355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 7)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 7 (всего у книги 38 страниц)

Космос и швейцарский сыр

Все эти идеи совместно показывают, что инфляционная космология значительно обновляет наше представление о реальном пространстве, что можно вообразить с помощью простой аналогии. Представьте вселенную в виде гигантского куска швейцарского сыра, в котором дырки соответствуют областям, где величина поля инфлатона мала, а в остальных местах, наоборот, велика. То есть дырки – это области, подобные нашей Вселенной, прошедшие стадию супербыстрого расширения, в процессе чего энергия поля инфлатона преобразовалась в частицы, которые со временем формируют галактики, звёзды и планеты. Перефразируя предыдущие результаты, в космическом сыре возникает всё больше и больше дырок, потому что квантовые процессы понижают величину поля инфлатона в случайном наборе местоположений. В то же время «сырно-заполненные» области без дырок растягиваются ещё больше, потому что в них происходит инфляционное расширение, подстёгиваемое большим значением поля инфлатона. Оба процесса совместно приводят к тому, что кусок космического сыра постоянно расширяется и в нём образуется всё большее количество дырок, из которых вырастают дочерние вселенные. На более стандартном языке космологии каждая дырка называется пузырьком-вселенной (или ячейкой-вселенной).[14]14
  Термин «ячейка-вселенная» не менее наглядно изображает процесс возникновения Вселенной в объемлющей среде, заполненной инфлатоном (был предложен Аланом Гутом).


[Закрыть]
Каждая из них является полостью, образовавшейся в результате супербыстрого расширения пространства (рис. 3.3).

Рис. 3.3. Инфляционная мультивселенная возникает при непрерывном образовании пузырьков – дочерних вселенных – в постоянно расширяющемся пространственном окружении, заполненном полем инфлатона большой величины

Не позволяйте наглядному, но уменьшительному названию «пузырёк-вселенная» ввести вас в заблуждение. Наша вселенная огромна. То что она может быть образованием, вложенным в ещё бо́льшую космическую структуру – один пузырёк в огромном куске космического сыра, – лишь подтверждает фантастически огромные размеры, в рамках инфляционной парадигмы, космоса в целом. То же самое справедливо и для других пузырьков. Каждый из них – это вселенная, подобная нашей – настоящая, огромная, постоянно расширяющаяся.

Существуют варианты инфляционной теории, в которых инфлатон не вечен. Подбирая различные параметры теории, такие как число полей инфлатона и кривые потенциальной энергии, умные теоретики могут сделать так, чтобы инфлатон повсеместно скатился из верхнего положения. Но подобные идеи – скорее исключение. Как правило, инфляционные модели приводят к невообразимо огромному числу дочерних вселенных, находящихся в вечно расширяющемся пространстве. И поэтому если инфляционная теория верна, и если согласно множеству теоретических исследований её физически значимая реализация приводит к вечной инфляции, то существование инфляционной мультивселенной является неизбежным следствием.

Поворачивая перспективу

В 1980-х годах, когда Виленкин осознал вечный характер инфляционного расширения и сопутствующих параллельных вселенных, он пришёл в сильное возбуждение и поехал к Алану Гуту в Массачусетский технологический институт, чтобы рассказать ему об этом. Где-то в середине рассказа голова Гута склонилась – он уснул. В принципе, это не является плохим знаком; вообще-то, хорошо известно, что Гут начинает клевать носом во время семинаров – например, во время моих выступлений он несколько раз закрывал глаза, – но затем он просыпается и задаёт удивительно проницательный вопрос. Однако физическое сообщество проявило не больше энтузиазма, чем Гут; поэтому Виленкин отложил эту идею и стал работать над другими проектам.

Сегодня отношение к вечной инфляции очень разное. Когда Виленкин впервые задумался об инфляционной мультивселенной, прямых подтверждений в пользу самой инфляционной теории было не так и много. Поэтому те немногие, кто хоть как-то заинтересовался, считали, что идеи об инфляционном расширении, порождающем огромное множество параллельных Вселенных, являются спекуляцией на спекуляции. Но в последующие годы количество наблюдательных данных в пользу инфляции значительно увеличилось, в основном, благодаря точным измерениям реликтового излучения.

