355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Новый ум короля: О компьютерах, мышлении и законах физики » Текст книги (страница 19)
Новый ум короля: О компьютерах, мышлении и законах физики
  • Текст добавлен: 26 сентября 2016, 13:35

Текст книги "Новый ум короля: О компьютерах, мышлении и законах физики"


Автор книги: Роджер Пенроуз



сообщить о нарушении

Текущая страница: 19 (всего у книги 47 страниц)

Электромагнитная теория Максвелла

В ньютоновской картине мира мы представляем, что крохотные частицы влияют друг на друга с помощью сил, действующих на расстоянии, причем если частицы не совсем точечные, то они способны отскакивать друг от друга в результате прямого физического контакта. Как уже упоминалось раньше (Глава 5. «Механистический мир динамики Ньютона»), электрические и магнитные силы (которые были известны еще с античных времен и впервые подробно изучены Уильямом Гильбертом в 1600 году и Бенджамином Франклином в 1752 году) действуют аналогично гравитационным силам, поскольку также обратно пропорциональны квадрату расстояния – хотя обе представляют собой скорее силы отталкивания, чем притяжения, действуя в соответствии с принципом «подобное отталкивает подобное»; а вместо массы мерой интенсивности их воздействия служит электрический заряд и сила магнитного полюса, соответственно. На этом уровне не существует никаких трудностей, которые препятствовали бы включению электричества и магнетизма в ньютоновскую схему. Поведение света может быть сравнительно легко описано в общем виде с позиций ньютоновской механики (хотя определенные проблемы при этом все же возникают): либо путем рассмотрения света как субстанции, состоящей из отдельных частиц («фотонов», как теперь их принято называть); либо с помощью представления его в виде волнового процесса, распространяющегося в некоторой среде (в последнем случае эту среду – «эфир» – следует считать состоящей из отдельных частиц).

То, что движущиеся электрические заряды могут создавать магнитные силы, вызывает некоторые дополнительные затруднения, но не разрушает целиком всю ньютонианскую схему. Многие математики и физики (в том числе Гаусс) предлагали системы уравнений для описания эффектов, создаваемых движущимися электрическими зарядами. В рамках общей ньютонианской схемы эти уравнения казались вполне удовлетворительными. Первым, кто бросил серьезный вызов «ньютонианской» картине мира, был, по-видимому, великий английский физик-экспериментатор Майкл Фарадей (1791–1867).

Чтобы понять суть этого вызова, необходимо прежде всего разобраться в смысле термина физическое поле . Начнем с магнитного поля. Большинству читателей случалось наблюдать за поведением железных опилок, рассыпанных на листке бумаги, который положили поверх магнита. Железные опилки поразительным образом выстраиваются вдоль так называемых «магнитных силовых линий». Представим себе, что силовые линии присутствуют в пространстве, даже если нет железных опилок. Эти силовые линии и образуют то, что мы называем магнитным полем. В каждой точке пространства это «поле» ориентировано в определенном направлении, а именно – в направлении силовой линии, проходящей через данную точку. В действительности, мы имеем в каждой точке пространства вектор , т. е. магнитное поле является примером векторного поля. (Мы можем сравнить магнитное поле с гамильтоновым векторным полем, которое было рассмотрено нами в предыдущем разделе, но теперь мы имеем векторное поле в обычном, а не фазовом пространстве.) Точно так же и тела, несущие электрический заряд, оказываются окруженными полем, только несколько иного рода, которое известно под названием электрического поля; а любое массивное тело создает вокруг себя так называемое гравитационное поле. Все это – векторные поля в обычном пространстве.

Подобные идеи были известны задолго до Фарадея, и в ньютоновской механике они составляли весьма заметную часть арсенала теоретиков. Но согласно господствовавшей тогда точке зрения, такие «поля» не рассматривались как реальная физическая субстанция. Их скорее считали своего рода страницами вспомогательной «бухгалтерской книги», в различных точках которых надлежало размещать подходящие частицы. Но фундаментальные явления, наблюдаемые Фарадеем (во время опытов с движущимися витками с током, магнитами и т. п.), привели его к убеждению, что электрическое и магнитное поля совершенно «материальны» с физической точки зрения – и к открытию у переменных полей способности «проталкивать» друг друга через пустое пространство, порождая своего рода бестелесную волну! Фарадей высказал предположение, что' свет может состоять из таких волн. Подобная точка зрения существенно отличалась от господствовавшей в то время «ньютонианской мудрости», которая не считала электромагнитные поля чем-то «реальным», а рассматривала их всего лишь как удобные вспомогательные математические понятия для описания «настоящей» ньютоновской картины «физической реальности» – «действия на расстоянии (дальнодействия) точечных частиц».

