355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 26)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 26 (всего у книги 38 страниц)

Теория струн и голография

Когда в 1998 году на ежегодной международной конференции по теории струн в университете Калифорнии в Санта-Барбаре объявили мой доклад, я, выходя к доске, сделал нечто, чего никогда ранее не делал, и подозреваю, больше никогда не сделаю. Я повернулся к аудитории, положил правую руку на левое плечо, затем левую руку на правое плечо, после чего опустил по очереди обе руки на задние карманы брюк, подпрыгнул, развернулся к доске и под сопровождающий меня смех зала сделал три оставшихся шага до трибуны, где и начал свой доклад. Аудитория поняла шутку. Накануне вечером на банкете участники конференции праздновали с песнями и танцами – только так, как могут физики, – выдающийся результат аргентинского струнного теоретика Хуана Малдасены. Мы придумали слова что-то типа:

 
Чёрные дыры были большой мистикой,
а теперь мы с помощью D-бран считаем D-энтропию,
 

и распевали их на мотив «Макарены», известного танцевального хита начала 1990-х годов. Мы выражали восторг сильнее, чем участники национального съезда демократов приветствовали Эла Гора, и наша песня ничем не уступала оригинальному исполнению «Лос дель Рио» по накалу страстей. На конференции я был один из немногих, доклад которых не был посвящён открытию Малдасены, поэтому, выйдя к доске на следующий день, я решил предварить свой доклад персональным танцем одобрения.

Сейчас, спустя десять лет, многие согласятся, что ни одно достижение в теории струн не было настолько существенным и важным. Одним из следствий результата Малдасены, имеющим прямое отношение к нашим рассуждениям, было то, что в некотором модельном варианте результат Малдасены явно выражал голографический принцип, давая первый математический пример голографических параллельных вселенных. Для этого Малдасена рассмотрел теорию струн во вселенной, которая отличается по форме от нашей Вселенной, но которую было легче анализировать для поставленных целей. Математически отличие состояло в том, что у вселенной была граница – непроницаемая поверхность, полностью охватывающая внутренность пространства. Сосредоточившись на граничной поверхности, Малдасена убедительно доказал, что всё, происходящее внутри этой особой вселенной, является отражением действующих на границе законов и процессов.

И хотя метод Малдасены не применим, скорее всего, напрямую ко вселенной с нашей формой, этот результат имел решающее значение, потому что благодаря этому появился прямой математический способ количественного анализа идей, касающихся голографических вселенных. Результаты таких исследований привлекли внимание большого количества физиков, которые раньше относились к голографическому принципу с подозрением, и таким образом вызвали шквал исследований, которые привели к тысячам статей и значительно углубили наше понимание. Самое захватывающее, что теперь есть основание думать, что связь между этими теоретическими открытиями и физикой в нашей Вселенной может быть установлена. Через несколько лет эта связь вполне может привести к экспериментальной проверке голографических идей.

Оставшаяся часть этого и следующего раздела будет посвящена объяснению того, как Малдасена пришёл к этому открытию; эта часть изложения самая трудная. Я начну с краткого резюме в виде шпаргалки, но если вы почувствуете, что уже насытились деталями, можете без зазрения совести перейти к последнему разделу.

Идея Малдасены состояла в использовании новой версии дуальности, которую мы обсуждали в главе 5. Напомним, что там мы рассматривали вселенные на бране, представимые в виде нарезанных ломтей хлеба. Малдасена рассмотрел с двух дополнительных точек зрения свойства плотной стопки трёхмерных бран (рис. 9.4). С одной, «внутренней» точки зрения, рассматриваются струны, которые движутся, вибрируют и извиваются вдоль этих бран. С другой, «внешней», точки зрения рассматривается, какое гравитационное воздействие браны оказывают на своё непосредственное окружение, подобно тому как Солнце и Земля влияют на своё окружение. Малдасена показал, что обе точки зрения описывают одну и ту же физическую ситуацию, но с разных сторон. Внутренняя точка зрения рассматривает движение струн на стопке бран, а внешняя точка зрения рассматривает движение струн в области искривлённого пространства, ограниченного стопкой бран. Приравнивая обе точки зрения, Малдасена обнаружил явную связь между физикой внутри области с физикой на границе области – была найдена подробная реализация голографии. В этом состоит основная идея.

Рис. 9.4. Набор близко расположенных три-бран, к которым прикреплены концы открытых струн, а замкнутые струны двигаются внутри «балка»

А если добавить красок, то ситуация описывается следующим образом.