Хотя наблюдаемая однородность реликтового излучения является одной из основных мотиваций развития инфляционной теории, первые сторонники теории понимали, что быстрое пространственное расширение не сможет обеспечить абсолютную однородность излучения. Наоборот, они утверждали, что квантово-механические флуктуации, растянутые инфляционным расширением, нарушают однородность, создавая миниатюрные температурные колебания, подобные мельчайшей ряби на ровной поверхности пруда. Этот блистательный результат оказал огромное влияние на последующее развитие.[15]15
  Ведущую роль в этих исследованиях сыграли Вячеслав Муханов, Геннадий Чибисов, Стивен Хокинг, Алексей Старобинский, Алан Гут, Co-Янг Пи, Джеймс Бардин, Пол Стейнхард и Майкл Тернер.


[Закрыть]
Рассмотрим всё поподробнее.

Квантовая неопределённость приводит к флуктуациям поля инфлатона. Действительно, если инфляционная теория верна, то взрывоподобное инфляционное расширение здесь закончилось, потому что большая и удачливая квантовая флуктуация почти 14 миллиардов лет назад сбросила инфлатон с верхней точки в нашей части вселенной. Но это ещё не конец истории. Пока инфлатон в нашем пузырьке-вселенной скатывается вниз к точке завершения инфляции, его значения по прежнему подвержены квантовым флуктуациям. Флуктуации, в свою очередь, могут изменить величину инфлатона на чуть выше здесь и чуть ниже там, подобно волнистой поверхности покрывала, брошенного поверх кровати. Это приводит к небольшим изменениям в энергии, которой инфлатон наполняет пространство. Как правило, такие квантовые изменения настолько малы и происходят на таких микроскопических расстояниях, что на космических масштабах ими можно спокойно пренебречь. Однако инфляционное расширение – это никак не обычный процесс.

Расширение пространства происходит настолько быстро, даже на выходе из инфляционного режима, что всё микроскопическое растягивается настолько, что становится макроскопическим. Подобно надписи, сделанной крохотными буковками на воздушном шаре, которая начинает проявляться, по мере того как воздух растягивает поверхность шара, влияние квантовых флуктуаций становится видимым, когда инфляционное расширение растягивает космическую ткань. В частности, небольшие отклонения в энергии, вызванные квантовыми флуктуациями, переходят в температурные отклонения, которые отпечатываются на реликтовом излучении. Вычисления показывают, что температурные отклонения нельзя назвать уж очень большими, но они могут достигать примерно одной тысячной доли градуса. Если температура в одной области составляет 2,725 K, то в близлежащих областях в результате растянутых квантовых флуктуаций температура может быть чуть ниже, скажем, 2,7245 K, или чуть выше – 2,7255 K.

Поиск таких температурных колебаний стал предметом скрупулёзных астрономических наблюдений. В конце концов они были обнаружены. В точном согласии с предсказаниями теории они составляют примерно тысячную долю градуса (рис. 3.4). Но больше всего впечатляет то, что картина расположения температурных отклонений на небе точно соответствует теоретическим предсказаниям. На рис. 3.5 сопоставлены теоретические предсказания колебаний температуры – как функция расстояния между областями (в угловых размерах между соответствующими прямыми, проведёнными с Земли) с наблюдательными данными. Согласие результатов просто потрясающее.

