Текст книги "Физика и магия вакуума. Древнее знание прошлых цивилизаций."
Автор книги: Игорь Прохоров
Жанр:
Альтернативная история
сообщить о нарушении
Текущая страница: 4 (всего у книги 54 страниц)
Невозможно сказать, из чего именно состоит физвакуум. Да и вряд ли когда-нибудь мы сможем это сделать. Тот факт, что из вакуума выбиваются пары частица+античастица, еще не означает, что он именно из этих частиц состоит. Правильнее будет сказать так: мы не знаем, из чего состоит вакуум, но при своем распаде он дает осколки, которые мы воспринимаем в форме элементарных частиц. Поэтому чисто условно можно полагать, будто вакуум состоит из отдельных квантов, которые в свою очередь состоят из вложенных друг в друга электронов и позитронов (но обязательно условно, а не так, будто именно это реализуется в природе). Так как электрон и позитрон имеют разные заряды и спины, суммарный заряд и спин будет нулевым, и такой квант окажется визуально не наблюдаем, то есть его как бы не будет вообще. Однако нулевой заряд не означает нулевую массу. Масса остается и придает вакууму свойства инерционности и гравитационности, то есть вакуум может реагировать на гравитационное поле материальных тел и показывать эффекты инерции. Эти особенности могут быть причиной многих странных явлений, наблюдаемых сегодня в астрономии.
Пара электрон+позитрон удерживается в границах одного кванта некоторыми силами, которые имеют вполне определенное значение. Если к такому кванту приложить внешнюю силу, превышающую силу сцепления электрона с позитроном, квант распадется на осколки, легко регистрируемые в эксперименте. Визуально это будет проявляться как возникновение электрона и позитрона из пустоты. И подобные процессы действительно наблюдаются: это возникновение электрон-позитронной пары в очень сильных электрических полях с напряженностью выше некоторого критического уровня.
Например, возле ядра атома урана, состоящего из 92х протонов, существует очень сильное электрическое поле с напряженностью, близкой к критическому уровню. А если бы химики сумели создать химический элемент с двумя сотнями протонов в ядре атома, напряженность электрического поля возле такого суперядра стала бы настолько огромна, что вакуум начал бы взрывообразно распадаться на частицы и античастицы. И эта особая взрывообразная радиоактивность распада вакуума уничтожила бы созданный химиками суператом. Возможно, именно по этой причине не существует слишком тяжелых трансурановых элементов.
Может показаться странным данное утверждение о существовании пары вложенных друг в друга электронов и позитронов. Мы привыкли считать, что контакт частицы с античастицей ведет к аннигиляции и взаимному уничтожению. Но это не является экспериментально установленным фактом, как многие думают. Фактом является то, что мы перестаем видеть и фиксировать электрон с позитроном после их столкновения. А все остальное является попыткой объяснения данного факта. Возможны два разных объяснения: 1) электрон и позитрон взаимно уничтожаются и перестают существовать в прямом смысле слова (официальная точка зрения); 2) электрон и позитрон объединяются в единый квант и встраиваются в стуктуру физвакуума, становясь для нас невидимыми (альтернативная точка зрения).
Какая из двух альтернатив верна? Первая? А из каких опытов или теорий это следует? В реальности за всю историю земной науки не было поставлено ни одного опыта по выбору той или иной точки зрения. То, что наши ученые в подавляющем большинстве придерживаются первой альтернативы, обусловлено тем же стереотипом слепоты, которым в свое время страдал Галилей, размышляя о проблеме потенциальной энергии. Очень может быть, что истиной окажется вторая альтернатива и при контакте электрона с позитроном они просто встраиваются в стуктуру вакуума, исчезая из нашего наблюдения. А если затем мы подействуем на вакуум достаточно мощной силой (жесткое излучение, электрическое поле и т. д.), тогда мы снова расщепим вакуум на осколки и будем наблюдать возникающие элементарные частицы.
В мире существует только одна энергия – энергия физического вакуума. Все остальные формы энергии (в том числе и гравитационная) являются частным случаем вакуумной энергии. Поэтому получить формулы расчета энергии физвакуума можно путем анализа некоторых процессов с участием гравитационного поля.