Столкнувшись с обнаруженными Фарадеем экспериментальными фактами, а также с более ранними открытиями замечательного французского физика Андре Мари Ампера (1775–1836) и других исследователей, великий шотландский физик и математик Джеймс Клерк Максвелл (1831–1879) задумался над математической формой уравнений, описывающих электрические и магнитные поля с учетом обнаруженных экспериментальных фактов. В результате поразительного интуитивного озарения Максвелл предложил внести в уравнения незначительную на первый взгляд поправку, что привело к поистине фундаментальным последствиям. Эта поправка в принципе не могла быть подсказана ему никакими из известных экспериментальных фактов (хотя и находилась в согласии с ними). Выводы Максвелла были результатом собственных теоретический постулатов Максвелла – отчасти физических, отчасти математических, а где-то – даже эстетических. Одно из следствий уравнений Максвелла говорило о том, что электрическое и магнитное поля действительно «проталкивают» друг друга сквозь пустое пространство. Осциллирующее магнитное поле должно было бы порождать осциллирующее электрическое поле (о чем свидетельствовали экспериментальные факты, полученные Фарадеем); а это осциллирующее электрическое поле, в свою очередь, должно создавать осциллирующее магнитное поле (в согласии с теоретическими выводами Максвелла); последнее снова порождает осциллирующее электрическое поле и т. д. (См. рис. 6.26, 6.27 гл. 6, где схематически изображен этот волновой процесс.)

Максвеллу удалось вычислить скорость, с которой этот процесс должен был бы распространяться в пространстве, и она в результате оказалась равной скорости света! Кроме того, эти так называемые электромагнитныеволны интерферировалии обладали удивительной способностью поляризоваться, как и свет (последнее свойство на тот момент было уже давно известно, а мы еще вернемся к нему в главе 6). Помимо объяснения свойств видимого света, для которого длины электромагнитных волн должны были бы лежать в диапазоне 4–7 х 10 -7м, Максвелл предсказал существование электромагнитных волн других длин, порождаемых электрическими токами в проводниках. Существование таких волн было экспериментально установлено замечательным немецким физиком Генрихом Герцем в 1888 году. Вдохновенная надежда Фарадея воплотилась в чудесные уравнения Максвелла!

Хотя нам совсем не обязательно вдаваться в подробности уравнений Максвелла, давайте все же окинем их быстрым взглядом:

Здесь Е , В и j – векторные поля, описывающие, соответственно, электрическое поле, магнитное поле и электрический ток;  ρ – плотность электрического заряда, а с – постоянная – скорость света [115]115
  Я выбрал единицы для различных полей так, чтобы они находились в хорошем согласии с той формой, в которой Максвелл первоначально записывал свои уравнения (за исключением того, что его плотность заряда в моих обозначениях выглядела бы как с -2ρ ). При другом выборе единиц множители, содержащие с , были бы распределены иначе.


[Закрыть]
. Не стоит огорчаться, если вам не известен смысл обозначений « rot» и « div». Они просто означают различные пространственные вариации полей В и Е . (Обозначения « rot» и « div» представляют собой определенные комбинации частных производных по пространственным координатам. Напомним, что операции взятия «частной производной», обозначаемой символом , мы коснулись в связи с уравнениями Гамильтона.) Операторы / ∂t , стоящие в левых частях двух первых уравнений, по существу означают то же самое, что «точки» в уравнениях Гамильтона (различие в обозначениях вызвано чисто техническими причинами). Таким образом, ∂E / ∂t означает «скорость изменения во времени электрического поля», a ∂B / ∂t означает «скорость изменения во времени магнитного поля».

Первое уравнение [116]116
  Именно введение ∂B / ∂t в это уравнение было мастерским штрихом в теоретических рассуждениях Максвелла. Все остальные члены во всех уравнениях, по существу, были известны из опытных данных. Что же касается коэффициента 1 / с 2, то он очень мал и поэтому член с ∂B / ∂t не мог быть обнаружен экспериментально.