Рассмотрим, говорит Малдасена, стопку из три-бран, настолько близко расположенных друг к другу, что они выглядят как монолитная плита (рис. 9.4), и изучим поведение движущихся в этой среде струн. Вспомним, что есть два типа струн – открытые, как кусочки ниточек, и замкнутые, как колечки. Вспомним также, что концы открытых струн могут скользить по бранам, но не могут отрываться от них, а замкнутые струны не имеют концов и поэтому могут свободно перемещаться по всему пространству. На теоретико-струнном жаргоне мы говорим, что открытые струны прикреплены к бранами, а замкнутые струны могут двигаться по всему объёму пространства (или в «балке»).

Сначала Малдасена математически проанализировал струны с низкой энергией – то есть струны, вибрирующие относительно медленно. И вот почему: сила гравитации между двумя любыми объектами пропорциональна массе каждого объекта; это же справедливо для гравитационного притяжения между любыми двумя струнами. Струны с низкой энергией обладают малой массой и поэтому практически не реагируют на гравитационное притяжение. Таким образом, сфокусировавшись на низкоэнергетических струнах, Малдасена пренебрёг влиянием гравитации. Это стало существенным упрощением. В главе 5 мы видели, что в теории струн гравитационное взаимодействие переносится замкнутыми струнами. Поэтому пренебречь силой гравитации эквивалентно пренебречь влиянием замкнутых струн на всё, с чем они могут встретиться, – в особенности, с живущими на стопке из бран ниточками открытых струн. Таким образом, добившись, что два типа струн, открытые и замкнутые, не оказывают влияния друг на друга, Малдасена добился того, что их можно анализировать по отдельности.

Затем Малдасена изменил точку зрения и стал анализировать ту же самую ситуацию под другим углом. Вместо того чтобы считать три-браны вместилищем для движения открытых струн, он рассмотрел три-брану как самостоятельный объект, у которого есть присущая ему масса и который, таким образом, искривляет вокруг себя пространство и время. Малдасене повезло, потому что к тому времени другими физиками были уже получены результаты, где были заложены основы для такого альтернативного рассмотрения. В этих работах было установлено, что при увеличении числа бран в стопке их коллективное гравитационное поле возрастает. В конце концов плита из бран ведёт себя подобно чёрной дыре, но не обычной, а бранообразной, поэтому такая стопка была названа чёрной браной. Как и в случае чёрных дыр, если приблизиться слишком близко к чёрной бране, то вырваться оттуда не получится. И так же как в случае чёрных дыр, если наблюдать издалека за приближением какого-нибудь объекта к чёрной бране, то дошедший до вас свет будет точно так же измотан борьбой с гравитационным притяжением чёрной браны. Это приведёт к тому, что объект будет выглядеть замедляющимся и теряющим энергию.[59]59
  Как мы уже говорили, «уставший», или «измотанный» свет – это свет, у которого длина волны растянулась (испытала красное смещение), а частота колебаний уменьшилась из-за затрат энергии на удаление от чёрной дыры (или от любого источника гравитации). Подобно более привычным циклическим процессам (как, например, орбитальное движение Земли вокруг Солнца, вращение Земли вокруг своей оси и так далее), колебания света можно использовать для определения прошедшего времени. Собственно, колебания света, испущенного возбуждёнными атомами цезия-133, сейчас используются учёными для определения одной секунды. Таким образом, замедленные колебания уставшего света означают, что течение времени вблизи чёрной дыры – с точки зрения удалённого наблюдателя – также замедляется.


[Закрыть]

В этом контексте Малдасена вновь сосредоточился на низкоэнергетических свойствах вселенной, в которой содержится такая чёрная плита. Во многом аналогично тому, как он действовал в первом подходе, он осознал, что в низкоэнергетической физике присутствуют две составляющие, которые можно анализировать независимо друг от друга. Первая – это медленно вибрирующие замкнутые струны, движущиеся в балке пространства, которые являются очевидными переносчиками низкой энергии. Вторая составляющая возникает благодаря присутствию чёрной браны. Представьте теперь, что вы находитесь далеко от чёрной браны и в вашем распоряжении имеется вибрирующая замкнутая струна, энергия которой может быть произвольно большой. Затем представьте, что струна опускается на горизонт событий, а вы наблюдаете за ней с безопасного расстояния. Как говорилось ранее, чёрная брана будет понижать энергию струны; свет, доходящий до вас, будет изображать струну как в замедленном кино. Таким образом, вторыми низкоэнергетическими переносчиками являются любые вибрирующие струны, которые находятся достаточно близко к горизонту событий чёрной браны.