Рис. 3.4. В инфляционной космологии гигантское пространственное расширение растягивает микроскопические квантовые флуктуации до макроскопических размеров, что приводит к наблюдаемым температурным колебаниям реликтового излучения (более тёмные пятнышки чуть холоднее более светлых)

Рис. 3.5. Диаграмма температурных колебаний реликтового излучения. Температурные колебания отложены по вертикальной оси; расстояние между двумя областями (в угловых размерах между соответствующими прямыми, проведёнными с Земли – бо́льшие углы правее, меньшие углы левее) отложено на горизонтальной оси.{22} Теоретические предсказания нанесены сплошной линией; экспериментальные данные представлены кружочками

Нобелевская премия по физике 2006 года за обнаружение этих температурных колебаний была присуждена Джорджу Смуту и Джону Мазеру, которые в начале 1990-х годов возглавляли исследовательскую группу проекта COBE[16]16
  Аббревиатура от Cosmic Background Explorer. (Прим. ред.)


[Закрыть]
из более чем тысячи сотрудников. За прошедшее десятилетие всё новые и более точные измерения подтверждают данные на рис. 3.5 и приводят к более точному согласию с предсказанными значениями температурных колебаний.

Эти исследования стали венцом захватывающей истории открытий, начавшихся с гипотез Эйнштейна, Леметра и Фридмана, стремительно продвинутых вперёд вычислениями Гамова, Альфера и Германа, усиленных идеями Дикке и Пиблса, подтверждёнными затем в наблюдениях Пензиаса и Вильсона, и теперь достигших кульминации благодаря скрупулёзной работе армии астрономов, физиков и инженеров, чьи совместные усилия привели к обнаружению невероятно слабого космического автографа, оставленного миллиарды лет назад.

На качественном уровне можно сказать, что мы все должны быть благодарны пятнышкам на рис. 3.4. Когда инфляция в нашем пузырьке-вселенной подходила к концу, области с несколько большей энергией (или массой, как следует из формулы E = mc2) создавали чуть более сильное гравитационное притяжение, притягивая больше частиц из близлежащих окрестностей и становясь, таким образом, больше. Большое скопление частиц в свою очередь создавало ещё более сильное гравитационное притяжение, притягивая ещё больше вещества и ещё больше увеличиваясь в размерах. С течением времени этот эффект снежного кома привёл к образованию целых глыб вещества и энергии, которые за миллиарды лет стали галактиками и звёздами. Таким способом инфляционная теория устанавливает замечательную связь между самыми большими и самыми маленькими структурами космоса. Само существование галактик, звёзд, планет и жизни как таковой возникает из микроскопической квантовой неопределённости, усиленной инфляционным расширением.

Теоретические умозаключения, лежащие в основе инфляции, не являются бесспорными: в конце концов, инфлатон является гипотетическим полем, существование которого всё ещё нужно доказать; кривая потенциальной энергии была постулирована теоретически, а не обнаружена экспериментально; инфлатон обязан каким-то образом начать свою эволюцию в заданной области пространства с самого верха кривой потенциальной энергии, и так далее. Несмотря на это, даже если какие-то детали теории не совсем верны, согласие между теорией и экспериментом убедило многих, что инфляционный сценарий правильно отражает фундаментальные представления о космической эволюции. Поскольку в большинстве сценариев инфляция является вечной и приводит к постоянно растущему числу дочерних вселенных, то такое объединение теории и эксперимента является пусть косвенным, но убедительным аргументом в пользу существования ещё одной версии параллельных миров.

Встречаем инфляционную мультивселенную

В лоскутной мультивселенной нет резкого раздела между одной параллельной вселенной и другой. Они все являются частями единственного пространства, качественные характеристики которого не сильно меняются от области к области. Сюрприз поджидает нас при более детальном рассмотрении. Большинство из нас никак не ожидают, что миры повторяются; мы не готовы регулярно сталкиваться со своими клонами, клонами друзей и близких. Но если бы мы могли углубиться в космос достаточно далеко, то обнаружили бы именно это.

В инфляционной мультивселенной есть резкий раздел между вселенными. Они являются дырками в космическом сыре, отделёнными друг от друга «сырно-заполненными» областями, в которых значение поля инфлатона остаётся большим. Поскольку «сырно-заполненные» промежуточные области до сих пор испытывают инфляционное расширение, дочерние вселенные, выросшие из пузырьков, быстро удаляются друг от друга со скоростью разбегания, пропорциональной объёму расширившегося пространства между ними. Чем дальше они удаляются, тем выше скорость расширения: в итоге удалённые пузырьки-вселенные разлетаются быстрее, чем скорость света. Даже при неограниченных технологиях и длительности жизни нет никакого способа преодолеть подобный раздел. Более того, нет никакого способа послать хотя бы сигнал.

