355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Новый ум короля: О компьютерах, мышлении и законах физики » Текст книги (страница 30)
Новый ум короля: О компьютерах, мышлении и законах физики
  • Текст добавлен: 26 сентября 2016, 13:35

Текст книги "Новый ум короля: О компьютерах, мышлении и законах физики"


Автор книги: Роджер Пенроуз



сообщить о нарушении

Текущая страница: 30 (всего у книги 47 страниц)

К чему мы пришли после всего сказанного?

Затронутые выше вопросы в том или ином обличье присутствуют в любойинтерпретации квантовой механики – в том виде, в каком эта теория существует в настоящее время. Приведем краткий обзор того, что стандартная квантовая теория в действительности говорит нам о том, каким образом мы должны описывать мир, особенно в отношении этих удивительных вопросов, и затем спросим: куда мы намерены двигаться дальше?

Прежде всего напомним, что описания, даваемые квантовой теорией, по-видимому, разумно (полезно?) применимы только на так называемом квантовом уровне– молекул, атомов или субатомных частиц, а также на бо́льших масштабах при условии, что разности энергии между альтернативными возможностями остаются очень малыми. На квантовом уровне мы должны рассматривать такие «альтернативы» как нечто способное сосуществоватьв виде суперпозиции с комплексными коэффициентами. Используемые в качестве весов комплексные числа называются амплитудами вероятности . Каждая из совокупности различных альтернатив с комплексными коэффициентами определяет свое, отличное от других, квантовое состояние, и любая квантовая система должны допускать описание таким квантовым состоянием. Нередко (наиболее ярко это проявилось в примере со спином) бывает и так, что нам нечего сказать относительно того, каковы должны быть «реальные» альтернативы, образующие квантовое состояние, и каковы должны быть всего лишь «комбинации» альтернатив. В любом случае пока система остаетсяна квантовом уровне, квантовое состояние эволюционирует полностью детерминистскимобразом. Эта детерминистская эволюция и есть Uпроцесс, управляемый важным уравнением Шредингера .

Когда эффекты различных квантовых альтернатив оказываются увеличенными до классического уровня, так что различия между альтернативами становятся столь большими, что мы можем воспринимать их непосредственно, тогда такие суперпозиции с комплексными коэффициентами, по-видимому, перестают существовать. Вместо этого надо образовывать квадраты модулей комплексных амплитуд (т. е. брать квадраты их расстояний до начала координат на комплексной плоскости), и эти действительныечисла теперь играют роль настоящих вероятностейдля рассматриваемых альтернатив. В реальности физического эксперимента в соответствии с Rпроцедурой(называемой редукцией вектора состояния, или коллапсом волновой функции; полностью отличной от U) выживает только одна из альтернатив. Именно здесь и только здесь в игру вступает индетерминизм квантовой теории.

Можно серьезно обосновать тезис о том, что квантовое состояние дает объективнуюкартину. Но эта картина может быть сложной и даже парадоксальной. Когда в процессе участвуют несколько частиц, квантовые состояния могут становиться (и обычно становятся) очень сложными. Индивидуальные частицы не имеют своих собственных «состояний», а существуют только в сложных взаимосвязях с другими частицами, называемых корреляциями. Когда частица «наблюдается» в одной области в том смысле, что она «запускает» какой-то эффект, который затем увеличивается до классического уровня, после этого должна вступить в действие Rпроцедура, а это, по-видимому, оказывает одновременновлияние на все другие частицы, коррелированные с данной частицей. Эксперименты типа Эйнштейна – Подольского – Розена ( ЭПР) (например, эксперимент Аспекта, в котором квантовый источник испускает в противоположных направлениях два фотона, а затем, когда фотоны оказываются на расстоянии нескольких метров друг от друга, производится порознь измерение их поляризаций) выявляют четкую наблюдательную суть озадачивающего, но существенного факта квантовой физики: она нелокальна(и поэтому фотоны в эксперименте Аспекта не могут рассматриваться как отдельные независимые сущности)! Если считать, что Rпроцедурадействует объективно (а именно это, насколько можно судить, должно следовать из объективности квантового состояния), то тем самым нарушается дух специальной теории относительности. По-видимому, не существует объективного пространственно-временно́гоописания (редуцируемого) вектора состояния, которое не противоречило бы требованиям специальной теории относительности! Однако наблюдательныеэффекты квантовой теории не нарушают требований специальной теории относительности.