Наконец, Малдасена сравнил оба подхода. Он заметил, что, поскольку они описывают одну и ту же стопку бран, только с разных точек зрения, они обязаны совпадать. Каждое описание вовлекает низкоэнергетические замкнутые струны, движущиеся в балке пространства, поэтому в этой части совпадение очевидно. Однако согласованность должна быть и в остальных частях каждого описания.

Удивительно, но именно так и происходит!

Оставшийся кусок первого описания состоит из низкоэнергетических открытых струн, движущихся на три-бранах. Вспомним из главы 4, что низкоэнергетические струны хорошо описываются квантовой теорией поля точечных частиц, именно то, что нам здесь требуется. Этот тип квантовой теории поля привлекает ряд хитроумных математических построений (чего стоит только одно название – конформно-инвариантная суперсимметричная квантовая калибровочная теория поля), но нам важны две её характеристики, которые можно достаточно легко понять. Во-первых, отсутствие замкнутых струн гарантирует отсутствие гравитационного поля. Во-вторых, поскольку струны движутся только на плотно упакованных в стопку бранах, квантовая теория поля живёт в трёх пространственных измерениях (что в совокупности с одним временным измерением даёт четыре пространственно-временных измерения).

Что касается второго описания, то оставшийся кусок состоит из произвольно вибрирующих замкнутых струн, которые, однако, оказались достаточно близко к горизонту событий чёрной браны, а потому кажутся вялыми – то есть как будто они обладают низкой энергией. Такие струны, хотя и ограниченные близостью к чёрной бране, по-прежнему вибрируют и движутся сквозь девять пространственных измерений (что в совокупности с одним временным измерением даёт десять пространственно-временных измерений). Поскольку этот сектор построен из замкнутых струн, в нём присутствует гравитационное взаимодействие.

Однако сколь бы разными не казались два подхода, они описывают одну физическую ситуацию и поэтому должны быть согласованы. Это приводит к совершенно невероятному заключению. Квантовая теория поля (определённого вида) точечных частиц без гравитации в четырёх пространственно-временных измерениях (первая точка зрения) описывает такую же физику, что и теория струн с гравитацией, где струны движутся внутри определённой области десятимерного пространства-времени. Звучит так же странно, как… даже не знаю что – сколько я не пытался, я не смог найти две менее похожие вещи в реальном мире, чем эти две теории. Однако Малдасена доверился математике в обсуждавшемся выше смысле и, сделав такой вывод, попал в самую точку.

Исключительная неожиданность этого результата – и смелость утверждения – не умаляется тем фактом, что он моментально находит своё место в цепочке рассуждений, приведённых выше в этой главе. Как схематично показано на рис. 9.5, гравитация чёрной плиты из бран искривляет окрестность рассматриваемой области в форму десятимерного пространства-времени (детали вторичны, но искривлённое пространство-время называется пятимерным анти-де ситтеровское пространством на пятимерную сферу); причём плита из чёрных бран является границей этого пространства. Поэтому результат Малдасены состоит в том, что теория струн в балке этого пространства-времени идентична квантовой теории поля, живущей на его границе.{89}

Рис. 9.5. Схематическая иллюстрация дуальности между теорией струн внутри некоторого пространства-времени и квантовой теорией поля на его границе

Так возникает голография.

Малдасена построил самосогласованную математическую лабораторию, в которой, помимо всего прочего, физики могли исследовать конкретные детали голографической реализации физических законов. В течение нескольких месяцев появились две статьи, одна из них принадлежала Эдварду Виттену, а вторая была написана совместно Стивеном Габсером, Игорем Клебановым и Александром Поляковым, которые вывели результат Малдасены на новый уровень понимания. В них был создан точный математический словарь для перевода с одной теории на другую: если задан физический процесс на границе браны, то словарь говорит, как он будет выглядеть в балке внутри объёма и наоборот. С помощью этого словаря в умозрительной вселенной голографический принцип становится точным и определённым. На границе вселенной информация закодирована в квантовых полях. После математического перевода она предстаёт как струнный сюжет, разворачивающийся внутри объёма.