И всё же мы можем вообразить путешествие к одной или многим дочерним вселенным. Что бы мы обнаружили во время такого путешествия? Поскольку каждая дочерняя вселенная возникает в результате одного и того же процесса – инфлатон скатывается с верхней точки, в результате чего область выходит из инфляционного режима, – все они управляются одной физической теорией, и поэтому подчиняются одному своду физических законов. Но так же как поведение однояйцевых близнецов может в корне отличаться в зависимости от окружения, так и тождественные законы при разных условиях могут проявлять себя огромным количеством способов.

Например, вообразите некую дочернюю вселенную, которая выглядит почти как наша, вся в галактиках, содержащих звёзды и планеты, однако с одним существенным отличием. Эту вселенную пронизывает магнитное поле, в тысячи раз более сильное, чем создаваемое в новейших магнитно-резонансных томографах, но нет такого оператора, который смог бы его отключить. Это мощное поле будет воздействовать на поведение многих вещей. Не только предметы с большим содержанием железа будут следовать привычке плыть по линиям поля, изменятся сами фундаментальные свойства частиц, атомов и молекул. Достаточно сильное магнитное поле настолько разрушительно для клеточных образований, что жизнь в привычном нам виде будет невозможна.

Физические законы одинаковы как внутри магнитно-резонансных томографов, так и снаружи, поэтому фундаментальные физические законы в намагниченной вселенной будут ровно такими же, как у нас. Различия в экспериментальных результатах и наблюдаемых свойствах будут полностью обусловлены внешними условиями – сильным магнитным полем. Талантливые учёные в намагниченной вселенной моментально выделят этот внешний фактор и придут к открытию таких же математических законов, как у нас.

В течение последних сорока лет исследователи разработали модель аналогичного сценария прямо здесь, в нашей с вами Вселенной. Самая известная теория в фундаментальной физике – Стандартная модель физики частиц – постулирует, что мы помещены в экзотический туман, название которому поле Хиггса (в честь английского физика Питера Хиггса, который, опираясь на работы Роберта Брута, Франсуа Энглера, Джеральда Гуральника, Карла Хагена и Тома Киббла, впервые сформулировал эту идею в 1960-х годах). Поле Хиггса и магнитное поле невидимы, и поэтому могут заполнять пространство без прямого указания на своё присутствие. Однако согласно современной теории частиц поле Хиггса маскируется более тщательно. При движении частиц сквозь однородное, заполняющее всё пространство поле Хиггса они не ускоряются, не замедляются, не следуют по каким-то особым траекториям, как в присутствии сильного магнитного поля. Из теории следует, что воздействие на частицы со стороны поля Хиггса более тонкое и глубокое.

При движении сквозь поле Хиггса фундаментальные частицы приобретают и поддерживают массу, о наличии которой говорят эксперименты. Согласно этой идее, когда вы толкаете электрон или кварк, пытаясь изменить его скорость, ощущаемое вами сопротивление возникает благодаря «трению» частицы о патокообразное поле Хиггса. Именно это сопротивление мы называем массой частицы. Если в заданной области пространства вы выключите поле Хиггса, то частицы в ней внезапно станут безмассовыми. А если в другой области пространства удвоите значение поля Хиггса, частицы в ней внезапно удвоят свои массы.[17]17
  Подчеркнём, что речь идёт о фундаментальных частицах, таких как электроны и кварки, потому что у составных частиц, таких как протоны и нейтроны (состоящих из 3 кварков), значительная часть массы возникает из-за взаимодействия между конституэнтами (энергия глюонов, связывающих кварки внутри протонов и нейтронов, даёт основной вклад в массу этих составных частиц).