Квантовая теория умалчивает о том, когда и почему в действительности (или в воображении?) должна иметь место Rпроцедура. Кроме того, сама по себе Rпроцедуране дает надлежащего объяснения, почему мир на классическом уровне «выглядит» классическим. «Большинство» квантовых состояний совсем не похожи на классические состояния!

К чему мы пришли после всего сказанного? Я убежден, что необходимо вполне серьезно рассматривать возможность того, что квантовая механика просто неверна , когда ее применяют к макроскопическим телам, или, точнее, что законы Uи Rдают только превосходные приближения к некоторой более полной, но еще не разработанной теории. И лишь комбинация законов Uи R, но не «законы U» в отдельности, дает все то чудесное согласие с наблюдением, которым так радует существующая ныне теория. Если бы линейность Uпроцедурыдопускала распространение на макроскопический мир, то мы должны были бы принять как физическую реальность комплексные линейные комбинации различных пространственных положений (или различных спинов и т. д.) крикетных шаров и тому подобных макроскопических объектов. Но здравый смысл говорит нам, что мир в действительности ведет себя не так! Крикетные шары действительно могут быть хорошо аппроксимированы описаниями классического мира. Крикетные шары обладают разумно хорошо определенными положениями в пространстве, и их нельзя видеть в двух местах одновременно, как это разрешают линейные законы квантовой механики. Если Uи Rпроцедурыподлежат замене каким-то более широким законом, то в отличие от уравнения Шредингера, этот новый закон должен быть нелинейным (так как Rпроцедурасама действует нелинейно). Некоторые люди возражают против такого утверждения, совершенно справедливо ссылаясь на то, что глубокое математическое изящество стандартной квантовой теории во многом обусловлено ее линейностью. Однако я считаю, что было бы удивительно, если бы квантовая теория в будущем не претерпела бы некоторых фундаментальных изменений, преобразуясь в такую теорию, к которой линейный вариант стандартной квантовой механики был бы всего лишь приближением. Примеры тому уже имеются. Созданная Ньютоном изящная и мощная теория всемирного тяготения во многом опиралась на то обстоятельство, что силы тяготения суммируются линейно . Но с появлением общей теории относительности Эйнштейна стало ясно, что эта линейность всего лишь приближение (хотя и превосходное), и что изящество теории Эйнштейна превосходит даже изящество теории Ньютона!

Я никогда не скрывал свое убеждение, что решение загадок квантовой теории должно лежать в построении усовершенствованной теории. И хотя подобная точка зрения не общепринята, но также и не совсем отвергнута. (Ее придерживались многие из основателей квантовой теории. Я уже изложил взгляды Эйнштейна. Шредингер [1935], де Бройль [1956] и Дирак [1939] также рассматривали стандартную квантовую механику как неокончательную теорию.) Но даже если некто убежден в необходимости каким-то образом модифицировать квантовую теорию, ограничения на то, каким образомможет быть произведена такая модификация, оказываются весьма жесткими. Возможно, что в конце концов приемлемой сочтут точку зрения, связанную с использованием «скрытых переменных». Но нелокальность, столь наглядно проявившаяся в экспериментах типа ЭПР, бросает суровый вызов любому «реалистическому» описанию мира, которое может комфортно вписаться в обычное пространство-время – пространство-время того особого типа, которое было дано нам в соответствии с принципами специальной теории относительности, – поэтому я убежден в необходимости гораздо более радикальных изменений. Кроме того, между квантовой механикой и экспериментом не было обнаружено никаких расхождений, если не рассматривать, разумеется, явное отсутствие линейной суперпозиции крикетных шаров как контраргумент. Мое личное мнение сводится к тому, что несуществование линейных суперпозиций крикетных шаров действительно являетсяконтраргументом! Но само по себе от этого не много толку. Мы знаем, что на субмикроскопическом уровне квантовые законы действительно работают; но на уровне крикетных шаров действует классическая физика. Где-то между ними находится закон, который нам необходимо понять, чтобы увидеть, каким образом квантовый мир возникает внутри классического мира. Кроме того, я убежден, что этот новый закон нам непременно понадобится, если мы собираемся понять, как функционирует наш разум! А для всего этого, по моему глубокому убеждению, нам необходимо искать новые подходы.

