Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"
Автор книги: Брайан Грин
сообщить о нарушении
Текущая страница: 25 (всего у книги 38 страниц)
Энтропия, скрытая информация и чёрные дыры
Каким образом данное выше определение энтропии и его взаимосвязь со скрытой информацией применяется к чёрным дырам? Когда Хокинг разработал детальное квантово-механическое обоснование, связывающее энтропию чёрной дыры с площадью её горизонта событий, он не только дал количественное описание исходного утверждения Бекенштейна, но также создал алгоритм для его вычисления. Возьмите горизонт событий чёрной дыры, говорит Хокинг, и разбейте его на решётку, в которой сторона каждой клетки равна одной планковской длине (10−33 сантиметра). Хокинг математически доказал, что энтропия чёрной дыры равна числу таких клеток, которым покрывается весь горизонт событий – иными словами, это площадь поверхности чёрной дыры, измеренная в планковских единицах (клетки площадью 10−66 квадратного сантиметра). На языке скрытой информации всё выглядит так, как будто каждая клетка тайным образом несёт один бит, 0 или 1, что даёт ответ на один «да или нет» вопрос, описывающий какую-то характеристику чёрной дыры на микроскопическом уровне (рис. 9.2).[56]56
Хокинг показал, что энтропия равна одной четвёртой от площади горизонта событий в планковских единицах.
[Закрыть]
Рис. 9.2. Стивен Хокинг математически показал, что энтропия чёрной дыры равна числу клеток планковского размера, необходимых для покрытия её горизонта событий. Как будто каждая клетка несёт один бит, базовую единицу информации
Общая теория относительности Эйнштейна, а также теоремы об отсутствии волос у чёрных дыр, не учитывают квантово-механические эффекты и поэтому полностью теряют эту информацию. Задайте массу чёрной дыры, её заряд и угловой момент, говорит общая теория относительности, и вы однозначным образом определите чёрную дыру. Однако Бекенштейн и Хокинг утверждают, что это не так. Они установили, что должно существовать много разных чёрных дыр с одинаковыми макроскопическими свойствами, которые, тем не менее, отличаются на микроскопическом уровне. Как и в более привычных примерах – про монеты на полу или пар в контейнере – энтропия чёрных дыр отражает информацию, скрытую в более мелких деталях.
Не менее неординарные, чем сами чёрные дыры, эти открытия установили, что в вопросе об энтропии чёрные дыры ничем не отличаются от всего остального. Однако полученные результаты привели к новым вопросам. Хотя Бекенштейн и Хокинг говорят нам, сколько информации скрыто в чёрной дыре, нам ничего не известно о том, что это за информация. Неизвестно, на какие специфические «да или нет» вопросы отвечает эта информация, не установлен состав микроскопических компонент, которые эта информация предназначена описывать. Математический анализ точно определил величину информации данной чёрной дыры, ничего не сообщив о природе этой информации.{83}
Эти вопросы до сих пор ставят в тупик. Но есть и другая загадка, которая видится ещё более важной: почему количество информации определяется площадью поверхности чёрной дыры? Если бы вы спросили меня, сколько информации содержится в библиотеке Конгресса, я стал бы говорить о доступном пространстве внутри здания библиотеки. Потребовалось бы знать вместимость залов библиотеки, необходимых для размещения полок, картотек, микрофишей, фотографий и документов. То же самое справедливо для информации внутри моей головы, объём которой, по-видимому, привязан к объёму головного мозга, доступному пространству для нейронных связей. То же самое имеет место для информации в контейнере с паром, которая содержится в свойствах заполняющих контейнер частиц. Однако удивительно, что применительно к чёрным дырам способность для хранения информации определяется, согласно Бекенштейну и Хокингу, не объёмом, а площадью поверхности.
До появления этих результатов физики считали, что поскольку планковская длина (10−33 сантиметра) является, по-видимому, наименьшей длиной, для которой понятие «расстояния» всё ещё имеет смысл, то наименьшим осмысленным объёмом будет крошечный кубик, грани которого имеют планковскую длину (объём кубика равен 10−99 кубического сантиметра). Разумная гипотеза, которой придерживались многие, была такова, что независимо от будущих технологических прорывов наименьший объём может хранить не более одной наименьшей единицы информации – одного бита. Поэтому ожидалось, что максимальное количество информации, которое может содержаться в данной области пространства, равно числу планковских кубиков, способных поместиться внутри этой области. Поэтому присутствие планковской длины в результате Хокинга не было неожиданным. Удивительно то, что хранилище информации чёрной дыры определяется не заполняющим её объём числом планковских кубиков, а числом покрывающих поверхность чёрной дыры планковских клеток.