[Закрыть]

Подобное антропогенное вмешательство гипотетично, потому что энергия, необходимая для существенного изменения величины поля Хиггса даже в малой области пространства, сильно превышает доступную нам энергию. (Другая причина гипотетичности такого вмешательства в том, что существование поля Хиггса до сих пор не доказано. Теоретики усердно предсказывают, что высокоэнергетичные столкновения между протонами на Большом адронном коллайдере смогут отколоть кусочек поля Хиггса – частицу Хиггса – и её можно будет обнаружить в ближайшие годы.) Однако во многих вариантах инфляционной космологии поле Хиггса в разных дочерних вселенных естественно обладает разными значениями.

Подобно полю инфлатона, полю Хиггса соответствует кривая, которая показывает, каким количеством энергии оно обладает при разных значениях. Существенное различие с кривой потенциальной энергии поля инфлатона лишь в том, что поле Хиггса, как правило, находится не в точке ноль (рис. 3.1), а скатывается в одну из ям (рис. 3.6а). Представьте теперь начальную стадию в двух дочерних вселенных, выросших из пузырьков, одна из которых наша. В обеих разогретых вселенных бурный ажиотаж приводит к тому, что величина поля Хиггса начинает безудержно колебаться. Поскольку каждая вселенная расширяется и остывает, поле Хиггса успокаивается и его значение скатывается в одну из ям (рис. 3.6а). В нашей вселенной величина поля Хиггса оказывается, например, в левой яме, что приводит к известным экспериментально наблюдаемым свойствам частиц. Но в другой вселенной движение поля Хиггса может привести к тому, что он окажется в правой яме. Если такое произойдёт, то свойства этой вселенной будут значительно отличаться от свойств нашей вселенной. И хотя основополагающие законы в обеих вселенных будут одинаковыми, массы и другие свойства частиц будут отличаться.

Рис. 3.6.а) Кривая потенциальной энергии поля Хиггса с двумя ямами. Известные свойства нашей вселенной обусловлены полем, расположенным в левой яме; однако в другой вселенной поле располагается в правой яме, что соответствует другим физическим свойствам;

Рис. 3.6. б) Пример поверхности потенциальной энергии в теории с двумя полями Хиггса

Даже небольшая разница в свойствах частиц приводит к серьёзным последствиям. Если масса электрона в другой дочерней вселенной в несколько раз больше, чем у нас здесь, электроны и протоны будут стремиться объединяться в нейтроны, препятствуя тем самым обильному образованию водорода. Фундаментальные взаимодействия – электромагнетизм, ядерное взаимодействие и (как мы считаем) гравитация – также переносятся частицами. Изменение свойств этих частиц коренным образом изменит свойства взаимодействий. Например, чем тяжелее частица, тем медленнее она движется и тем короче расстояние, на котором действует соответствующая сила. Образование и устойчивость атомов в нашей вселенной основано на свойствах электромагнитных и ядерных взаимодействий. Если существенно изменить эти взаимодействия, атомы развалятся или, что более вероятно, вообще не смогут образоваться. Таким образом, ощутимое изменение свойств частиц приведёт к нарушению самых фундаментальных процессов, обеспечивающих привычные свойства нашей вселенной.

На рис. 3.6а показан самый простой случай, когда имеется всего одна разновидность поля Хиггса. Однако физики-теоретики исследовали более сложные сценарии с участием нескольких полей Хиггса (мы скоро увидим, что такие возможности обязательно возникают в теории струн), что даёт ещё больший набор различных дочерних вселенных. Пример с двумя полями Хиггса показан на рис. 3.6б. Как и прежде, различные ямы соответствуют значениям полей Хиггса, где могут находиться те или иные дочерние вселенные, выросшие из пузырьков.

