355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роджер Пенроуз » Новый ум короля: О компьютерах, мышлении и законах физики » Текст книги (страница 10)
Новый ум короля: О компьютерах, мышлении и законах физики
  • Текст добавлен: 26 сентября 2016, 13:35

Текст книги "Новый ум короля: О компьютерах, мышлении и законах физики"


Автор книги: Роджер Пенроуз



сообщить о нарушении

Текущая страница: 10 (всего у книги 47 страниц)

Построение множества Мандельброта

Теперь мы можем рассмотреть, как определяется множество Мандельброта. Пусть z – это некоторое произвольное комплексное число. Каковым бы ни было это число, оно представляется некоторой точкой на плоскости Аргана. Рассмотрим теперь отображение, при котором z превращается в новое комплексное число, равное

z → z 2+ с ,

где с есть некое фиксированное (то есть заданное) комплексное число. Числу z 2+ с будет сопоставляться некоторая другая точка на плоскости Аргана. Например, если с равно числу 1,63i4,2, то z отображается согласно формуле

z → z 2+ 1,63i4,2,

так что, в частности, число 3 превратится в

З 2+ 1,63 – i4,2= 9+ 1,63 – i4,2= 10,63 – i4,2,

а число 2,7+ i0,3в

(– 2,7+ i0,3) 2 + 1,63 – i4,2=

= (– 2,7) 2 – ( 0,3) 2 + 1,63+

+ i{(– 2,7)( 0,3) – 4,2} = 8,83 – i5,82.

Когда числа становятся громоздкими, вычисления лучше выполнять на компьютере.

Теперь, каково бы ни было число c , число 0 превращается, согласно принятой схеме, в число с . А что же можно сказать о самом числе с ? Оно превращается в с 2+ с . Давайте продолжим этот процесс, применив наше преобразование к с 2+ с . Мы получим:

( с 2+ с) 2 + с= с+ 2 с+ с 2+ с.

Снова повторим отображение, применив его к приведенному выше числу. Мы получим:

( с 4+ 2 с 3+ с 2+ с) 2 + с=

= с 8+ 7+ 6 с 6+ 5+ 4+ 2 с 3+ с 2+ с.

Потом еще раз применим процедуру, теперь уже к последнему числу, и т. д. В результате мы получаем последовательность комплексных чисел, которая начинается с числа 0 :

0, с, с 2+ с, с 4+ 3+ с 2+ с

Данная процедура, будучи реализована при некоторыхопределенных значениях комплексного числа с , дает последовательность чисел, которые все время остаются вблизи начала координат плоскости Аргана; точнее, для выбранных таким образом значений с получаемая последовательность оказывается ограниченной, то есть любой ее член находится в пределах некоторого фиксированного круга с центром в начале координат (рис. 3.12).

Рис. 3.12.Последовательность точек на плоскости Аргана ограничена, если вся она целиком помещается в пределах некоторого фиксированного круга. (Итерация на рисунке начинаетсл с точки 0 и построена для с = – l/2 + ( l/2 ) i .)

Хорошим примером здесь может служить последовательность с = 0 , поскольку каждый ее член равен 0 . Другим примером ограниченного поведения является случай с = 1, при котором получается последовательность 0, -1, 0, -1, 0, -1….; еще один пример – это с = i , когда получается последовательность 0, i, i – 1, -i, i – 1, -i, i – 1, -i….. Однако, для целого ряда других комплексных чисел с получаемая последовательность все дальше удаляется от начала координат, то есть является неограниченнойи не может находиться целиком в пределах фиксированного круга. Именно так происходит при с = 1 , когда получается последовательность 0, 1, 2, 5, 26, 677,458 330….; аналогичное поведение имеет место в случае с = 3– соответствующая последовательность имеет вид 0, -3, 6, 33,1086….; а также случай с = i – 1, который приводит к последовательности 0, i – 1, -i – 1, -1 + 3i, – 9 – i5, 55 + i91, -5257 + i10011,

Множество Мандельброта – то есть зачерненная часть страны Тор'Блед-Нам [64]64
  В оригинале – Tor’Bled-Nam. А что получится, если прочитать наоборот? – Прим. ред.