Математический словарь сам по себе подчёркивает голографическую аналогию. Обычная голограмма не похожа на трёхмерный объект, который она порождает. На её поверхности видны лишь линии, дуги, завитки, вытравленные на пластиковой пластинке. Однако сложное преобразование, выполняемое при прохождении лазерного луча сквозь пластинку, переводит эти отметины в узнаваемое трёхмерное изображение. Это означает, что пластиковая голограмма и трёхмерное изображение содержат одинаковые данные, даже если информация в одной из них нераспознаваема с точки зрения другой. Аналогичным образом, при анализе квантовой теории поля на границе вселенной Малдасены не видно, что у неё есть явные сходства с теорией струн, живущей в балке. Если физику показать две теории и умолчать о связи, которую мы только что выяснили, то скорее всего он сделает вывод, что они независимы. Тем не менее математический словарь, связывающий обе теории – и работающий как лазер в обычных голограммах, – со всей определённостью говорит, что всё, происходящее в одной теории, имеет своё воплощение в другой. А само изучение этого словаря выявляет, что подобно обычным голограммам, информация в каждой из этих теорий оказывается зашифрованной при переводе на другой язык.

В качестве особенно впечатляющего примера рассмотрим задачу, которую исследовал Виттен: как будет выглядеть обычная чёрная дыра, находящаяся внутри вселенной Малдасены, с точки зрения теории на границе. Напомним, что теория на границе не содержит гравитации, и потому чёрная дыра трансформируется в нечто совсем не похожее. Виттен показал, что подобно тому как за устрашающим видом волшебника Изумрудного города скрывался обыкновенный человек, так и ненасытная чёрная дыра является голографической проекцией чего-то совершенно обычного – разгорячённого газа частиц в теории на границе (рис. 9.6). Подобно настоящей голограмме и порождаемому ею изображению, две теории – чёрная дыра внутри и разогретая квантовая теория поля на границе – ничем друг на друга не похожи, но при этом они несут одинаковую информацию.[60]60
  Имеет смысл упомянуть историю, которую я обошёл в этой главе и которая касается давних споров о том, требуется ли из-за чёрных дыр пересмотреть квантовую механику – нарушают ли чёрные дыры, поглощая информацию, способность волн вероятности распространяться вперёд во времени. Если кратко подытожить, то результат Виттена об эквивалентности между чёрной дырой и физической ситуацией, в которой не происходит потери информации (разогретая квантовая теория поля), привёл к окончательному доказательству, что вся падающая в чёрную дыру информация в конечном счёте остаётся доступной внешнему миру. Не требуется никакого пересмотра квантовой механики. С помощью открытия Малдасены было установлено, что граничная теория даёт полное описание информации (энтропии), хранящейся на поверхности чёрной дыры.


[Закрыть]

Рис. 9.6. Голографическая эквивалентность применительно к чёрной дыре в «балке» пространства-времени приводит к разогретому газу частиц и излучения на границе рассматриваемой области

В притче Платона о пещере наши чувства воспринимают лишь плоскую, усечённую версию истинной, более богатой реальности. Плоский мир Малдасены совсем другой. Далёкий от какого-либо усечения, он представляет события во всей полноте. Это совершенно другая история, отличная от того, к чему мы привыкли. Но этот плоский мир может вполне оказаться первичным.

Параллельные вселенные или параллельная математика?

Результат Малдасены и многие другие достижения, сделанные за прошедшие годы, воспринимаются как гипотезы. Поскольку математическая структура теории невероятно сложна, нахождение окончательных и безупречных аргументов является трудной задачей. Однако голографические идеи с успехом прошли строгие математические проверки, попав в мейнстрим физических исследований, направленных на поиск глубинных основ законов природы.

Один из факторов, вносящий свою лепту в сложность доказательства того, что граничный и объёмный миры – это разные замаскированные версии одной и той же физики, подчёркивает значительность этого результата, если он, конечно, справедлив. В главе 5 я говорил, что в большинстве случаев физики используют приближённые методы, и описал методы теории возмущений (вспомните пример с лотереей Ральфа и Элис). Я также подчеркнул, что такие методы приводят к правильным результатам только в случае, когда константа связи мала. При сравнении квантовой теории поля на границе и теории струн в балке Малдасена осознал, что когда константа связи одной теории мала, константа связи другой теории велика, и наоборот. Естественная проверка и возможный способ доказательства того, что две теории скрыто идентичны друг другу, сводится к проведению независимых вычислений в каждой теории и последующему сравнению. Однако это трудно сделать, потому что когда приближённые методы работают в одной теории, то они становятся неприменимыми в другой.{90}

Но если вы принимаете более абстрактные доводы Малдасены из предыдущего раздела, то, что было пертурбативным злом, становится вычислительной добродетелью. По аналогии со струнными дуальностями из главы 5, словарь, устанавливающий соответствия между границей и балком, переводит устрашающие вычисления, отягощённые большой константой связи в одном подходе, в простые вычисления с малой константой связи в другом подходе. В последние годы этот эффект был умело использован для получения результатов, которые могут быть экспериментально проверены.