Вселенные, заполненные полями Хиггса с непривычными значениями, будут сильно отличаться от нашей (рис. 3.7). Поэтому путешествие сквозь инфляционную мультивселенную может оказаться опасной затеей. Сомнительно, чтобы вам захотелось непременно посетить большинство вселенных, ведь условия там могут оказаться несовместимы с биологическими процессами, критичными для жизнедеятельности; что придаёт новый смысл высказыванию, что дома лучше. В инфляционной мультивселенной наша Вселенная может вполне оказаться райским островком в огромном, но в основном не пригодном для жизни космическом архипелаге.

Рис. 3.7. Поскольку поля Хиггса могут обладать разными значениями в разных дочерних вселенных, вселенные в сценарии инфляционной мультивселенной могут иметь разные физические свойства, хотя все они и подчиняются одним и тем же физическим законам

Вселенные в ореховой скорлупе

Различия между лоскутной мультивселенной и инфляционной мультивселенной настолько фундаментальны, что они могут показаться никак не связанными друг с другом. Лоскутная мультивселенная возникает в случае бесконечного пространства, а инфляционная мультивселенная обусловлена вечным инфляционным расширением. И всё же между ними существует глубокая и удивительная связь, которая смыкает идеи из двух предыдущих глав: параллельные Вселенные, возникающие благодаря инфляции, порождают Вселенные из лоскутной мультивселенной. Важную роль в этом процессе играет время.

Среди многих странностей, вскрытых теорией Эйнштейна, наиболее трудно для понимания то, что время течёт. И хотя повседневный опыт убеждает нас в объективности понятия течения времени, теория относительности доказывает, что это всего лишь артефакт жизни в условиях малой гравитации и на малых скоростях. На околосветовых скоростях и в сильных гравитационных полях привычная универсальная концепция времени быстро испаряется. Если вы мчитесь мимо меня, то события, одновременные с моей точки зрения, для вас будут происходить в разные моменты времени. Если вы зависли где-то вблизи чёрной дыры, один час на ваших часах для меня будет длиться бесконечно долго. Никакого гипноза или фокусов. Течение времени зависит от условий, в которых находится наблюдатель, – траектории его движения и действующей на него гравитации.[18]18
  Если более точно, не сила гравитационного поля сама по себе определяет замедление времени, а величина гравитационного потенциала. Например, если вы зависните внутри сферической полости в центре массивной звезды, то не будете вообще чувствовать гравитационную силу, но поскольку вы находитесь глубоко внутри ямы гравитационного потенциала, время для вас будет течь медленнее, чем для того, кто находится за пределами звезды.


[Закрыть]

Применительно ко всей вселенной или к нашему инфляционному пузырьку это немедленно порождает вопрос: как такое податливое, зависящее от обстоятельств время согласуется с понятием абсолютного космологического времени? Мы уверенно говорим о «возрасте» нашей Вселенной, но если галактики быстро движутся относительно друг друга со скоростями, которые зависят от расстояния между ними, – разве тогда относительность течения времени не становится кошмарной проблемой для любого воображаемого вселенского хранителя времени? Более точно, когда мы говорим, что нашей Вселенной «14 миллиардов лет», используем ли мы для измерения этого промежутка времени какие-то конкретные часы?

Да, используем. Тщательное изучение этого космического времени вскрывает прямую связь между параллельными вселенными в инфляционной и лоскутной моделях вселенных.

Любой используемый нами метод измерения времени подразумевает учёт изменений, происходящих в какой-то конкретной физической системе. С помощью обычных настенных часов мы проверяем изменения в положении стрелок. С помощью Солнца мы проверяем изменения в его положении на небе. С помощью изотопа углерода C14 мы проверяем его процентное содержание в исходном образце, где происходит радиоактивный распад с выделением азота. Исторический опыт и общая договорённость привели нас к использованию орбитального вращения Земли и вращения вокруг своей оси в качестве физических реперных точек, что приводит к стандартным понятиям «дня» и «ночи». Но когда мы размышляем о космических масштабах, то существует другой, более полезный метод измерения времени.