В своем изложении квантовой теории в этой главе я придерживался всецело традиционной точки зрения, хотя, может быть, сильнее, чем обычно, подчеркивал геометрический и «реалистический» аспекты. В следующей главе мы уделим особое внимание поиску недостающих ключевых моментов – того, что, по моему глубокому убеждению, должно нам дать указания на то, какой должна быть усовершенствованная квантовая механика. Наше путешествие начнется у порога нашего дома, но затем мы будем вынуждены значительно удалиться от него. Оказывается, что нам необходимо исследовать весьма далекие области пространства и обратиться даже к самому началу времен!

Глава 7
Космология и стрела времени

Течение времени

Главным для нашего осознания бытия является ощущение движения времени. Нам кажется, что мы всегда движемся вперед, из определенного прошлого в неопределенное будущее. Мы чувствуем, что прошлое позади, и с ним уже ничего нельзя поделать. Оно неизменно и, в определенном смысле, уже «не с нами». То, что мы знаем в данный момент о прошлом, может брать начало в наших записях, рождаться из наших воспоминаний или подтверждаться иными свидетельствами – но в любом случае мы не склонны подвергать сомнению реальностьпрошлого. Прошлое является для нас чем-то совершенно определенным и не может стать (сейчас) другим. Что было – то было, и теперь уже ни мы, ни кто-либо другой не в силах ничего изменить! Будущее, с другой стороны, выглядит еще неопределенным. Оно может проявить себя и так и этак. Возможно, что этот «выбор» полностью определен физическими законами; а, возможно, отчасти и нашими собственными решениями (или Богом) – но в любом случае этот выбор, кажется, еще только предстоит сделать. То, что есть в данный момент – это всего лишь потенциальные возможности, один из вероятных вариантов будущего.

Каждый миг, когда мы осознаем течение времени, наиболее близкая часть необозримого и кажущегося неопределенным будущего непрерывно превращается в настоящее, и, таким образом, добавляет свою строку в анналы прошлого. Иногда нам кажется, что мы самибыли лично «ответственны» за какое-то действие, повлиявшее на конкретный выбор именно того возможного будущего, которое реализовалось на самом деле и стало необратимым в реальности прошлого. Но чаще, мы чувствуем себя пассивными наблюдателями – впрочем, весьма благодарными за такое освобождение от ответственности – того, как неумолимо свершившееся прошлое расширяет свои рамки за счет неопределенного будущего.

Как ни странно, физика рисует нам сегодня совершенно другую картину. Все основные уравнения физики симметричны во времени. Они оказываются одинаково справедливыми как для одного направления времени, так и для другого. Будущее и прошлое, с точки зрения физики, совершенно равноправны. Законы Ньютона, уравнения Гамильтона, уравнения Максвелла, общая теория относительности Эйнштейна, уравнение Дирака, уравнение Шредингера – все они, в действительности, остаются неизменными при обращении направления времени (т. е. замены координаты t , представляющей время, на – t ). Вся классическая механика, вместе с U-частью квантовой, полностью обратима во времени. Может возникнуть вопрос о том, обратима ли R-часть квантовой механики. Подробно мы обсудим это в следующей главе, а пока давайте ограничимся соображениями «здравого смысла» и будем считать, что операция R, несмотря на свой вид, также должна быть взята симметричной во времени (см. Ааронов, Бергманн, Лебовиц [1964]). В этом случае нам, по всей видимости, придется продолжить где-нибудь в другом месте поиски той области, в которой наши физические законы устанавливали бы различие между прошлым и будущим.

Перед тем, как отправиться в путь, имеет смысл немного задержаться еще на одном озадачивающем несоответствии между нашим субъективным восприятием времени и представлениями современной физики. Дело в том, что согласно специальной теории относительности, такого понятия, как «сейчас», на самом деле вообще не существует. Из того, что мы имеем в этой теории, наилучшим приближением к нему было бы «пространство одновременных событий» наблюдателя в пространстве-времени, показанном в Главе 5. «Специальная теория относительноаи Эйнштейна и Пуанкаре» на Рис. 5.21. – но оно, однако, зависит от движениянаблюдателя! «Сейчас» для одного наблюдателя совсем не то же самое, что «сейчас» для другого [168]168
  Некоторые «ревностные поборники» релятивизма могли бы предпочесть использовать световые конуса наблюдателей, а не их пространства одновременных событий. Однако, все сделанные нами заключения от этого не изменятся.