[Закрыть]
 – как раз и есть та самая область на плоскости Аргана, что состоит из всех точек с , для которых получаемая последовательность является ограниченной. Белая же область состоит из тех точек с , для которых получается неограниченная последовательность. Приведенные выше подробные рисунки основаны на результатах компьютерных вычислений. На компьютере был проведен систематический перебор всевозможных комплексных чисел с , для каждого из них строилась последовательность 0 , с , с 2 + с …, после чего согласно некоторому критерию определялось, ограничена или нет получаемая последовательность. Если последовательность оказывалась ограниченной, то соответствующая числу с точка экрана становилась черной. Таким образом, для каждой точки в рассматриваемой области компьютер решал, закрасить ее в белый или черный цвет.

Множество Мандельброта впечатляет своей сложностью, особенно учитывая, как это часто бывает в математике, удивительную простоту его определения. Кроме того, структура этого множества в целом не очень чувствительна к выбору алгебраической формы отображения – z z 2 + с . Многие другие итеративные отображения (например, z z 3 + iz 2 + c ) приводят к поразительно похожим структурам (при условии выбора подходящего начального числа – возможно, это не 0 , а значение, четко задаваемое вполне определенным математическим правилом для каждого разумно выбранного отображения). Подобные «мандельбротовы» структуры характеризуются некоторыми универсальными или абсолютными свойствами по отношению к итеративным комплексным отображениям. Изучение таких структур является предметом отдельного раздела математики – так называемой теории комплексных динамических систем.

Платоническая реальность математических понятий?

Насколько реальны объекты математического мира? Некоторые считают, что ничего реального в них быть не может. Математические объекты суть просто понятия, они представляют собой мысленные идеализации, созданные математиками – часто под влиянием внешних проявлений и кажущегося порядка окружающего нас мира; но при этом они – всего лишь рожденные разумом абстракции. Могут ли они представлять собой что-либо, кроме просто произвольных конструкций, порожденных человеческим мышлением? И в то же время эти математические понятия часто выглядят глубоко реальными и эта реальность выходит далеко за пределы мыслительных процессов любого конкретного математика. Тут как будто имеет место обратное явление – человеческое мышление как бы само оказывается направляемым к некой внешней истине – истине, которая реальна сама по себе, и которая открывается каждому из нас лишь частично.

Множество Мандельброта представляет собой потрясающий пример. Его удивительно сложная структура не является результатом изобретения ни какой-либо отдельной личности, ни группы математиков. Сам Бенуа Мандельброт – американский математик польского происхождения (и один из главных разработчиков теории фракталов), который первый [65]65
  Первенство обнаружения этого множества до сих пор остается предметом споров (см. Брукс, Мательски [1981], Мандельброт [1989]), но сама возможность таких споров представляет собой дополнительное свидетельство в пользу того, что здесь мы имеем дело скорее с открытием, чем с изобретением.


[Закрыть]
изучил это множество, не мог себе представить, насколько фантастически сложным окажется этот объект, хотя и понимал, что обнаружил нечто очень интересное. Действительно, увидев самые первые компьютерные изображения, он счел увиденные им размытые структуры результатом сбоя (Мандельброт [1986])! И только потом он убедился, что они действительно являлись частью множества. Более того, сложную структуру множества Мандельброта во всех ее деталях не под силу охватить никому из нас, и ее невозможно полностью отобразить на компьютере. Создается впечатление, что рассматриваемая структура не является всего лишь частью нашего мышления, но что она реальна сама по себе. Кто бы из математиков или программистов ни занялся изучением этого множества, результатом их исследований обязательно будут приближения к одной и той же единой для всех фундаментальной математической структуре. Не важно, на каком компьютере проводятся вычисления – лишь бы он правильно работал (конечно, если отвлечься от различий в степени подробности выявляемых деталей и скорости их вывода, связанными с различиями в производительности, объеме памяти и параметрах монитора). При этом компьютер применяется в сущности так же, как прибор в руках физика-экспериментатора, исследующего строение физического мира. Множество Мандельброта – это не плод человеческого воображения, а открытие. Подобно горе Эверест, множество Мандельброта просто-напросто уже существовало «там вовне»!

Аналогичным образом сама система комплексных чисел обладает глубокой и вневременнбй реальностью, выходящей далеко за пределы мысленных конструкций, созданных любым конкретным математиком. Первые шаги на пути к пониманию комплексных чисел связаны с работами Джероламо Кардано. Он родился и жил в Италии с 1501 по 1576 год – врач, игрок и составитель гороскопов (однажды он даже составил гороскоп для Иисуса Христа), написавший в 1545 году очень важный и оказавший большое влияние на последующее развитие математики трактат по алгебре под названием Ars Magna. В этом трактате он предложил первое полное решение (в терминах иррациональных выражений, то есть корней n й степени) кубического уравнения в общем виде [66]66
  Частично основанное на более ранних работах Сципионе дель Ферро и Тартальи.