[Закрыть]
связывает изменения электрического поля с текущими значениями магнитного поля и электрического тока; тогда как второе, наоборот, описывает изменения магнитного поля в зависимости от величины электрического поля. Третье уравнение, грубо говоря, представляет собой закодированную форму закона обратных квадратов, показывающую, как электрическое поле (в данный момент времени) должно быть связано с распределением зарядов. Что же касается четвертого уравнения, то оно говорит то же самое о магнитном поле (с той лишь разницей, что «магнитные заряды» – отдельные «северные» и «южные» полюсы частиц – не существуют).

Уравнения Максвелла несколько напоминают уравнения Гамильтона тем, что определяют скорость изменения по времени соответствующих величин (электрического и магнитного полей) в зависимости от их текущих значений в любой заданный момент времени. Следовательно, уравнения Максвелла являются по сути детерминистскими– точно так же, как и система уравнений в обычной гамильтоновой теории. Единственное (хотя и важное) различие состоит в том, что уравнения Максвелла полевые, а не корпускулярные. Это означает, что для описания состояния такой системы необходимо бесконечно многопараметров (векторы поля в каждой точке пространства) вместо всего лишь конечного числа параметров (трех координат положения и трех компонент импульса каждой частицы) в корпускулярной теории. Таким образом, фазовое пространство в теории Максвелла бесконечномерно ! (Как я уже упоминал выше, уравнения Максвелла в действительности могут быть включены в общую гамильтонову схему, но из-за их бесконечномерности гамильтонову схему перед этим необходимо слегка обобщить [117]117
  Действительно, мы имеем бесконечно много х и p i , но еще одно осложнение возникает в связи с тем, что мы не можем использовать непосредственно значения полей в этих координатах, поэтому для поля Максвелла нам необходимо ввести определенные «потенциалы», чтобы к нему можно было применить гамильтонову схему.


[Закрыть]
.)

Принципиально новой составляющей в той картине нашего физического мира, которая выстраивалась на основе теории Максвелла (помимо и сверх того, что было известно ранее), стала необходимость рассматривать поля уже не как математические придатки к «реальным» частицам, или корпускулам, в ньютоновской теории – но как самостоятельно существующие объекты. Действительно, Максвелл показал, что когда поля распространяются в виде электромагнитных волн, они переносят с собой определенное количество энергии. Ему удалось получить даже явное выражение для этой энергии. То есть оказалось, что энергию, на самом деле, могли переносить с места на место «нематериальные» электромагнитные волны. Этот факт был экспериментально подтвержден Герцем, сумевшим зарегистрировать электромагнитные волны. То, что радиоволны действительно могут переносить энергию, до сих пор представляется удивительным даже тем, кто в той или иной степени знаком с этим феноменом!

Вычислимость и волновое уравнение

Непосредственно из своих уравнений Максвелл сумел вывести, что в областях пространства, где нет ни зарядов, ни токов (т. е. там, где в приведенных выше уравнениях j = 0 , ρ = 0 ) все компоненты электрического и магнитного полей должны удовлетворять так называемому волновомууравнению. [118]118
  Волновое уравнение (уравнение Даламбера) представимо в виде
  


[Закрыть]
 Волновое уравнение можно рассматривать как «упрощенный вариант» уравнений Максвелла, так как оно записано для одной-единственнойвеличины, а не для всех шести компонент электрического и магнитного полей. Решения уравнения Даламбера дают пример волнообразного движения без дополнительных усложняющих свойств наподобие «поляризации» в теории Максвелла (направления вектора электрического поля, см. гл. 6 «Спин фотона»).

Волновое уравнение представляет сейчас для нас тем больший интерес, что оно было предметом целенаправленного изучения именно в связи с его свойствами вычислимости. Действительно, Мариану Б. Пур-Элю и Яну Ричардсу (Пур-Эль, Ричардс [1979, 1981, 1982], см. также [1989]) удалось показать, что, даже несмотря на детерминистское(в обычиом смысле) поведение решения волнового уравнения – при котором данные в начальный момент времени однозначно определяют решение во все остальные моменты времени – существуют вычислимыеначальные данные некоего «особого» рода, обладающие тем свойством, что для них однозначно рассчитать значения поля в более поздний (вычислимый) момент времени – невозможно. Таким образом, уравнения вполне допустимой физической теории поля (хотя и отличающейся от теории Максвелла, которая действительно «работает» в нашем мире) могут, согласно Пур-Элю и Ричардсу, породить невычислимую эволюцию!