На релятивистском коллайдере тяжёлых ионов (RHIC) в Брукхэйвене, Нью-Йорк, ядра золота сталкиваются друг с другом на почти околосветовых скоростях. Поскольку ядра содержат много протонов и нейтронов, в столкновениях рождаются многочисленные частицы, температура которых может в 200 000 раз превышать температуру поверхности Солнца. Это достаточно горячо для того, чтобы из протонов и нейтронов образовалась жидкость из кварков и связывающих их глюонов. Физики потратили много усилий, чтобы понять, как устроена эта жидкая фаза, получившая название кварк-глюонная плазма, потому что считается, что именно в этом состоянии находилось вещество вскоре после Большого взрыва.

Сложность в том, что константа связи в этой квантовой теории поля (квантовой хромодинамике), описывающей горячий суп из кварков и глюонов, имеет большое значение, что ставит под сомнение применимость методов теории возмущения. Для преодоления этого препятствия были развиты многие изощрённые методы, но некоторые теоретические результаты по-прежнему не согласуются с экспериментальными данными. Например, при течении любой жидкости – будь то вода, патока или кварк-глюонная плазма – каждый слой жидкости оказывает тормозящее воздействие на слои сверху и снизу. Такое тормозящее воздействие известно как сдвиговая вязкость. В экспериментах на RHIC были проведены измерения сдвиговой вязкости кварк-глюонной плазмы, и полученные результаты оказались гораздо меньше, чем аналитические предсказания, сделанные с помощью пертурбативных методов квантовой теории поля.

Возможный способ преодолеть эту трудность заключается в следующем. Когда я вводил голографический принцип, я принял ту точку зрения, что всё, происходящее с нами внутри пространства-времени, является с помощью какого-то неожиданного трюка отражением процессов, которые происходят на удалённой граничной поверхности. Давайте обратим эту точку зрения. Представим, что наша Вселенная, или, более точно, кварки и глюоны в нашей Вселенной живут на границе, и потому эксперименты RHIC ставятся именно там. Теперь привлечём гипотезу Малдасены. Его результат показывает, что RHIC-эксперименты (описываемые квантовой теорией поля) имеют альтернативное математическое описание в терминах движущихся в объёме (или балке) струн. Детали происходящего сложны, но следствия такой перефразировки не заставляют себя долго ждать: трудные вычисления на границе (с большой константой связи) превращаются в более лёгкие вычисления в объёме (с малой константой связи).{91}

Павел Ковтун, Андрей Старинец и Дам Сон провели такие вычисления и получили результат, который оказался впечатляюще близок к экспериментальным данным. Эта пионерская работа вдохновила целую армию теоретиков провести множество струнных расчётов в попытке установить связь с наблюдениями на RHIC, что оживило взаимодействие между теорией и экспериментом – к чему долго стремились струнные теоретики.

Следует заметить, что граничная теория не может полностью воспроизводить нашу Вселенную, поскольку, например, она не содержит гравитации. Но это не препятствует установлению связи с данными на RHIC, потому что в проводимых экспериментах массы частиц настолько малы (даже при движении на околосветовых скоростях), что гравитационное притяжение не играет никакой практической роли. Однако это подчёркивает, что в таких приложениях теория струн не выступает как «теория всего»; наоборот, теория струн предоставляет новые вычислительные инструменты для преодоления препятствий, затрудняющих применение более традиционных методов. С консервативной точки зрения, рассмотрение кварков и глюонов с помощью многомерной теории струн может рассматриваться как некий мощный математический трюк. При менее консервативном подходе можно считать, что высокоразмерное струнное описание является, в некотором смысле, физически реальным, но этот смысл ещё предстоит установить.

Независимо от того, консервативна точка зрения или нет, возникающее слияние математических результатов и экспериментальных наблюдений в высшей степени впечатляет. Я не сторонник преувеличивать, но считаю эти достижения самыми выдающимися за последние десятилетия. Математические выкладки, описывающие движение струн внутри десятимерного пространства-времени, дают нам информацию о кварках и глюонах, живущих в четырёхмерном пространстве-времени, – и эта информация, рождённая на кончике пера, подкрепляется, как нам видится, экспериментами.


    Ваша оценка произведения:

Популярные книги за неделю