Так впервые возникло указание на голографию – вместимость информационного хранилища определяется площадью граничной поверхности, а не объёмом находящегося внутри неё пространства. Через три десятилетия из этого указания прорастёт потрясающе новый взгляд на законы физики.
Где находится скрытая информация чёрной дыры
Планковская шахматная доска с нулями и единицами, разбросанными по поверхности горизонта событий (рис. 9.2), является символической иллюстрацией результата Хокинга о количестве информации, хранящейся внутри чёрной дыры. Однако можем ли мы буквально воспринимать этот рисунок? Если математика говорит, что информационный запас чёрной дыры измеряется площадью её поверхности, то является ли это просто средством численного подсчёта, или же это означает, что поверхность чёрной дыры и есть место фактического хранения информации?
Этот глубокий вопрос десятилетиями изучался самыми знаменитыми физиками.[57]57
Если вас, читатель, это заинтересовало, я рекомендую вам отличную книгу Леонарда Сасскинда «Войны чёрных дыр».
[Закрыть] Ответ на него в сильной степени зависит от того, смотрите вы на чёрную дыру снаружи или изнутри – если снаружи, то есть веская причина полагать, что информация действительно находится на горизонте.
Любому, кто знаком с подробностями описания чёрных дыр в общей теории относительности, данное замечание покажется весьма странным. Общая теория относительности со всей ясностью говорит, что при падении сквозь горизонт событий чёрной дыры ничего особенного не происходит – нет никакой материальной поверхности, никаких указателей, никаких сигнальных огней – ничего, что каким бы то ни было образом отметило пересечение вами границы невозврата. Это следствие одного из самых простых, но, тем не менее, самых важных достижений Эйнштейна. Эйнштейн осознал, что когда вы (или любой объект) находитесь в состоянии свободного падения, вы становитесь невесомым; спрыгните с высокого трамплина, и весы, привязанные к вашим ногам, будут падать с вами, показывая ноль. По сути, вы избавляетесь от гравитации, позволив ей действовать в полную силу. Из этого Эйнштейн делает немедленный вывод. Основываясь на ваших ощущениях в непосредственно окружающей вас среде, вы не сможете отличить свободного падения на массивный объект от свободного парения в глубинах пустого пространства: в обеих ситуациях вы абсолютно невесомы. Конечно, если вы откроете глаза и увидите, скажем, быстро приближающуюся поверхность земли, лучшим решением будет побыстрее дёрнуть за кольцо парашюта. Но если вы оказались заключённым в маленькую капсулу без окон, вы никак не сможете отличить свободное падение от свободного плавания.{84}
В первые годы двадцатого столетия Эйнштейн ухватился за эту простую, но глубокую взаимосвязь между движением и гравитацией; спустя десять лет работы он оформил её в виде общей теории относительности. Мы используем эту взаимосвязь более скромным образом. Предположим, что вы находитесь в этой капсуле и свободно падаете не на Землю, а в чёрную дыру. Ровно такие же рассуждения говорят, что ваши чувства не смогут отличить падение от плавания в пустом пространстве. Это означает, что не будет происходить ничего особого или необычного, пока вы свободно падаете сквозь горизонт чёрной дыры. В конце концов, вы ударитесь о центр чёрной дыры, свободное падение прекратится и здесь ваши чувства, несомненно, это зафиксируют. Причём мало не покажется. Но до этого момента вам будет казаться, что вы бесцельно блуждаете в мрачных глубинах космоса.
Этот сюжет придаёт энтропии чёрной дыры ещё больше загадочности. Если при пересечении горизонта чёрной дыры вы ничего не обнаруживаете, ничего отличающего горизонт от внешнего пространства, то как он может хранить информацию? Ответ, к которому тяготеют учёные в течение последнего десятилетия, перекликается с темой дуальности, уже встречавшейся нам в предыдущих главах. Напомним, что дуальность возникает в ситуациях, где есть взаимодополнительные точки зрения, кажущиеся совершенно разными, но при этом внутреннее скованные единой физической цепью. Изображение Альберта и Мэрилин на рис. 5.2, является хорошей наглядной аналогией; математические примеры возникают из зеркальных форм дополнительных измерений в теории струн (глава 4) и на первый взгляд различных, но дуальных теорий струн (глава 5). В последние годы, следуя Сасскинду, исследователи осознали, что чёрные дыры являются другим примером того, когда дополнительные и при этом совершенно разные точки зрения приводят к фундаментальным открытиям.