На первый взгляд это кажется весьма удивительным результатом, который вроде бы противоречит тому, о чем я говорил в предыдущем разделе относительно возможной вычислимости «разумных» гамильтоновых систем. Однако, несмотря на то, что поразительный результат Пур-Эля – Ричардса исполнен, несомненно, глубокого математическогосмысла, он все же не противоречит высказанной выше гипотезе – причем по причине, имеющей глубокий физическийсмысл. Причина же эта состоит в том, что начальные условия «особого» рода не относятся к «плавно изменяющимся» [119]119
  Т. е. не имеющие второй производной.


[Закрыть]
, а именно это свойство обычно требуется от каждого поля, имеющего физический смысл. Пур-Эль и Ричардс в действительности доказали, что невычислимость не может возникнутьв случае волнового уравнения, если мы не будем рассматривать поля «особого» рода. С другой стороны, даже если бы такие поля считались допустимыми, было бы трудно понять, как может использовать подобную «невычислимость» любое физическое «устройство» (например, головной мозг человека)? Она могла бы иметь существенное значение только при наличии возможности производить измерения со сколь угодно высокой степенью точности (которые, как я объяснял выше, нереальны с физической точки зрения). Тем не менее, результаты Пур-Эля– Ричардса открывают интригующую область знания, которая до сих пор остается практически нетронутой.

Уравнение движения Лоренца; убегающие частицы

Система уравнений Максвелла в том виде, как мы ее выписали, не является, на деле, полной. Эти уравнения великолепным образом описывают распространение электрических и магнитных полей при наличии заданногораспределения электрических зарядов и токов. Эти заряды физически нам даны в виде заряженных частиц– в основном, электронов и протонов, как нам сейчас известно – а токи порождаются движением этих частиц. Если мы знаем, где находятся заряженные частицы и как они движутся, то уравнения Максвелла позволяют определить поведение электромагнитного поля. Но вот что уравнения Максвелла нам не говорят– это как должны себя вести сами частицы. Частичный ответ на этот вопрос был известен еще во времена Максвелла, но удовлетворительной системы уравнений не было до тех пор, пока в 1895 году замечательный голландский физик Хендрик Антон Лоренц, воспользовавшись идеями, близкими к идеям специальной теории относительности, не вывел уравнения движения заряженной частицы, известные ныне как уравнения Лоренца(см. Уиттекер [1910]). Эти уравнения позволяют описывать непрерывные изменения скорости заряженной частицы под действием электрического и магнитного полей в той точке, где она в данный момент находится [120]120
  Уравнение Лоренца определяет силу , действующую на заряженную частицу со стороны электромагнитного поля, в котором та находится. Таким образом, если масса частицы известна, то второй закон Ньютона позволяет нам найти ускорение частицы. Но заряженные частицы часто движутся со скоростями, близкими к скорости света, так что начинают сказываться эффекты специальной теории относительности, для которых выбор массы частицы (см. следующий раздел) становится уже существенным. Именно по этой причине открытие правильного закона для силы, действующей на заряженную частицу, стало возможным только после появления на свет СТО.


[Закрыть]
. Присоединив уравнения Лоренца к уравнениям Максвелла, мы получаем систему уравнений, описывающих эволюцию во времени и заряженных частиц, и электромагнитного поля.

Но эта система уравнений, в свою очередь, тоже не безукоризненна. Она дает превосходные результаты, если поля однородны вплоть до масштабов порядка диаметра самих частиц (за единицу измерения диаметра принимается «классический радиус» электрона – около 10 -15м), а движения частиц не слишком интенсивны. Однако здесь имеется принципиальная трудность, обойти которую при других обстоятельствах становится невозможно. Дело в том, что уравнения Лоренца подразумевают измерения электромагнитного поля в той самой точке, где находится заряженная частица (по существу, такое измерение должно дать нам значение «силы», действующей в этой точке со стороны электромагнитного поля на нашу частицу). Но где следует выбирать эту точку, если частица имеет конечные размеры? Следует ли принять за нужную точку «центр» частицы, или поле («силу») необходимо усреднить по всем точкам поверхности частицы? Если поле неоднородно в масштабе порядка размера частицы, то разный выбор точки может привести к отличающимся результатам. Есть и другая, более серьезная проблема: каково на самом деле электромагнитное поле на поверхности частицы (или в ее центре)? Напомним, что мы рассматриваем заряженнуючастицу. Следовательно, электромагнитное поле, обусловленное самойчастицей, необходимо добавить к «фоновому полю», в котором находится частица. Вблизи самой «поверхности» частицы ее собственное поле становится чрезвычайно интенсивным и легко поглощает все остальные поля в окрестности частицы. Кроме того, собственное поле частицы всюду вокруг нее направлено преимущественно наружу (или вовнутрь), вследствие чего результирующее истинноеполе, на которое по предположению реагирует частица, вовсе не однородно, а в каждой точке на «поверхности» частицы направлено в свою сторону, не говоря уже о «внутренности» частицы (рис. 5.15).