Рассмотрим процесс сжатия космической газовой туманности под действием собственной гравитации. Когда под действием сил тяготения туманность сжимается, ее радиус уменьшается, а гравитационная энергия растет согласно уравнению (1.4.6). Согласно законам термодинамики температура газа увеличивается с его сжатием, следовательно, тепловая энергия туманности тоже растет. Если туманность имела некоторое первоначальное вращение, в процессе ее сжатия скорость вращения повышается, значит энергия вращения также увеличивается. Растут энергии электрического и магнитного полей (если туманность имела электрический заряд и магнитное поле), т. к. эти формы энергии обратно пропорциональны радиусу. Короче, все известные формы энергии при гравитационном сжатии газовой туманности увеличиваются. А что уменьшается? Раньше можно было бы сказать, что уменьшается потенциальная энергия. В реальности уменьшается вакуумная энергия того объема пространства, который занят гравитационным полем туманности.
Энергия вакуума должна быть больше энергии самого сильного гравитационного поля, иначе такое поле не сможет возникнуть. На сегодняшний день объектами с самым мощным гравитационным полем считаются черные дыры. Подставляя в уравнение гравитационной энергии (1.4.6) зависимость радиуса черной дыры от ее массы и скорости света, получим
(1.6.1)
При выводе этой формулы использовалась классическая формулировка закона тяготения Ньютона. Но в сильных гравитационных полях, характерных для черных дыр, закон тяготения выглядит иначе
(1.6.2)
Использование уточненной записи дает следующую формулу энергии гравитационного поля черной дыры
(1.6.3)
Очевидно, что вакуумная энергия пустого недеформированного пространства должна превосходить гравитационную энергию черной дыры в два раза. Почему именно в два раза? Когда образуется гравитационное поле его энергия растет за счет энергии физвакуума, а энергия самого вакуума в объеме, занятом полем, снижается. Этот процесс идет до тех пор, пока энергии поля и вакуума не сравняются. Дальнейший процесс усиления поля невозможен, т. к. энергия подобно воде не может перетекать от меньшего потенциала в область более высокого потенциала. И если энергии поля и вакуума в этот момент распределяются поровну, то в отсутствие поля энергия вакуума будет в два раза выше. И в итоге мы получаем
(1.6.4)
Если пространство свободно от гравитационных полей, его энергия рассчитывается по этой формуле. Когда в пространстве возникает гравитационное поле, оно деформирует структуру пространства и энергия поля растет за счет энергии вакуума ES, а сама энергия вакуума уменьшается. Этот процесс идет до тех пор, пока гравитационная энергия черной дыры не сравняется с энергией деформированного пространства.
Полученная формула косвенно подтверждает сделанные ранее предположения об аннигиляции частиц и античастиц как источнике образования пространства. При аннигиляции выделяется энергия Е = mc;. Энергия физвакуума рассчитывается по этой же формуле. Было бы странным, если такое совпадение окажется случайностью. Скорее всего, случайности нет: энергия аннигиляции являетя одновременно энергией физического вакуума.
Чтобы узнать плотность вакуумной энергии (ее содержание в единице объема), будем использовать тот же самый прием, который мы использовали ранее для расчета плотности гравитационной энергии. Для этого перепишем формулу (1.6.3) так, чтобы вместо массы черной дыры появился ее радиус
(1.6.5)
Если по какой-то причине радиус черной дыры изменится с r1 до r2, то ее гравитационная энергия изменится с Е1 до Е2. Разность этих энергий
(1.6.6)
дает количество энергии, заключенной в тонком слое толщиной ;r. Разделив эту величину на объем слоя, мы получаем содержание гравитационной энергии черной дыры в единице объема
(1.6.7)
Следовательно, плотность вакуумной энергии недеформированного пространства
(1.6.8)
Полученные формулы содержат радиус. Чем меньше радиус, тем больше гравитационная энергия черной дыры. Каков может быть минимальный радиус черной дыры? Будем рассуждать следующим образом. Черные дыры состоят из обычного вещества, которое в свою очередь состоит из протонов, нейтронов и электронов. Любой кусок вещества по своим размерам не может быть меньше размера самой маленькой частицы, составляющей это вещество, то есть электрона. Следовательно, манимальный радиус, до которого может сжаться вещество под собственной гравитацией, это радиус электрона re = 1.41;10(-15)м. В этом случае энергия гравполя будет максимальна. Поэтому радиус в формуле (1.6.8) – это радиус электрона и окончательно
(1.6.9)
или численно ;S = 2.45;10(72) дж/м; (или 2.45;10(63) дж/мм;). Для сравнения, при взрыве сверхновой звезды выделяется энергия порядка 10(53) ;10(54) дж, что примерно в миллиард раз меньше вакуумной энергии, содержащейся в одном кубическом миллиметре пустого пространства. Как видим, даже самые мощные астрофизические процессы, известные сегодня ученым, не могут по своему энерговыделению сравниться с тем, что содержит в себе вакуум.