Одна существенная точка зрения принадлежит вам, свободно падающему в чёрную дыру. Другая принадлежит удалённому наблюдателю, следящему за вашим путешествием в телескоп. Замечательно то, что по мере того как вы, как ни в чём не бывало, пересекаете горизонт чёрной дыры, удалённый наблюдатель видит совершенно иную последовательность событий. Всё дело в излучении Хокинга.[58]58
Читатель, знакомый с чёрными дырами, заметит, что даже без рассмотрения на квантовом уровне, которое приводит к излучению Хокинга, эти две точки зрения будут отличаться по течению времени. С помощью излучения Хокинга различие между двумя точками зрения становится ещё более очевидным.
[Закрыть] Когда удалённый наблюдатель измеряет температуру излучения Хокинга, он обнаруживает, что она очень мала, пусть 10−13 K, и это говорит о том, что чёрная дыра по размеру примерно равна чёрной дыре в центре нашей Галактики. Однако удалённый наблюдатель знает, что излучение холодное лишь потому, что идущие к нему от горизонта фотоны истратили много своей энергии, отчаянно преодолевая гравитационное притяжение чёрной дыры; как мы говорили ранее, фотоны устали. Наблюдатель приходит к выводу, что при вашем приближении к горизонту чёрной дыры вы будете встречать всё более свежие фотоны, которые только начали своё путешествие и пока остаются более энергичными и горячими. Действительно, наблюдатель видит, как вы, подойдя на волосок от горизонту, облучаетесь всё более и более интенсивным излучением Хокинга, до тех пор пока от вас не останутся лишь обугленные останки.
К счастью, ваши ощущения гораздо более приятные. Вы не видите, не ощущаете и вообще никак не знаете о существовании этого горячего излучения. Опять же, поскольку состояние свободного падения нейтрализует действие гравитации,{85} ваши ощущения неотличимы от плавания в пустом пространстве. Мы знаем наверняка, что перемещаясь в пустом пространстве, нельзя вот так вдруг вспыхнуть. Поэтому с вашей точки зрения вы удачно проходите сквозь горизонт и (менее удачно) сваливаетесь в сингулярность чёрной дыры, а с точки зрения удалённого наблюдателя вы сгораете в пылающей короне, окружающей горизонт.
Какая из этих двух точек зрения правильная? Сасскинд и другие утверждают, что обе. Безо всяких сомнений, это трудно совместить с обычной логикой – логикой, согласно который вы либо живой, либо нет. Но это не обычная ситуация. Даже больше, эти две столь разные точки зрения никогда нельзя будет сопоставить. Вы не сможете выбраться из чёрной дыры и доказать удалённому наблюдателю, что живы. И, как оказывается, удалённый наблюдатель не может прыгнуть в чёрную дыру и озадачить вас утверждением, что вас больше нет. Когда я сказал, что удалённый наблюдатель «видит», как вы сгораете под воздействием излучения Хокинга, это было упрощением. Удалённый наблюдатель, внимательно изучая дошедшее до него уставшее излучение, может восстановить историю вашей гибели в огне. Но требуется время, чтобы эта информация достигла его. Математические расчёты показывают, что к тому моменту, когда он сможет сделать вывод, что вы сгорели, у него не останется достаточно времени прыгнуть в чёрную дыру и поймать вас прежде, чем вас поглотит сингулярность. Точки зрения могут быть разными, но у физики есть встроенный предохранитель против парадоксов.
Что насчёт информации? С вашей точки зрения вся информация, хранящаяся в вашем теле и голове, и в вашем ноутбуке, проходит вместе с вами сквозь горизонт чёрной дыры. С точки зрения удалённого наблюдателя вся переносимая вами информация поглощается слоем излучения, непрерывно клубящимся вблизи горизонта. Биты, содержащиеся в вашем теле, голове и ноутбуке, могут сохраниться, но при этом совершенно перемешаются после отчаянного столкновения и смешения с обжигающе горячим горизонтом. Поэтому для удалённого наблюдателя горизонт событий является реальным местом, населённым реальными вещами, физическими носителями информации, схематично изображённой в виде шахматной доски (рис. 9.2).
Вывод такой, что удалённый наблюдатель – мы – заключает, что энтропия чёрной дыры определяется площадью её горизонта, потому что горизонт является местом её хранения. Такое утверждение видится совершенно разумным. Однако не забывайте, насколько неожиданным является то, что объём чёрной дыры не является хранилищем информации. Мы сейчас увидим, что полученный результат не просто отражает одно из особых свойств чёрных дыр. Чёрные дыры говорят нам не просто о том, как чёрные дыры хранят информацию. Они информируют нас о хранении информации в произвольном контексте. Отсюда начинается прямая дорога к голографическому принципу.