[Закрыть]
. Исследуя два события Аи Вв пространстве времени, один наблюдатель ( U) может заключить, что событие Влежит в фиксированном прошлом, а событие А– в неопределенном будущем; в то время как для второго наблюдателя ( V), Аможет оказаться в фиксированном прошлом, а В– в неопределенном будущем (рис. 7.1)!

Рис. 7.1.Может ли время действительно «течь»? Для наблюдателя U, Вможет находиться в «фиксированном» прошлом, в то время как Алежит еще в «неопределенном» будущем. Наблюдатель Vпридерживается противоположной точки зрения!

Мы не можем утверждать, что какое-либо из событий Аили Востается неопределенным, в то время как другое из них уже определено.

Вернемся к рассуждениям Главы 5. «Специальная теория относительноаи Эйнштейна и Пуанкаре» и рис. 5.22. Два человека разминулись на улице; для одного из них космическая флотилия Андромеды уже отправилась в путешествие, в то время как для другого решение о том, состоится путешествие или нет, еще даже не принято. Возможно ли это? Ведь если хотя бы одиниз людей уже знает, что решение было принято, тогда, казалось бы, никакой неопределенности здесь быть не может. Запуск космической флотилии – реальность. На самом деле, ни один из этих людей в момент наблюдения еще не может что-либо знатьо запуске. Они узнают о нем позднее, когда наблюдения с Земли подтвердят, что флотилия действительно уже в пути. Тогда они могут еще раз сопоставить свои прошлые наблюдения [169]169
  После первого просмотра напечатанного варианта мне вдруг пришло в голову, что оба человека должны были умереть задолго до этого. «Сопоставить свои наблюдения», в принципе, могли бы их отдаленные потомки(до которых вся информация о возникшем когда-то споре дошла бы, передаваясь из поколения в поколение).


[Закрыть]
и прийти к заключению, что во время наблюдениядля одного из них решение о запуске лежало в неопределенном будущем, тогда как для другого, – в определенном прошлом. Имеет ли смысл, в таком случае, говорить о какой-либо неопределенности будущего? А может быть будущее для них обоихбыло уже изначально «фиксированным»?

Складывается впечатление, будто всякая определенность чего бы то ни было неизбежно приводит к определенности пространства-времени в целом! В этом случае вовсе нет никакого «неопределенного» будущего. Все пространство-время должно быть изначально фиксированным и никакой неопределенности просто нет места. Кажется, именно так думал и сам Эйнштейн (см. Пайс [1982], с. 444). Следуя этой логике, можно заключить, что нет и течения времени. Остается только «пространство-время», в котором нет места будущему, в чьи «владения» неумолимо вторгается определенное прошлое! (Читатель может в этом месте задаться вопросом о роли квантовомеханических «неопределенностей». Я вернусь к вопросам, навеянным квантовой механикой, в следующей главе. Сейчас будет лучше проводить все рассуждения в рамках чисто классической картины.)

Мы видим, что налицо впечатляющие несоответствия между нашим субъективным ощущением потока времени и тем, как представляют нам физическую реальность наши (удивительно точные) теории. Эти несоответствия, скорее всего, свидетельствуют о существовании иных принципов, которые, по-видимому, и должны лежать глубоко в основе наших субъективных ощущений – предполагая (как мне кажется), что эти принципы могут быть адекватно выражены на языке некоторой физической теории. Во всяком случае, представляется бесспорным, что какая бы теория ни работала, она должна нести в себе существенно асимметричную во времени составляющую, т. е. должна, так или иначе, отделять прошлое от будущего.

Но если уравнения физики никак не различают, как кажется, прошлое и будущее, и если даже сама идея «настоящего» так плохо согласуется с относительностью – тогда в какой же части мироздания нам следует искать ту область, где физические законы в большей степени соответствуют нашему восприятию мира? К счастью, если признаться честно, несоответствия не столь уж катастрофичны, как могло бы показаться. Наша физическая картина мира и в самом деле содержит некоторые фундаментальные составляющие, отличные от простых эволюционных уравнений, и при этом некоторые из них действительно несут в себе временную асимметрию. Наиболее важная из этих составляющих носит название «второго начала термодинамики». Давайте попробуем разобраться, о чем в данном случае идет речь.