[Закрыть]
. Кардано заметил, что в некоторых – так называемых «неприводимых» – случаях, когда уравнение имело три действительных решения, он был вынужден на определенном этапе включать в свою формулу квадратный корень из отрицательного числа. Хотя это обстоятельство и приводило его в замешательство, он понял, что полное решение можно получить тогда и только тогда, если допустить возможность извлечения таких квадратных корней (окончательный результат всегда оказывался действительным числом). Позднее, в 1572 году Рафаэль Бомбелли в своей работе, озаглавленной «Алгебра», обобщил работу Кардано, положив начало изучению алгебры комплексных чисел.

Хотя вначале может показаться, что введение таких квадратных корней из отрицательных чисел представляет собой всего лишь некоторый прием – математическое изобретение для достижения конкретной цели, – впоследствии становится очевидным, что потенциал этих объектов выходит далеко за рамки их использования для первоначально поставленных целей. При том, что изначально комплексные числа вводились (как уже упоминалось выше) для обеспечения возможности «безнаказанно» извлекать квадратные корни из отрицательных чисел, сделав этот шаг, мы получили в качестве бесплатного приложения еще и способ извлечения корней любой степени, а также решения любых алгебраических уравнений. Далее мы обнаружим у комплексных чисел много других волшебных свойств, о которых мы вначале даже и не подозревали. Эти свойства просто-напросто уже существуют «там вовне». Они не были привнесены туда ни Кардано, ни Бомбелли, ни Уоллисом, ни Котсом, ни Эйлером, ни Весселем, ни Гауссом, несмотря на несомненную прозорливость и их, и других великих математиков. Этот набор волшебных свойств был изначально присущ самой структуре, которую они шаг за шагом открывали. Когда Кардано вводил комплексные числа, он и подозревать не мог о существовании множества открытых впоследствии чудесных свойств, названных именами знаменитых ученых – таких как интегральная формула Коши, теорема отображения Римана или свойство продолжения Леви. Эти и многие другие замечательные свойства присущи самим числам – в точности тем самым числам, с которыми Кардано впервые столкнулся в 1539 году.

Что такое математика – изобретение или открытие? Процесс получения математиками результатов – что это: всего лишь построение не существующих в действительности сложных мысленных конструкций, мощь и элегантность которых способна обмануть даже их собственных изобретателей, заставив их поверить в «реальность» этих не более чем умозрительных построений? Или же математики действительно открывают истины уже где-то существующие, чья реальность в значительной степени независима от их деятельности? Я думаю, что читателю должно стать уже совершенно ясно, что я склонен придерживаться скорее второй, чем первой точки зрения, по крайней мере, в отношении таких структур, как комплексные числа или множество Мандельброта.

Однако, не все так просто. Как я уже сказал, в математике существуют вещи, к которым термин «открытие» подходит больше, чем «изобретение» – как в только что упомянутых примерах. Это происходит, когда структура дает гораздо больше того, что в нее было вложено изначально. Можно встать и на такую точку зрения, согласно которой в этих случаях математики просто наталкиваются на «творения Бога». Встречаются, однако, другие ситуации, когда математические структуры не столь убедительно уникальны – например, когда посреди доказательства какого-нибудь результата возникает необходимость в некой хитроумной, хотя и далеко не уникальной конструкции для достижения весьма специфической цели. В этих случаях от вновь созданной конструкции вряд ли следует ожидать больше того, что было в нее первоначально заложено, и термин «изобретение» представляется более подходящим, чем «открытие». Они, действительно, суть просто «творения человека». Согласно этой точке зрения, истинные математические открытия должны, как правило, рассматриваться как достижения более великие, чем «просто» изобретения.

Такого рода ранжирование обнаруживает некоторое сходство с тем, что мы иногда наблюдаем в области искусства или техники. Великие произведения искусства действительно «ближе к Богу», чем менее значительные творения. У художников нередко возникает чувство, что в своих величайших произведениях они открывают вечные истины, существовавшие уже до них в некотором высшем смысле [67]67
  Как сказал выдающийся аргентинский писатель Хорхе Луис Борхес: «…знаменитый поэт в большей степени первооткрыватель, чем изобретатель…».