За пределами чёрных дыр
Рассмотрим произвольный объект или набор объектов – набор библиотек Конгресса, все компьютеры корпорации Google, архивы ЦРУ, – расположенных в некоторой области пространства. Представим для простоты, что эта область окружена воображаемой сферой (рис. 9.3а). Теперь допустим, что полная масса объектов по сравнению с заполняемым ими объёмом настолько заурядна, что её даже близко не хватит для образования чёрной дыры. Такова постановка задачи. А теперь важный вопрос: какое максимальное количество информации может храниться в этой области пространства?
Рис. 9.3.а) Набор объектов, хранящих информацию и расположенных внутри чётко очерченной области пространства; б) Расширение информационной ёмкости данной области; в) Когда количество вещества превосходит некоторую пороговую величину (её можно вычислить, исходя из общей теории относительности){86}, данная область становится чёрной дырой
Ответ дают Второй закон и чёрные дыры, ставшие неожиданными партнёрами в этом вопросе. Представьте, что в область пространства добавляют вещество с целью увеличения её информационной ёмкости. Например, вы можете принести в корпорацию Google чипы с большим объёмом памяти или увесистые жёсткие диски; а в библиотеку Конгресса можно принести книги или электронные читалки. Поскольку даже сырое вещество несёт информацию – молекулы пара находятся здесь или там, они движутся со скоростью такой или сякой, – вы забиваете каждый уголок данной области пространства любой материей, какая только попадётся под руку. Пока не будет достигнута критическая отметка. В какой-то момент данная область станет настолько плотно набитой всякой всячиной, что если добавить ещё одно маленькое зёрнышко, то пространство внутри начнёт темнеть и превращаться в чёрную дыру. Когда такое случится, игра закончится. Размер чёрной дыры определяется её массой, поэтому при попытке увеличить её информационную ёмкость путём добавления большего количества вещества чёрная дыра начнёт увеличиваться в размере. Поскольку мы хотим рассмотреть информацию, которая может содержаться в данном фиксированном объёме пространства, такая ситуация выйдет за рамки поставленной задачи. Нельзя увеличить информационную ёмкость чёрной дыры, не заставив её при этом расти.{87}
Следующие два наблюдения выводят нас на финишную прямую. Второй закон гарантирует, что энтропия возрастает в течение всего процесса, поэтому информация, скрытая внутри жёстких дисков, электронных читалок, старомодных бумажных книг и во всём остальном, что вы поместили в данную область пространства, меньше, чем информация, скрытая в чёрной дыре. Результаты Бекенштейна и Хокинга гласят, что скрытая информация чёрной дыры задаётся площадью её горизонта событий. Более того, поскольку вы работали очень аккуратно, так чтобы не выйти за исходную область пространства, то горизонт событий чёрной дыры совпадает с границей данной области и энтропия чёрной дыры равна площади окружающей эту область поверхности. Таким образом, мы получаем важный результат: количество информации внутри некоторой области пространства, хранящейся в любых объектах любой формы, всегда меньше площади окружающей эту область поверхности (измеренной в планковских единицах).
Вот к такому выводу мы пришли. Отметим, что хотя чёрные дыры играют главную роль в этих рассуждениях, весь анализ применим к любой области пространства, независимо от того, есть там чёрная дыра или нет. Если максимизировать информационную ёмкость данной области, то возникнет чёрная дыра, но если не превышать лимит добавляемого вещества, чёрная дыра не сформируется.
Поспешу добавить, что предел информационной ёмкости не должен нас заботить с практической точки зрения. Если сравнивать с современными рудиментарными накопителями, то потенциальная информационная ёмкость поверхности пространственной области просто чудовищна. Стопка из пяти стандартных терабайтных жёстких дисков легко умещается внутри сферы радиуса 50 сантиметров, поверхность которой покрывается 1070 планковскими клетками. Таким образом, информационная ёмкость этой поверхности составляет примерно 1070 бит, что равно миллиарду триллионов триллионов триллионов триллионов терабайтов, и поэтому несоизмеримо превышает всё, что вы можете купить. В Силиконовой долине подобные теоретические ограничения никого особо сильно не беспокоят.