Неумолимое возрастание энтропии

Представим себе стакан воды, стоящий на самом краю стола. Если его слегка подтолкнуть, он, скорее всего, упадет на пол, наверняка разобьется вдребезги на множество осколков, а вода расплескается повсюду, возможно, частично поглотившись ковром или просочившись в щели между половицами. Наш стакан воды в этой ситуации лишь добросовестно следует уравнениям физики. Ньютоновское описание оказывается справедливым здесь в полной мере. Каждый из атомов в стекле и в воде подчиняется законам Ньютона (рис. 7.2).

Рис. 7.2.Законы механики обратимы во времени; однако последовательность событий в направлении справа налево никогда не наблюдается, в то время как последовательность слева направо была бы вполне обычной

А теперь попробуем прокрутить эту картину в обратном направлении. В силу обратимости во времени законов Ньютона, вода могла бы также легко истечь из ковра и из щелей в половицах, заполнить стакан, который в это время ловко собирал бы себя из множества отколовшихся осколков, а затем все это могло запрыгнуть на высоту стола и устроиться в равновесии на его краю. И все это, так же как и первоначальный процесс, происходило бы в полном соответствии с законами Ньютона!

Читатель, быть может, спросит, откуда берется энергия, поднявшая стакан с пола на стол. Ответить на этотвопрос совсем несложно, поскольку, в то время, когда стакан падаетсо стола, энергия, которую он приобретает в процессе падения, должна куда-то деваться. На самом деле, энергия падающего стакана переходит в тепло. Атомы в осколках стакана, в воде, в ковре и половицах после удара стакана о пол будут хаотически колебаться чуть-чуть быстрее, чем до удара, т. е. осколки стакана, вода, ковер и половицы будут чуточку горячее, чем они были раньше (если пренебречь возможной потерей тепла за счет испарения, которое, однако, в принципе тоже обратимо). В силу закона сохранения энергииэта тепловая энергия будет в точности равна той, которая теряется стаканом с водой при его падении со стола. Таким образом, этой маленькой порции тепловой энергии было бы как раз достаточно, чтобы поднять стакан обратно на стол! Очень важно не забыть учесть вклад тепловой энергии в общий энергетический баланс. Закон сохранения энергии, в котором учитывается также и тепловая энергия, носит название первого начала термодинамики. Этот закон, будучи следствием ньютоновской механики, симметричен во времени. Он не накладывает каких-либо ограничений на стакан и воду, которые бы запрещали стакану собирать себя, заполняться водой и таким вот чудесным образом запрыгивать обратно на стол.

Причина, по которой мы не наблюдаем ничего подобного в реальности, заключается в том, что «тепловое» движение атомов в осколках стекла, воде, половицах и ковре является совершенно беспорядочным, так что подавляющая часть атомов будет двигаться во всех возможных направлениях. Необходима невероятно точная координация их движений для того, чтобы восстановить стакан, вместе со всей собранной в него с пола водой, и аккуратно забросить его на стол. Можно даже утверждать, что такие слаженные движения невозможны. Точнее говоря, подобная скоординированность могла бы возникнуть только благодаря удивительной случайности, которую мы все равно отнесли бы к разряду «чудес», даже если бы она и произошла в действительности!

Однако для другого направления времени такая согласованность движений атомов является вполне нормальной. Ведь мы почему-то не относим в разряд случайных те ситуации, в которых частицы движутся скоординированным образом посленекоторого крупномасштабного изменения физического состояния (в нашем случае – разбивания стакана и расплескивания воды), а не до такого изменения. Движение частиц после подобного события как раз и должно быть в высокой степени согласованным, поскольку сама природа этого движения такова, что если бы мы могли в точности обратить движение каждого отдельного атома, результирующее движение было бы именно таким, какое необходимо для восстановления, заполнения и подъема стакана в его исходное положение.