Можно предложить иной ход рассуждений относительно радиуса в формулах энергии. Если пространство состоит из квантов, тогда минимальный размер черной дыры не может быть меньше размера кванта. Физики считают, что размер кванта пространства определяется планковской длиной, равной 4;10(-35)м. Тогда минимально возможный радиус черной дыры будет равен 2;10(-35)м. Подставляя это значение в формулу, получаем 1.2;10(112) дж/м;. Такой плотности энергии соответствует плотность вещества 1.33;10(92) г/мм;.
Какой вариант выбрать: электронный радиус или планковский? Практически все физики, работающие в этой и смежной областях, получают плотности вещества порядка 10(92) г/мм;. И все же у меня есть достаточно веские основания не согласиться с общим мнением и использовать в дальнейшем в качестве определяющей величины электронный радиус. Причина такого несогласия с общим мнением будет обоснована в следующем разделе, когда мы перейдем к теоретическому расчету фундаментальных констант.
Наличие столь огромных количеств энергии в пространстве ведет к созданию внутренних сил давления, заставляющих пространство расширяться. Нашу Вселенную можно уподобить воздушному шарику, который содержит в себе энергию сжатого воздуха. Данная энергия создает внутренние силы давления, под действием которых шарик раздувается. До тех пор, пока давление не спало до нуля, воздух внутри шарика остается сжатым, то есть деформированным, и продолжает содержать в себе энергию. Физический вакуум нашей Вселенной также сжат и деформирован, а будучи сжатым, он создает внутренние силы давления.
Формула силы внутреннего давления вакуума легко получается из уравнения (1.6.5). Учитывая, что работа и изменение энергии определяются как произведение силы на расстояние, а вакуумная энергия в два раза превосходит максимальную энергию гравполя черной дыры, мы из уравнения (1.6.5) получаем
(1.6.10)
Формула силы расширения пространства может быть получена другим способом без привлечения концепции вакуумной энергии. Для этого обратим внимание на следующие факты. Во-первых, радиус Вселенной подозрительно близок радиусу черной дыры с массой, равной массе Вселенной. В настоящее время масса Вселенной оценивается величиной 1.67;10(53) кг, а ее радиус 2;10(26) м. Черная дыра с такой массой имела бы радиус 2.5;10(26) м. Во-вторых, измерения интенсивности реликтового излучения показали его слабую неравномерность по небесной сфере, что заставило астрономов придти к выводу о конечности размеров Вселенной (для бесконечно огромных размеров интенсивность реликтового излучения будет одинакова по всем направлениям от Земли). В-третьих, из астрономических наблюдений следует, что самые удаленные космические объекты, находящиеся на периферии Вселенной, удаляются от нас со скоростями, близкими к световым. Самая большая скорость, зафиксированная астрономами, составляет 270 000 км/сек, что всего на 10% меньше световой. Подобные совпадения не могут быть простой случайностью. Поэтому мы можем предположить, что наблюдаемая Вселенная является гигантской черной дырой, расширяющейся со скоростью света.
Если концепция о форме существования Вселенной в виде черной дыры соответствует истине, тогда можно легко найти среднюю плотность барионного вещества: она равна 0.2375;10(-29) г/см;. А расчеты астрономов показывают, что средняя плотность барионного вещества в наблюдаемом объеме Метагалактики в несколько раз меньше значения 10(-29) г/см;. Такое качественное совпадение свидетельствует в пользу сделанного предположения о форме существования Вселенной в виде черной дыры.