[Закрыть]
, в то время как менее значительные произведения могут быть более случайными, являясь по своей природе всего лишь порождениями простых смертных. Точно также и новое инженерное решение с очень красивой структурой, позволяющее достичь значительных результатов через применение простой и неожиданной идеи, может с полным на то основанием рассматриваться скорее не как изобретение, а как открытие.

Однако, высказав все эти соображения, я не могу отделаться от ощущения, что в случае математики вера в некоторое высшее вечное существование – по крайней мере для наиболее глубоких математических концепций, – имеет под собой гораздо больше оснований, чем в других областях человеческой деятельности. Несомненная уникальность и универсальность такого рода математических идей по своей природе существенно отличается от всего того, с чем приходится сталкиваться в области искусства и техники. Точка зрения, согласно которой математические понятия могут существовать в такого рода вневременном, высшем смысле, была впервые высказана еще в древности (около 360 года до н. э.) великим греческим философом Платоном, и поэтому ее часто называют математическим платонизмом. Она играет важную роль в дальнейшем изложении.

В главе 1 я довольно много места уделил обсуждению точки зрения сильного искусственного интеллекта, согласно которой мыслительные явления находят свое воплощение в рамках математического понятия алгоритма. В главе 2 я особо подчеркнул, что алгоритм есть действительно очень глубокое и «Богом данное» понятие. В этой главе я старался доказать, что такие «Богом данные» математические идеи существуют в определенном смысле вне времени и независимо от нас смертных. Не могут ли эти соображения служить своего рода подтверждением справедливости концепции сильного искусственного интеллекта, допуская возможность некоего высшего существования мыслительной деятельности? Это вполне возможно – и я даже собираюсь далее привести ряд соображений в поддержку в чем-то похожей точки зрения. Но если у мыслительных явлений и вправду имеется такое вместилище, я все же не думаю, что это может относиться и к понятию алгоритма. Тут нужно что-то более «тонкое». Последующее обсуждение будет в значительной степени опираться на тот факт, что связанные с понятием алгоритма объекты составляют очень узкую и ограниченную часть математики. Следующая глава даст некоторое представление об огромных возможностях и изяществе неалгоритмической математики.

Глава 4
Истина, доказательство и интуиция

Программа Гильберта для математики

Что есть истина? Как мы составляем наши суждения о том, что в мире является справедливым, верным, а что – нет? Следуем ли мы некоторому алгоритму, которому отдается предпочтение среди прочих, менее эффективных, в процессе всемогущего естественного отбора? Или же возможен некий иной путь – не алгоритмизированный, а основанный на особой проницательности, интуитивный, инстинктивный – позволяющий угадывать правду? Это представляется нелегким вопросом. Наши суждения зависят от сложных взаимосвязанных комбинаций данных, поставляемых органами чувств, и наших размышлений и догадок. Более того, во многих реальных ситуациях не может существовать единого мнения по поводу того, что на самом делеистинно, а что – ложно. Чтобы упростить задачу, рассмотрим только лишь математическуюистину. Как мы формируем суждения – а может, даже и наши «стопроцентно верные» знания – при ответе на вопросы из области математики? Там уж, по крайней мере, все должно быть не так размыто, очерчено более ясно. Там не может возникать вопросов об истинности – или все-таки может? Что же, в конце концов, есть математическая истина?

Вопрос об этой истине возник не сегодня, он уходит корнями в античность, к греческим философам и математикам – и, несомненно, еще дальше, в глубь веков. Однако, несколько великих открытий и поразительных прозрений здесь были сделаны не далее как в XX столетии. Эти новые достижения заслуживают того, чтобы постараться их понять. Они носят фундаментальный характер и непосредственно касаются вопроса о том, являются ли наши мыслительные процессы полностью алгоритмизированными по своей природе или нет. Четко разобраться в этом – задача, имеющая для нас весьма важное значение.

В последней части XIX века математика шагнула далеко вперед в результате развития все более и более мощных методов математического доказательства. (Давид Гильберт и Георг Кантор, с которыми мы познакомились ранее, и великий французский математик Анри Пуанкаре, с которым нам еще предстоит встретиться, шли во главе этих разработок.) Как следствие, математики стали обретать уверенность в том, что применение этих методов приведет к успеху. Многие из таких методов основаны на рассмотрении множеств [68]68
  «Множество» означает набор предметов – физических объектов или математических абстракций, – который может рассматриваться как единое целое. В математике элементы (т. е. члены) множества часто сами являются множествами, поскольку множества могут собираться таким образом, чтобы самим формировать множества. Тем самым можно рассматривать множества множеств, множества множеств множеств и т. д.