Всё же, если задумываться об устройстве Вселенной, ограничения информационной ёмкости говорят о многом. Представьте любую область пространства, например, комнату, в которой я пишу эту книгу, или комнату, в который вы читаете её. Примите точку зрения Уилера и представьте, что всё происходящее в этой области сводится к некоторым информационным процессам – информация об устройстве окружающей среды в данный момент трансформируется посредством физических законов в информацию об устройстве окружающей среды через секунду, минуту или через час. Поскольку наблюдаемые нами физические процессы, а также процессы, которые нами управляют, по всей видимости, происходят внутри данной области, то естественно ожидать, что переносимая этими процессами информация также находится внутри этой области. Но только что полученные результаты предлагают альтернативный взгляд. Обнаруженная связь между информацией и площадью поверхности чёрной дыры выходит далеко за рамки простого численного расчёта; есть конкретный смысл, в котором информация хранится на поверхности чёрной дыры. Сасскинд и т’Хоофт указали, что данное рассуждение имеет совершенно общий характер: поскольку информация, необходимая для описания физических явлений внутри любой заданной области пространства, может быть полностью представлена данными на окружающей её поверхности, то существует причина думать, что эта поверхность и является тем местом, где происходят фундаментальные физические процессы. Как предлагают эти смелые учёные, привычная нам трёхмерная реальность связана голографической проекцией с удалёнными двумерными физическими процессами.
Если эти рассуждения верны, тогда существуют физические процессы, происходящие на некоторой удалённой поверхности, которые, подобно тянущему за ниточки кукловоду, управляют процессами, происходящими в моей голове и моих руках, в тот самый момент, когда я печатаю эти слова на моём компьютере. Наш опыт здесь и удалённая реальность там образуют крепкую связку параллельных миров. Явления в этих двух мирах – я буду называть их голографическими параллельными вселенными – настолько полно связаны друг с другом, что происходящие в каждом из них эволюции будут так же крепко связаны, как я и моя тень.
Мелким шрифтом
То, что привычная нам реальность может быть отражением, а может быть даже порождением явлений, происходящих на далёкой поверхности меньшей размерности, является одним из самых неожиданных открытий во всей теоретической физике. Как можно быть уверенным в справедливости голографического принципа? Мы оказались на территории, лежащей в самой глубине теоретической физики, и опираемся почти целиком на разработки, которые не были проверены экспериментально, поэтому конечно же есть основания для скептицизма. Есть много причин сбиться с курса. Действительно ли чёрные дыры обладают ненулевой температурой и энтропией, и если так, согласуются ли эти значения с теоретическими предсказаниями? Действительно ли информационная ёмкость некоторой области пространства определяется количеством информации, которая может быть размещена на окружающей её поверхности? И для такой поверхности является ли один бит на одну планковскую клетку пределом на самом деле? Мы думаем, что ответ на каждый из этих вопросов положительный, потому что есть непротиворечивая, совместимая и аккуратно выстроенная теоретическая система, с которой такие выводы прекрасно согласуются. Но поскольку ни одна из этих идей не ложилась под экспериментальный скальпель, вполне возможно (хотя, на мой взгляд, совершенно невероятно), что будущие открытия убедят нас, что один или более из этих существенных промежуточных шагов являются неверными. Тогда, возможно, придётся отказаться от голографической идеи.
Другой важный момент состоит в том, что в наших рассуждениях речь шла об области пространства, об окружающей её поверхности, и о заполняющей их информации. Однако, поскольку акцент был сделан на энтропию и Второй закон – каждый из которых касается в первую очередь величины информации в данном контексте – мы пропустили детали того, как эта информация хранится или физически реализуется. Когда мы говорим об информации, которая находится на сфере, окружающей некоторую область пространства, то что это на самом деле означает? Как информация проявляет себя? Какую форму она приобретает? До какой степени мы можем развить подробный словарь по переводу явлений, происходящих на границе, в явления, происходящие в объёме?
Физикам ещё предстоит создать общую схему рассмотрения этих вопросов. Считая, что как гравитация, так и квантовая механика играют центральную роль в подобных рассуждениях, можно было бы ожидать, что возможная модель для теоретических исследований данных вопросов появится в теории струн. Однако, когда т’Хоофт сформулировал голографический принцип, он стал сомневаться, что теория струн поможет в развитии этой области, заметив, что «на планковских расстояниях природа гораздо более безумна, чем могут себе представить струнные теоретики».{88} Менее чем десятилетие спустя струнная теория доказала, что т’Хоофт ошибался, но его идеи верны. В эпохальной статье одного молодого теоретика было показано, что теория струн приводит к подробной реализации голографического принципа.