Если представить всю Вселенную в виде концентрических сферических оболочек, расширяющихся со скоростью v каждая, тогда уравнение движения каждой оболочки будет выглядеть как
(1.6.11)
где dm – масса сферической оболочки. Для равномерного распределения массы Вселенной по ее объему
(1.6.12)
Тогда
(1.6.13)
Из астрономических наблюдений известно, что скорость разбегания галактик (иначе скорость расширения пространства) пропорциональна удалению от Земли, то есть v = cr/R. Подстановка данной зависимости в уравнение (1.6.13) и последующее интегрирование от 0 до r дает формулу
(1.6.14)
или
(1.6.15)
Настоящее выражение отличается от ранее полученной формулы численным множителем и наличием зависимости от текущего радиуса. Но появление радиуса нельзя считать ошибкой или недостатком. С этой точки зрения формула (1.6.15) является уточнением предыдущей формулы (1.6.10). А другой численный множитель объясняется сделанным предположением о равномерном распределении вещества по объему Вселенной. Если вещество распределяется по Вселенной неравномерно, тогда численный множитель в формуле (1.6.15) будет иным.
Например, если мы предполагаем, что в центре Вселенной плотность вещества в 4/3 раза больше средней и затем она линейно снижается к периферии, тогда численный множитель будет 1/2. С другой стороны, формула (1.6.10) получена без всяких допущений о равномерности или неравномерности распределения вещества. Поэтому окончательная формула расчета силы расталкивания должна иметь вид
(1.6.16)
Максимальное значение расталкивающей силы 6.05;10(43) н наблюдается на границе Вселенной при r=R. Там же наблюдается максимальный градиент силы 9.69;10(17) н/м. Ясно, что ни одно материальное тело не в состоянии выдержать подобные градиенты сил. Поэтому любой объект, приблизившийся к границе Вселенной за счет случайно полученной высокой скорости, будет разрушаться космическими силами буквально до атомарного состояния и вся его тепловая, гравитационная и ядерная энергия будет переходить в жесткое гамма-излучение. Возможно, именно этим объясняется существование квазаров. Вспомним, что именно квазары являются наиболее удаленными от Земли космическими объектами, они практически все находятся на самом краю наблюдаемой Метагалактики.
Следует также заметить, что разумная жизнь во Вселенной вследствие этой особенности возможна только вблизи ее центра. Чем дальше от центра, тем хуже условия для сохранения материальных объектов типа звезд и планет, тем менее вероятно возникновение жизни. Поэтому неудивительно, что видимая Метагалактика чисто визуально наблюдается нами в виде сферы, центром которой является Земля. Мы действительно находимся вблизи от центра Вселенной, в противном случае мы не могли бы существовать.
В свое время А.Эйнштейн предложил идею космических сил всеобщего расталкивания, чтобы получить картину стационарной Вселенной, казавшейся тогда ему наиболее правильной (он сделал это, введя в свои формулы космологическую константу – энергию, своейственную пространству как таковому). И хотя уже давно ясно, что Вселенная нестационарна, ученые не торопились отказываться от идеи сил расталкивания. И правильно сделали.
Космическая сила расталкивания является максимальной силой, существующей в нашей Вселенной. Той силой, которая формирует пространство. Если некоторый объект под действием собственного тяготения коллапсирует к состоянию черной дыры и сила его гравитации на поверхности превысит космическую силу расталкивания (а это рано или поздно происходит), пространство в этом месте разрывается и данный объект вываливается в ….. А вот куда он вываливается, остается только гадать. Можно предположить, что такой вываливающийся из нашей Вселенной объект создает собственную Вселенную со своими законами и отношениями. Но можно предложить и другую альтернативу: образовавшаяся в нашем мире черная дыра прорывает все слои пространства Вселенной и переносится в самый ее центр, в самое начало, питая своей энергией вечно работающий Большой Взрыв. Описанный эффект можно назвать проколом пространства (примерно как игла прокалывает ткань).
Если подобные процессы прокола пространства иногда происходят в нашей Вселенной, тогда мы можем объяснить некоторые факты, давно известные астрономам, но до сих пор не имеющие приемлемой трактовки. Речь идет о так называемых гамма-вспышках (Gamma Ray Bursts), пустотах Вселенной и ее сотовой структуре. Гамма-вспышки представляют собой разряды жесткого гамма-излучения такой мощности, будто энергия целой звезды, излучаемая ею за все время своей жизни, выделилась в течение менее одной секунды. Длительность таких вспышек не очень велика, поэтому установить точное местоположение источника астрономам весьма трудно: не хватает времени. Но иногда это удается сделать. А когда местоположение установлено и туда направляют оптические и радиотелескопы, то ничего там не находят. То есть последствия взрыва есть, а источника взрыва нет. Некоторые ученые полагают, что источником гамма-вспышек являются процессы аннигиляции материи и антиматерии в глубинах Вселенной. Если энергия вакуума есть одновременно энергия аннигиляции, то в некоторой степени они правы. Чуть ниже я дам собственное объяснение этому феномену.