[Закрыть]
с бесконечным числом членов, и доказательства часто оказывались осуществимы благодаря именно тому, что такое множество можно было рассматривать как реальный «объект» – завершенное единое целое, существующее не только в абстракции. Многие из этих идей родились из в высшей степени оригинальной концепции Кантора о бесконечных числах, которую он развил, последовательно используя бесконечные множества. (Мы кратко ознакомились с ними в предыдущей главе.)

Однако эта уверенность пошатнулась, когда в 1902 году английский логик и философ Бертран Рассел придумал свой знаменитый парадокс (который предвидел и сам Кантор и который выводился непосредственно из его диагонального процесса). Чтобы понять доводы Рассела, мы сначала должны хотя бы немного почувствовать, как можно представить множество в виде единого целого. Давайте представим себе множество, характеризуемое некоторым (общим) свойством. Например, набор красныхпредметов может быть охарактеризован словом «краснота» как его определяющим свойством: нечто принадлежит этому множеству тогда и только тогда, когда это обладает «краснотой» (имеет красный цвет). Это позволит нам «перевернуть» точку зрения и трактовать свойство как единичный объект, который будет состоять из всего множества вещей, обладающих данным свойством. При таком рассмотрении «краснота» эквивалентнамножеству всех красных предметов. (При этом мы можем предполагать существование «там вовне» и других множеств, члены которых не могут быть охарактеризованы подобным простым свойством.)

Идея формулировки понятий в терминах множеств послужила основой для процедуры, предложенной в 1884 году влиятельным немецким логиком Готтлибом Фреге, которая позволяла определять числачерез множества. К примеру, что мы понимаем под числом 3 ? Мы знаем, в чем заключается «тройственность», но что есть число 3 само по себе? Очевидно, что «тройственность» есть свойство наборовобъектов, т. е. свойство множеств: некоторое множество обладает данным свойством тогда и только тогда, когда это множество состоит из трех членов. Этим свойством характеризуется, скажем, тройка призеров-медалистов некоторой Олимпиады. Равно как и набор шин к трехколесному велосипеду, или листья на одном стебельке обычного клевера, или множество всех решений уравнения x 3 2 + 11x 6 = 0 . Как же можно тогда определить по Фреге само число 3 ? Согласно Фреге, 3 – это множество множеств, а именно, всех множеств, имеющих свойство «тройственности» [69]69
  Рассматривая множества, члены которых, в свою очередь, также являются множествами, мы должны тщательно проводить отличия между членами такого множества и членами его членов. Например, допустим, что S – это множество непустыхподмножеств некоторого другого множества Т , членами которого являются один апельсин и одно яблоко. Т в таком случае имеет свойство «двойственности», тогда как S обладает свойством «тройственности»: членами S будут множества а) из одного яблока; б) из одного апельсина и в) из одного апельсина и одного яблока – представляющие тричлена S . Аналогично, множество, чьим единственным членом является пустое множество, будет иметь свойство «единичности», а не «нулевости» – в него входит один член, а именно пустое множество! При этом самопустое множество не будет иметь, конечно, ни одного члена.


[Закрыть]
. Таким образом, множество содержит три члена тогда и только тогда, когда оно принадлежит множеству 3 по Фреге.

Может показаться, что мы попадаем в замкнутый круг, но в действительности это совсем не так. Мы можем определить числа в общем случае как совокупности всевозможных эквивалентных множеств, где говоря «эквивалентные», мы понимаем «состоящие из элементов, которые могут быть попарно сопоставлены друг другу» (или, в более привычной терминологии, «имеющих одинаковое число элементов»). Тогда число 3 будет одной из этих совокупностей множеств, которая содержит в себе в качестве члена множество, состоящее, скажем, из яблока, апельсина и груши. Обратите внимание, что это принципиально отличается от определения « 3 », данного Черчем (см. гл.2 «Лямбда-исчисление Черча»). Существуют также и другие определения, причем более популярные в наши дни.

Вернемся теперь к парадоксу Рассела. В чем он заключается? В нем рассматривается множество R , определенное следующим образом:

R есть множество множеств, которые не являются членами самих себя.

