355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 11)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 11 (всего у книги 38 страниц)

Теория струн и математика

Сравнение с экспериментальными или наблюдательными данными является единственным способом определить, правильно ли теория струн описывает природу. Но эта цель оказалась труднодостижимой. Несмотря на все успехи теории струн, она остаётся исключительно математической конструкцией. Но было бы неправильным считать теорию струн простым потребителем математических идей. Наоборот, некоторые важные струнные достижения являются вкладом в развитие математики.

Как известно, работая над созданием общей теории относительности, Эйнштейн перерыл всю математическую литературу, пытаясь найти строгий язык описания искривлённых пространств. Более ранние математические достижения таких математиков, как Карл Фридрих Гаусс, Бернхард Риман и Николай Лобачевский, подвели под общую теорию относительности крепкий фундамент. В некотором смысле, сейчас теория струн помогает выплатить интеллектуальный долг Эйнштейна, подталкивая развитие новых математических направлений. Тому есть много примеров, но я приведу лишь один, который целиком отражает суть струнных открытий в математике.

В общей теории относительности выстроена прочная связь между геометрией пространства-времени и наблюдаемой физикой. Уравнения Эйнштейна, дополненные распределением материи и энергии в некоторой заданной области, определяют конечную форму пространства-времени. Различные физические условия (то есть различные конфигурации масс и энергии) приводят к различной форме пространства-времени; разные виды пространства-времени соответствуют физически различным условиям. Хотите узнать, каково это – падать в чёрную дыру? Проведите вычисления на основе пространственно-временной геометрии, открытой Карлом Шварцшильдом при изучении сферических решений уравнений Эйнштейна. А что если чёрная дыра быстро вращается? Тогда вычисляйте с помощью геометрии, открытой в 1963 году новозеландским математиком Роем Керром. Геометрия и физика в общей теории относительности подобны инь и ян.

Теория струн резко меняет подобное заключение, утверждая, что могут быть различные формы пространства-времени, приводящие, тем не менее, к физически неотличимым описаниям реальности.

Это можно осмыслить следующим образом. Начиная с античных времён и до эры современной математики, геометрические пространства рассматриваются как набор точек. Например, мячик для пинг-понга состоит из точек, составляющих его поверхность. До теории струн базовые конституэнты вещества также считались точками, точечными частицами, и такая общность основных ингредиентов говорила о согласованности между геометрией и физикой. Однако в теории струн основным объектом является не точка. Это струна. Отсюда следует, что с теорией струн должен быть связан новый тип геометрии, основанный не на точках, а на петлях. Эта новая геометрия получила название струнной геометрии.

Чтобы ощутить струнную геометрию, вообразите струну, которая движется в геометрическом пространстве. Заметим, что зачастую струна может вести себя как точечная частица, невинно скользя туда-сюда, сталкиваясь со стенками, взбираясь на горки и опускаясь в долины, и так далее. Но в определённых ситуациях струна способна на нечто новое. Представьте, что пространство (либо его часть) имеет форму цилиндра. Струна может навиться вокруг него, подобно резиновому колечку, натянутому на банку с газировкой, – такая конфигурация в принципе невозможна для точечной частицы. Такие «намотанные» струны и их «ненамотанные» коллеги прощупывают геометрическое пространство разными способами. Если цилиндр станет толще, то намотанная на него струна ответит растяжением, а ненамотанная струна, скользящая по его поверхности, ничего не заметит. Следовательно, намотанные и ненамотанные струны по-разному чувствуют проявления формы пространства, в котором они движутся.

Это наблюдение крайне интересно, потому что приводит к поразительному и совершенно неожиданному выводу. Струнные теоретики обнаружили специальные пары геометрических форм пространства, проявляющие совершенно разные свойства, когда их прощупывают с помощью ненамотанных струн. Они также проявляют совершенно разные свойства при их тестировании намотанными струнами. При этом – тут наступает кульминационный момент – при тестировании струнами обоих типов, намотанными и ненамотанными, эти пространства становятся неразличимы. То, что намотанные струны видят в одном пространстве, ненамотанные видят в другом, и наоборот, что приводит к одинаковой коллективной картине, составленной на основе полной физики теории струн.

Такие парные формы являются мощным математическим инструментом. Если в общей теории относительности вы интересуетесь тем или иным свойством, то следует выполнить математические расчёты, привлекая то единственное геометрическое пространство, возникающего в изучаемой системе. Но в теории струн существование пар физически эквивалентных геометрических форм означает, что у вас появился выбор: проводить вычисления можно с помощью любой формы. Совсем удивительно, что при гарантированно одинаковых ответах для любой формы математические выкладки по пути к ответу могут быть совершенно разными. Во многих ситуациях крайне трудные математические вычисления для одной геометрической формы становятся более чем простыми для другой. При этом понятно, что любой математический аппарат, позволяющий упростить сложные математические расчёты, имеет огромную ценность.