Высокая координация движения вполне приемлема и даже естественна в том случае, когда оно является следствиемкрупномасштабного изменения, а не его причиной. Но слова «причина» и «следствие», так или иначе, затрагивают вопрос о временнбй асимметрии. Используя эти термины в нашем повседневном разговорном языке, мы обычно подразумеваем, что причина должна предшествовать следствию. Но если мы пытаемся осознать физическое различие между прошлым и будущим, нам необходимо быть предельно осторожными, чтобы невольно не привнести в рассуждения наши житейские представления об этих понятиях. Я должен предупредить читателя, что избежать этого чрезвычайно трудно, но нам все же стоит попробовать. Мы должны попытаться использовать слова таким образом, чтобы они заранее не предрешали вопроса о физическом различии прошлого и будущего. В частности, если обстоятельства будут к тому располагать, нам придется иногда рассматривать причины некоторых явлений лежащими в будущем, а следствия – лежащими в прошлом! Детерминистские уравнения классической физики (или операция Uв квантовой физике) никоим образом не выделяют эволюцию в направлении будущего. Они могут быть столь же хорошо применимы и для описания эволюции в прошлое. Будущее определяет прошлое точно так же, как и прошлое определяет будущее. Мы можем каким-либо образом зафиксировать некоторое состояние системы в будущем и затем использовать его для определения состояния системы в прошлом. Если, применяя наши уравнения к системе с обычным направлением времени в сторону будущего, мы можем считать прошлое причиной, а будущее – следствием, то в случае, когда мы также правомерно используем эти уравнения для описания эволюции в прошлое, мы будем вынуждены относить будущее к «причине», а прошлое – к «следствию».

Есть, однако, еще один момент, связанный с использованием терминов «причина» и «следствие», который, на самом деле, никак не зависит от того, какие события мы относим к прошлому, а какие – к будущему. Вообразим себе гипотетическую вселенную, в которой справедливы те же симметричные во времени классические уравнения, что и в нашей вселенной, но в которой явления обычного порядка (такие, как разбивание и расплескивание стакана воды) сосуществуют с их обращениями во времени. Предположим, что наряду с обычными явлениями, стаканы воды иногда действительно собирают себя из отколовшихся кусочков, чудесным образом заполняются расплескавшейся водой и затем запрыгивают на стол; предположим также, что иногда, приготовленная яичница-болтунья снова превращается в исходный полуфабрикат, желток в ней отделяется от белка и, наконец, она запрыгивает обратно в сломанную яичную скорлупу, которая становится совершенно целой, вновь заключая в себя все свое содержимое; что кусочки сахара могут восстанавливаться из растворенного сахара в подслащенном кофе и затем самопроизвольно выпрыгивать из чашки прямо в чью-нибудь руку. Если бы мы жили в мире, в котором подобные вещи относились бы к разряду повседневных явлений, мы, очевидно, могли бы приписать «причины» таких событий не фантастической случайности, связанной с коррелированным поведением отдельных атомов, но некоторому «телеологическому воздействию», благодаря которому самовосстанавливающиеся объекты стремятся в конце концов достичь желаемой макроскопической конфигурации. «Смотрите! – могли бы воскликнуть мы. – Это повторяется. Та смесь намеревается собрать себя в другой стакан воды!» Мы, разумеется, можем принять точку зрения, согласно которой атомы направили сами себя именно так, потомучто именно таким способом можно получить стакан воды на столе. Стакан на столе был бы в этом случае причиной, а явно беспорядочная смесь атомов на полу – «следствием» – несмотря на то, что это «следствие» теперь существует во времени раньше, чем причина. Точно также, внезапное упорядочивание движения атомов в приготовленной яичнице-болтунье не является «причиной» ее запрыгивания в целую яичную скорлупу, но есть следствие этого будущего состояния; и кусок сахара собирается и выскакивает из чашки не «потому, что» атомы движутся с такой необычайной точностью, но благодаря тому, что кто-то – находящийся в будущем – будет позднее держать этот кусок сахара в своей руке!

Конечно, мы не наблюдаем ничего подобного в нашем мире – или, лучше сказать, что мы не обнаруживаем одновременного сосуществованияподобных вещей с явлениями обычного порядка. Ведь если бы все , что мы видели, было бы явлениями обратного порядка, подобного описанному выше, у нас не было бы проблем. Нам нужно было бы просто поменять местами «прошлое» и «будущее», «до» и «после» и т. д. во всех наших описаниях. Время следовало бы тогда считать текущим в направлении обратном по отношению к первоначально выбранному, и такой мир мог бы описываться так же, как и наш. Здесь я, однако, хочу рассмотреть другую возможность, в точности согласующуюся с симметричными во времени уравнениями физики, а именно – когда разбивающийся и самовосстанавливающийся стаканы могут сосуществовать.