Таким образом, R есть набор множеств X , отвечающих следующему условию: среди членов множества X не должно быть самого X .

Не является ли абсурдным предполагать, что множество в действительности может быть членом самого себя? Ничуть. Рассмотрим, к примеру, множество I , состоящее из бесконечныхмножеств (множеств с бесконечным числом членов). С очевидностью, существует бесконечное число различныхбесконечных множеств, и само множество I , таким образом, является бесконечным. И, таким образом, оно, действительно, принадлежит самому себе! Но как же, в таком случае, рассуждения Рассела дают нам парадоксальное утверждение? Давайте спросим: является ли множество Рассела R членом самого себя или нет? Если нет, то оно должно принадлежать себе, ибо R состоит как раз из таких множеств, которые не являются членами самих себя. То есть, в конечном счете, R принадлежит R – противоречие! С другой стороны, если R есть членсамого себя, то, поскольку «самое себя» – это R , оно в то же время принадлежит множеству, члены которого, по определению, не могут быть составляющими самих себя, т. е. все-таки не принадлежит самому себе – и вновь противоречие! [70]70
  Можно дать занятную трактовку парадокса Рассела в более привычных терминах. Представьте себе библиотеку с двумя каталогами, один из которых перечисляет только те книги в библиотеке, которые хотя бы раз ссылаются на себя самих, а другой – остальные книги, т. е. те, которые не упоминают себя. В каком из этих каталогов, в таком случае, должен фигурировать второй каталог?


[Закрыть]

Этот парадоксальный вывод не был праздной игрой ума: Рассел использовал – хотя и в крайней форме – тот же тип весьма общих теоретико-множественных методов, которые математики начинали использовать в то время для своих доказательств. Становилось очевидным, что казавшаяся незыблемой почва ускользает из-под ног, и поэтому необходимо было как можно точнее определить, какие рассуждения считать допустимыми. Ясно было, что такие рассуждения должны быть свободны от внутренних противоречий, и что утверждения, которые будут выводиться с их помощью как следствия из априори верных посылок, должны быть также верными. Рассел, совместно со своим коллегой Альфредом Нортом Уайтхедом, взялся за развитие такой полностью формализованной системы аксиом и правил вывода, на язык которой стало бы возможным перевести все виды корректных математических рассуждений. Все правила подвергались тщательному отбору, дабы избежать «ложных» путей рассуждений, могущих привести к парадоксам, подобным упомянутому выше. Однако схема, появившаяся на свет в результате этих усилий, была очень громоздка и оказалась весьма ограниченной по диапазону различных типов математических рассуждений, которые она охватывала. Великий математик Давид Гильберт (которого мы впервые встретили в главе 2) задался целью создать более практичную и универсальную систему. В нее должны были войти все типы математических рассуждений из всех областей математики. Более того, Гильберт стремился сделать возможным строгое доказательствоотсутствия противоречий в своей схеме. Тогда математика раз и навсегда смогла бы встать на прочную и неколебимую основу.

Однако надежды Гильберта и его последователей были перечеркнуты, когда в 1931 году блестящий австрийский логик математики Курт Гедель выдвинул поразительную теорему, которая до основания разрушала программу Гильберта. Гедель показал, что любаяподобная точная («формальная») система аксиом и правил вывода, если только она достаточна широка, чтобы содержать в себе описания простых арифметических теорем (как, например, «последняя теорема Ферма», рассмотренная в главе 2), и если она свободна от противоречий – то такая система должна включать утверждения, которые не являются ни доказуемыми, ни недоказуемыми в рамках формализма данной системы. Истинность таких «неразрешимых» утверждений, следовательно, не может быть выяснена с помощью методов, допускаемых самой системой. Более того, Гедель смог показать, что даже утверждение о непротиворечивости системы аксиом, будучи переведенным в форму соответствующей теоремы, само по себе является «неразрешимым». Для нас будет очень важным понять природу этой неразрешимости. Тогда мы увидим, почему выводы Геделя опровергали самое основание программы Гильберта. Мы также увидим, каким образом они дают нам возможность, воспользовавшись интуицией, выходить за пределы любой рассматриваемой формализованной математической системы. Это понимание будет решающим для того, чтобы, в свою очередь, лучше понять обсуждаемое далее.


    Ваша оценка произведения:

Популярные книги за неделю