Рис. 5.15.Как можно строго применить уравнения движения Лоренца? Сила, действующая на заряженную частицу, не может быть получена измерением поля в точке нахождения частицы, так как здесь доминирует собственное поле частицы

Дополнительно к этому нам следует выяснить, будут ли отличающиеся по величине силы, которые действуют на частицу, стремиться повернуть или деформировать ее; а также понять, какими упругими свойствами обладает частица: и т. д. (особенно трудны вопросы возникающие в связи с теорией относительности, но я не собираюсь сейчас отвлекать на них внимание читателя). Ясно, что теперь проблема становится намного сложнее по сравнению с тем, какой она казалась нам прежде.

Возможно, нам стоило бы рассматривать частицу как материальную точку. Но такой подход приводит к проблемам другого рода, ибо в непосредственной окрестности точечной частицы ее собственное электрическое поле становится бесконечным. Если, как это следует из уравнений Лоренца, частица должна реагировать на электромагнитное поле в той точке, где она находится, то точечная частица должна испытывать действие со стороны бесконечно большого поля! Чтобы формула Лоренца для величины силы имела смысл, необходимо найти способ, который позволил бы вычитать собственноеполе частицы и оставлять конечное фоновое поле, которое бы однозначно определяло поведение частицы. Такой метод был предложен в 1938 году Дираком (о котором мы еще услышим в дальнейшем). Однако решение Дирака приводило к определенным следствиям, которые не могли не вызывать тревогу. Дирак обнаружил, что для однозначного определения поведения частиц и полей исходя из соответствующих начальных данных, необходимо знать не только начальное положение и скорость каждой частицы, но и ее начальное ускорение(в контексте стандартных динамических теорий такую ситуацию нельзя не признать несколько аномальной). Для большинства значений начального ускорения частица ведет себя самым «сумасшедшим» образом, спонтанно ускоряясь в пространстве до скорости, весьма близкой к световой! Эти «убегающие решения» Дирака не соответствуют ни одному природному явлению. Необходимо найти способ, который позволил бы исключать убегающие решения и правильно выбирать начальные ускорения. Такой выбор возможен всегда, но только при условии, что мы будем пользоваться неким «априорным знанием», т. е. будем задавать начальное ускорение так, будто нам уже известно, какие решения в конце концов станут убегающими, и стараться избавляться от них. Однако в стандартной детерминистской физической задаче начальные данные задаются по-другому – произвольно и без каких-либо ограничений и требований относительно будущего поведения решений. В нашем же случае не только будущее полностью определено данными, заданными в некоторый момент времени в прошлом, но и сам способ задания этих данных весьма жестко ограничен требованием, накладываемым на будущее («допустимое») поведение частиц и полей!

Так обстоит дело, пока мы рассматриваем фундаментальные классические уравнения. Читатель легко поймет, что вопрос о детерминизме и вычислимости в законах классической физики носит раздражающе неясный характер. Действительно ли в физических законах есть телеологическая составляющая, которая заставляет будущее каким-то образом оказывать влияние на происходящее в прошлом? На самом деле, физики обычно не рассматривают подобные следствия из классической электродинамики(теории классических заряженных частиц, а также электрического и магнитного полей) как соответствующие реальности. Стандартный ответ физиков на упомянутые выше трудности сводится к утверждению, что «отдельные заряженные частицы» относятся к области квантовой электродинамики, и что нельзя ожидать получить разумные ответы на подобные вопросы, если использовать строго классическую теорию. Такое утверждение, безусловно, верно – но, как мы увидим в дальнейшем, в самой квантовой теории здесь также возникают проблемы. На самом деле, Дирак исследовал классическую задачу движения заряженной частицы именно потому , что надеялся обнаружить там какие-нибудь новые идеи, способные помочь в разрешении еще более фундаментальных трудностей, возникающих при рассмотрении (физически более адекватной) квантовой задачи. С проблемами квантовой теории нам еще придется столкнуться позднее!


    Ваша оценка произведения:

Популярные книги за неделю