Мы видели, что инфляционное расширение приводит к огромным областям с однородными в среднем свойствами. Измерьте температуру, давление и среднюю плотность вещества в двух больших, но удалённых областях одной дочерней вселенной, и результаты совпадут. Они могут изменяться во времени, но однородность на больших масштабах гарантирует, что, в среднем, изменение здесь такое же, как изменение там. Важный наглядный пример – это обусловленное постоянным расширением пространства уменьшение плотности массы в нашем пузырьке-вселенной, происходящее в течение нашей многомиллиардной истории. Однако, поскольку уменьшение происходит однородно, то однородность на больших расстояниях в нашем пузырьке-вселенной не нарушилась.

Это важно, потому что подобно тому, как устойчиво уменьшающееся количество изотопа углерода C14 в органическом мире даёт способ измерения времени на Земле, постоянно уменьшающаяся плотность массы даёт способ измерения времени во Вселенной. Поскольку уменьшение плотности происходит однородно, плотность массы как маркер течения времени обеспечивает наш пузырёк-вселенную единым стандартом. Если каждый из нас аккуратно установит время на своих часах в соответствии со средней плотностью массы (перенастройка обязательно понадобится после путешествия к чёрной дыре, либо после путешествий с околосветовыми скоростями), то все часы во Вселенной будут синхронизированы. Когда мы говорим о возрасте Вселенной, то есть о возрасте нашего пузырька, то речь идёт о времени, измеренном по таким воображаемым космическим синхронизированным часам. Единое космическое время осмысленно, только если оно измерено по таким часам.

Такой же вывод справедлив для раннего пузырька-вселенной, но с одной оговоркой. Обычное вещество ещё не сформировалось, поэтому нельзя говорить о средней плотности массы в пространстве. Наоборот, поле инфлатона наполняет нашу Вселенную энергией, которая вскоре будет преобразована в привычные частицы. Это следует учитывать, и установить свои часы согласно плотности энергии поля инфлатона.

Теперь вспомним, что энергия инфлатона задаётся его значением, что отражается кривой потенциальной энергии. Таким образом, чтобы определить время в заданной точке в нашем пузырьке-вселенной, мы должны определить в этой точке значение инфлатона. Затем, подобно тому как два дерева имеют одинаковый возраст, если у них одинаковое количество колец, а два образца ледникового отложения имеют одинаковый возраст, если процентное содержание изотопа углерода в них совпадает, – две точки пространства находятся в том же времени, если значения поля инфлатона в этих точках одинаковы. Таким способом мы устанавливаем и синхронизируем часы в нашем пузырьке-вселенной.

Причина, по которой я всё это обсуждаю, в том, что в приложении к космическому швейцарскому сыру инфляционной мультивселенной из этих размышлений следует вывод, который резко противоречит здравому смыслу. Подобно Гамлету, восклицавшему: «О боже, я бы мог замкнуться в ореховой скорлупе и считать себя царём бесконечного пространства»[19]19
  Перевод М. Лозинского. (Прим. перев.)


[Закрыть]
, – каждая из дочерних вселенных, выросших из пузырьков, обладает конечной пространственной протяжённостью, если на неё смотреть снаружи, но бесконечной, если смотреть изнутри. Осознание этого факта бесподобно. Именно бесконечное пространство необходимо для лоскутных параллельных вселенных. Поэтому теперь мы можем ввести лоскутную мультивселенную в инфляционный сценарий.

Крайнее несоответствие между внутренней и внешней перспективами возникает из-за того, что представления о времени внутреннего и внешнего наблюдателей совершенно не совпадают. Хотя это совсем не очевидно, но сейчас мы увидим, что то, что внешнему наблюдателю кажется бесконечным временем, для внутреннего наблюдателя в каждый данный момент времени кажется бесконечным пространством.[20]20
  Этот результат (и родственные идеи) был получен рядом исследователей в различных контекстах и наиболее чётко выражен Александром Виленкиным, а также Сидни Коулменом и Фрэнком де Луччией.


[Закрыть]


    Ваша оценка произведения:

Популярные книги за неделю