Пустоты Вселенной и ее сотовая структура уже понятны из названия: в глобальных масштабах наша Вселенная представляет набор пустых пузырей, разделенных прослойками вещества, состоящими из туманностей, галактик и их скоплений. Такая структура напоминает пчелиные соты или мыльную пену. Средняя плотность вещества в прослойках на несколько порядков превосходит плотность вещества в пустотах.
Допустим, на ранних стадиях развития Вселенной, когда сотовой структуры еще не было и Вселенная была заполнена веществом более-менее равномерно, где-то произошел прокол пространства: небольшой космический объект сжался под действием собственной гравитации до состояния черной дыры, прорвал пространство нашей Вселенной и покинул ее, унося с собой часть вакуумной энергии того объема пространства, который он занимал. Такой беглец уносит с собой не только энергию, он уносит также импульс движения. Согласно законам сохранения, должен возникнуть вторичный импульс, направленный противоположно первому, так что общее количество движения останется равным нулю.
Если в ходе прокола отдельные части черной дыры стягиваются к ее центру равномерно с одинаковой скоростью (идеализированный вариант, обычно такое реализуется с некоторым приближением), возникающий вторичный импульс будет направлен от поверхности дыры наружу также равномерно по всем направлениям. Общая энергия импульса равна mc;/2 (половина от того, что выделится при аннигиляции вещества и антивещества соответствующей массы и столько же, сколько уносит с собой черная дыра). Скорее всего, вторичный импульс будет проявлять себя как фронт жесткого гамма-излучения. Когда такой фронт достигнет Земли, мы зафиксируем его в форме Gamma Ray Burst, вспышках гамма-излучения чрезвычайно огромной мощности и малой длительности.
Учитывая тот факт, что свет оказывает давление на материальные предметы, а энергия гамма-вспышки колоссальна, все находящиеся поблизости от места прокола космические объекты от атома до галактики приобретают мощный толчок и разлетаются в стороны (конечно, если они не разрушились под действием энергии взрыва). На месте прокола и рядом с ним образуется постоянно расширяющаяся пустота, своеобразный космический пузырь. И если в это место навести телескоп, он ничего не увидит. По мере расширения пузыря плотность вещества на его границе будет расти по следующей причине: то вещество, которое находилось ближе к месту прокола, приобретает более высокую скорость из-за повышенной плотности энергии гамма-вспышки на единицу телесного угла и постепенно догоняет другое вещество, которое было дальше от места прокола. Размеры образующихся космических пустот будут зависеть от времени прокола: чем раньше случился прокол, тем больших размеров достигнет космический пузырь. Максимальная из известных астрономам пустот занимает сегодня около 3% объема всей нашей Вселенной.
Если затем в стороне другая черная дыра проколет пространство, образуется новый гамма-взрыв и фронт разлетающегося вещества. Когда два таких фронта столкнутся, импульсы их движения взаимно гасятся и возникает тонкая прослойка уплотненного вещества между двумя пустотами (прослойка будет тонкая по сравнению с размерами Вселенной, естественно). Так как подобные гамма-взрывы должны происходить регулярно по Вселенной, она постепенно приобретает сотовую структуру.
Данный эффект формирования сотовой структуры оказывается невозможным, если скорость света постоянна и не меняется во времени. Пусть даже прослойка уплотненного вещества образовалась, новый прокол пространства уже внутри прослойки будет ее разрушать. Но как будет показано в разделе 1.9, скорость света со временем падает. Сегодня она составляет 3;10(8) м/сек, а в самый начальный момент рождения Вселенной была 5.3;10(49) м/сек. Когда происходил прокол пространства черными дырами на ранних стадиях жизни Вселенной, характеризующихся высокими скоростями света, тогда и скорости расширения пузырей были огромны. Но скорость света быстро падала и вместе с ней падала скорость расширения пузырей, которая не может превышать световую скорость. И вот когда прослойки уплотненного вещества уже образовались и в них происходил новый прокол пространства, скорость света оказывалась настолько меньше, что новый космиический пузырь был уже не в состоянии разрушить образованную прослойку.
