательное мышление тесно связано с отсевом тех возможных альтернатив, которые прежде входили в линейную суперпозицию. Все это имеет непосредственное отношение к неизвестным (пока!) физическим процессам, которые должны управлять пограничной областью между Uи R, и которые, я уверен, будут описаны правильной теорией квантовой гравитации – ПКТГ, которую еще предстоит открыть!

Могло бы такое физическое действие быть по своей природе неалгоритмическим? Вспомним, что в общем случае задача о плиточных покрытиях, описанная в главе 4, не имеет алгоритмического решения. Можно предположить, что сходная задача в приложении к атомным структурам имеет такое же свойство «неалгоритмичности». Если эти задачи могут в принципе быть «решены» средствами, о которых я говорю, то тогда есть вероятность, что у рассматриваемого мной типа умственной деятельности действительно существует неалгоритмическая компонента. Однако для того, чтобы это было так, нам необходима определенная неалгоритмичность и в ПКТГ. Конечно, мы сейчас слишком вольно обращаемся с гипотезами – но все же приведенные выше аргументы подсказывают мне, что здесь определенно должно быть нечто , имеющее неалгоритмический характер.

Как быстро происходят подобные изменения в мозговых связях? На этот счет у нейрофизиологов нет единого мнения, однако, коль скоро устойчивые отпечатки в памяти могут формироваться за доли секунды, разумно предположить, что указанные изменения происходят примерно за то же время. Чтобы мои собственные идеи получили право на существование, требуется как раз примерно такая быстрота.


    Ваша оценка произведения:

Популярные книги за неделю