В этом мире мы были бы не в состоянии восстановить привычные описания событий одним только изменением наших соглашений о направлении движения времени. Конечно, наш мир оказывается не таким – но почему? Чтобы разобраться с этим, я для начала попросил бы вас представить такой мир и подумать над тем, как описывать события, происходящие в нем. Согласитесь, что в подобном мире мы могли бы хорошо описывать крупные макроскопические конфигурации – такие как полные стаканы воды, неразбитые яйца, или кусочки сахара в руке, являющиеся «причинами»; и микроскопические, быть может, тонко скоррелированные движения отдельных атомов, представляющие «следствия» – независимо от того, лежат ли «причины» в прошлом или будущем своих «следствий».

Почему же в мире, в котором живем мы, именно причины всегда предшествуютследствиям или, иными словами, почему точно скоординированные движения частиц возникают только послекрупномасштабных изменений физического состояния, а не передними? Чтобы лучше разобраться в таком положении дел, мне нужно ввести понятие энтропии . Грубо говоря, энтропия системы есть мера ее явного беспорядка. (Позже я дам более точное определение.) Таким образом, разбитый стакан и разлитая по полу вода находятся в состоянии с большей энтропией, чем целый заполненный водой стакан на столе. Приготовленная яичница-болтунья обладает большей энтропией, чем свежее неразбитое яйцо; подслащенный кофе обладает большей энтропией, чем кофе с нерастворенным куском сахара в нем. Подобные низкоэнтропийные состояния выглядят как бы «специально упорядоченными» некоторым явным образом, а высокоэнтропийные состояния – менее «специально упорядоченными».

Здесь важно подчеркнуть, что говоря о «специальности» (или, скажем, «особенности») состояния с низкой энтропией, мы, на самом деле, имеем ввиду именно явную«специальность». Если этого не оговорить, то при более детальном рассмотрении мы могли бы увидеть, что высокоэнтропийные состояния в подобных ситуациях будуттакими же «специально упорядоченными», как и низкоэнтропийные, благодаря чрезвычайно точной координации движений отдельных частиц. Например, кажущееся случайным движение молекул воды, просочившейся между половицами после того, как стакан разбился, является, на самом деле, вполне специальным: эти перемещения настолько точны, что если их обратить, то получится то самое исходное низкоэнтропийное состояние, в котором восстановленный стакан покоится на столе. (Это должно быть именно так, поскольку обращение всех этих движений полностью соответствует обращению направления времени, в результате которого стакан, разумеется, восстановил бы себя и запрыгнул обратно на стол.) Но подобное скоординированное движение всех молекул воды – совсем не та «специальность», которую мы имеем ввиду, говоря о низкой энтропии. Энтропия относится к явномубеспорядку. Порядок же, относящийся к точной координации движений частиц, не есть явный порядок, и потому он не приводит к понижению энтропии системы. Таким образом, упорядочивание молекул разлитой жидкости, в данном случае, не учитывается, и ее энтропия остается высокой. В то же время, явныйпорядок в восстановленномстакане воды дает низкое значение энтропии. Все дело здесь в том, что с конфигурацией восстановленного и заполненного стакана воды совместимо относительно немного возможных движений частиц; в то время как движений, совместимых с конфигурацией слегка нагретой воды, протекающей между щелями в половицах, – существенно больше.

Второе начало термодинамики гласит,что энтропия изолированной системы возрастает со временем(или остается неизменной в случае обратимых систем).Теперь становится очевидным, что мы совершенно правильно не рассматриваем скоординированное движение частиц как признак низкой энтропии, поскольку в этом случае «энтропия» системы, в соответствии с ее определением, всегда оставалась бы постоянной. Понятие энтропии должно быть связано только с явным беспорядком. Для системы, изолированной от всей остальной вселенной, ее полная энтропия возрастает, так что, если подобная система начинает свою эволюцию из состояния с некоторой явной упорядоченностью, то с течением времени этот порядок неизбежно разрушается и присущие ей особые свойства превращаются в «бесполезно» скоординированное движение частиц.


    Ваша оценка произведения:

Популярные книги за неделю