И вот что интересно. Ученые обнаружили такую особенность в тех редких случаях, когда удается замерить распределение энергии по спектру гамма-вспышки: распределение энергии оказывается неравномерным уже на уровне десятых или даже сотых долей миллисекунды. Это означает, что поперечные размеры объекта, дающего гамма-вспышку, исчисляются всего несколькими десятками километров. Для Вселенной размер в десятки километров – это ничтожно мало. Но именно такие размеры характерны для черных дыр.
Например, если Солнце сожмется до размеров черной дыры, его диаметр будет равен шести километрам. Но Солнце относится к разряду карликов. А во Вселенной имеется огромное количество звезд с массами в десятки и сотни раз больше солнечной. Будучи сжатой до уровня черной дыры, такая звезда будет иметь поперечный размер как раз в несколько десятков километров. Вследствие некоторых ограничений, налагаемых законами физики, лишь та звезда может сколлапсировать в черную дыру, у которой масса примерно в 3 раза больше массы нашего светила. Отсюда следует, что если верна настоящая точка зрения о природе источников гамма-взрывов как эффектов прокола пространства образующимися черными дырами, тогда минимальный размер такого источника должен составлять около 18 км. Как результат, мы получаем возможность проверки настоящей гипотезы: она оказывается неверной в случае, если будет найден источник гамма-вспышки с поперечным размером менее 18 км, но до тех пор, пока такой источник не найден, она имеет право на существование.
В 2005 году было получено косвенное доказательство в пользу настоящей точки зрения. Астрофизики из Университета Вюрцбурга (Германия) проанализировали данные, собранные Комптоновской обсерваторией (она вела наблюдения за гамма-вспышками в 1991-2000 годах), и обнаружили преобладание в спектрах гамма-излучения определенного уровня энергии. Именно такого уровня, который должен возникать в реакциях аннигиляции. А согласно нстоящей точке зрения, прокол пространства формирующейся черной дырой и последующий гамма-взрыв являются как бы наполовину реакцией аннигиляции.
Кстати, если проколы пространства черными дырами действительно происходят, тогда черные дыры не могут сушествовать. По крайней мере, в нашей Вселенной с теми законами, которые в ней царят и познаются физиками на основе экспериментальных исследований, черные дыры точно существовать не могут. Тем не менее, отсюда не следует, что невозможен процесс образования черных дыр. Процесс гравитационного коллапса достаточно массивного космического тела не запрещается законами физики. Однако на некоторой стадии такого коллапса, когда гравитационные силы превысят космические силы всеобщего расталкивания, коллапсирующее тело прорывает пространство и уходит из нашей Метагалактики. Тот факт, что в Метагалактике найдены очень массивные объекты, претендующие на роль черных дыр, не противоречит настоящей точке зрения. Эти объекты еще не являются черными дырами, но в своей эволюции они подошли достаточно близко к тому порогу, когда могут преодолеть космические силы расталкивания и покинуть нашу Вселенную.
Кроме того, гравитационному коллапсу могут противостоять центробежные силы. Если колапсирующий объект вращается, то при его гравитационном сжатии скорость вращения и центробежные силы возрастают. И может наступить такой момент, когда центробежные силы сравняются с гравитационными и дальнейшее сжатие резко затормозится. Затормозится, но не остановится, потому что за счет гравитационного притяжения окружающего космического газа масса объекта постоянно растет. Поэтому объект постепенно приобретает эллипсоидную форму: сплющенный у полюсов (здесь гравитационные силы максимальны) и растянутый по экватору (гравитационные силы минимальны). И когда гравитация сравняется с силами внутреннего давления вакуума так, что пространство начнет рваться, это происходит в районе полюсов. Вещество коллапсирующего объекта на полюсах начинает покидать нашу Вселенную, унося с собой энергию mc;/2 и импульс mc/2, что порождает вторичный импульс жесткого гамма-излучения, направленный из полюса объекта строго по оси его вращения и уносящий такие же энергию и импульс.
Существуют ли во Вселенной подобные объекты? Да, существуют. Командой ученых из Гарвард-Смитсоновского астрофизического центра под руководством Дэниэла Эванса в галактике 3С321 был зафиксирован сверхмощный поток жесткого гамма-излучения, вырывающийся из ядра галактики строго вдоль оси ее вращения. Этот поток настолько мощен, что попадая на соседнюю галактику-спутник, он буквально разрушает ее. Если бы такой поток краешком задел нашу Землю, планета мгновенно испарилась бы со всем содержимым.
Можно предположить, что на ранней стадии эволюции Вселенной, когда в ней еще было достаточно много космических объектов с малыми скоростями вращения, процессы прокола пространства образующимися черными дырами происходили достаточно часто. Но когда такие объекты в основном покинули нашу Вселенную, в ней остались только вращающиеся объекты, а частота проколов пространства резко снизилась. Поэтому сегодня мы наблюдаем в основном вращающиеся объекты, а вероятность прокола пространства в непосредственной близости от нас довольно мала.
Данная гипотеза об источниках гамма-взрывов как эффектах прокола пространства позволяет объяснить еще один загадочный парадокс астрофизики: существование сверх-энергичных протонов космического излучения с энергиями больше 10(21);10(22) электронвольт на частицу. Чем больше энергия протона, тем больше вероятность его взаимодействия с реликтовым излучением, в ходе чего протон отдает энергию и тормозится. При энергиях 10(21);10(22) электронвольт вероятность взаимодействия настолько велика, что протон теряет свою энергию очень быстро и замедляется до уровня около 10(20) электронвольт, после чего взаимодействие резко ослабевает. Этот процесс торможения слишком энергичных протонов имеет место на дистанциях порядка 100 мегапарсек (или 326 миллионов световых лет). И вот тут возникают две странности. Во-первых, сфера радиусом 100 мегапарсек еще достаточно хорошо просматривается оптическими и радиотелескопами, но астрономы не нашли в этой области тех объектов и процессов, которые могли бы породить столь энергичные протоны. Во-вторых, если эти протоны возникают внутри указанной области в ходе некоторых взрывообразных галактических процессов, тогда была бы отмечена пространственная анизотропия по небесной сфере. А ее не нашли.
Я объясняю этот феномен выбиванием частиц из физвакуума только что описанными мощными гамма-импульсами. Вспомним опыт с выбиванием частицы и античастицы из свинцовой мишени, когда на нее направляли гамма-излучение: вакуум втягивается внутрь свинцовой мишени ее повышенным гравитационным полем, а чем больше плотность среды, тем больше вероятность реакции гамма-излучения со средой. Любые плотные объекты космического пространства – планеты, астероиды, метеориты, даже космическая пыль – также втягивают в себя окружающий физвакуум. И когда мощный гамма-квант космического излучения сталкивается с таким объектом, он проникает в него и выбивает из находящегося внутри физвакуума пару протон-антипротон. Античастица тут же реагирует с веществом космического объекта, а частица вылетает наружу и летит дальше. Этот процесс должен идти по всей Вселенной, поэтому никакой анизотропии по небесной сфере мы не обнаружим.
Сегодня в астрофизике на равных правах царят два сценария формирования Вселенной. Согласно первому из них ("сверху вниз" или top down) в первородной мешанине возникали вначале крупные структуры, распавшиеся затем на более мелкие. Из мелких структур возникли планеты, звезды и галактики, из крупных структур – скопления и сверхскопления галактик. Согласно второму сценарию ("снизу вверх" или bottom up) вначале возникали мелкие объекты типа звезд и планет, которые затем стягивались в галактики, а те в свою очередь стягивались в скопления и сверхскопления. Недавно ученые просчитали оба варианта. Оказалось, что для первого сценария все объекты – космическая "пена", галактики и скопления – действительно возникают, но это происходит слишком медленно и не укладывается в отведенное природой время порядка 13.7 млр.лет. Для второй модели образовались лишь галактики и их скопления, но сотовой структуры не получилось. Было высказано много гипотез для объяснения полученного результата. Одна из них, озвученная нобелевским лауреатом Х. Альфеном, состоит в том, что в космосе существует еще одна сила, нам пока не известная. И если такой силой является космическая сила всеобщего расталкивания, тогда все станет на свои места.