В течение многих лет физики и математики достаточно продуктивно пользовались этим словариком по переводу сложного в простое для продвижения вперёд в решении ряда важных математических проблем. Одна такая задача, которую я особенно люблю, посвящена подсчёту числа сфер, которые можно упаковать (некоторым специальным математическим способом) в заданное пространство Калаби – Яу. В течение долгого времени математики интересовались этим вопросом, но вычисления во всех случаях, кроме простейших, были непреодолимыми. Возьмите пространство Калаби – Яу, показанное на рис. 4.6. Если упаковывать сферу в это пространство, она может много раз намотаться на часть пространства Калаби – Яу, подобно тому как лассо может много раз намотаться на пивную бочку. Итак, сколько существует способов упаковать сферу в данное пространство, если сфера наматывается, скажем, пять раз? Услышав такой вопрос, математик должен кашлянуть, бросить мельком взгляд на свои ботинки и быстро удалиться, сославшись на неотложную встречу. Теория струн сгладила остроту вопроса. Переводя вычисления со сложного на простое пространство из пары Калаби – Яу, струнные теоретики получили ответы, которые огорошили математиков. Каково число пятикратно намотанных сфер, упакованных в пространство Калаби – Яу на рис. 4.6? 229 305 888 887 625. А если сфера намотана десять раз? 704 288 164 978 454 686 113 488 249 750. Двадцать раз? 53 126 882 649 923 577 113 917 814 483 472 714 066 922 267 923 866 451 936 000 000. Эти числа стали предвестниками целого спектра результатов, открывших новую главу в математике.{35}

Итак, независимо от того, правильно теория струн описывает физическую Вселенную или нет, она уже проявила себя в качестве мощного инструмента исследований вселенной математической.

Современный статус теории струн

Информация из предыдущих четырёх глав собрана в табл. 4.2, которая является своеобразным отчётом о состоянии теории струн. Также она включает некоторые дополнительные данные, на которых я подробно не останавливался. Эта картина описывает теорию в её развитии, которая уже добилась ошеломляющих результатов, но до сих пор лишена самого важного: экспериментального подтверждения. Она так и будет оставаться умозрительной до тех пор, пока не будет установлена убедительная связь с экспериментом или наблюдениями. Поиск такой связи является важнейшей задачей. Однако заметим, что такая ситуация характерна не только для теории струн. Любая попытка объединить гравитацию и квантовую механику выводит в область, находящуюся далеко за пределами современных возможностей экспериментальных исследований. Это неизбежно, когда ставятся такие в высшей степени амбициозные цели. Расширение границ фундаментальных знаний в поиске ответов на самые глубокие вопросы, занимающие умы человечества последние несколько тысячелетий, является выдающимся проектом, который вряд ли удастся быстро осилить. Скорее всего, не хватит даже десятилетий.

Таблица 4.2. Краткий отчёт о состоянии теории струн


Объединение гравитации и квантовой механики ДА. Основная цель состоит в объединении общей теории относительности и квантовой механики.ОТЛИЧНО. Многочисленные вычисления и идеи подтверждают успешное объединение общей теории относительности и квантовой механики.[27]27
  Утверждение теории струн об успешном соединении квантовой механики и общей теории относительности основывается на множестве вычислений, а также на убедительных результатах, описанных в главе 9.


[Закрыть]
Объединение всех сил НЕТ. Объединение гравитации и квантовой механики не требует дальнейшего объединения с другими силами в природе.ОТЛИЧНО. Хоть такой необходимости нет, полная единая теория в течение долгого времени была целью физических исследований. Теория струн достигает этой цели, описывая все силы единым образом – их кванты являются проявлением определённых типов вибраций струн.
Учёт ключевых достижений предыдущих теорий НЕТ. В принципе, новая успешная теория не обязана быть похожей на успешные теории прошлого.ОТЛИЧНО. Хотя прогресс не обязательно должен быть поступательным, история говорит, что обычно это именно так: как правило, старые успешные теории вытекают в предельном случае из новых успешных теорий. Теория струн включает ключевые достижения предыдущих физических теорий.
Объяснение свойств частиц НЕТ. Достойная цель, достижение которой объяснит многое – но этого не требуется от успешной теории квантовой гравитации.НЕОПРЕДЕЛЁН; НЕТ ПРЕДСКАЗАНИЙ. Теория струн превосходит в этом смысле квантовую теорию поля и предлагает способ объяснения свойств частиц. Однако пока этот потенциал остаётся нераскрытым: разнообразие возможных различных форм дополнительных измерений означает разнообразие возможных наборов свойств частиц. Пока нет способа выделить из множества форм какую-то одну.
Экспериментальное подтверждение теории ДА. Это единственный способ определить, правильно ли теория описывает природу.НЕОПРЕДЕЛЁН; НЕТ ПРЕДСКАЗАНИЙ. Наиболее важный критерий; на данный момент теория струн не прошла подобную проверку. Оптимисты надеются, что эксперименты на Большом адронном коллайдере и наблюдения на спутниковых телескопах смогут приблизить теорию струн к экспериментальной проверке. Но нет никакой гарантии, что современные технологии достаточно мощны для достижения этой цели.
Устранение сингулярностей ДА. Квантовая теория гравитации должна уметь осмысленно описывать сингулярности, возникающие в ситуациях, которые могут хотя бы в принципе реализоваться физически.ОТЛИЧНО. Огромный прогресс; были устранены многие типы сингулярностей. Но сингулярности типа чёрных дыр и Большого взрыва ещё не поддаются теории струн.
Объяснение энтропии чёрных дыр ДА. Именно в вопросе об энтропии чёрных дыр общая теория относительности и квантовая механика стыкуются ключевым образом.ОТЛИЧНО. Теория струн явным образом вычислила и подтвердила формулу для энтропии, предложенную в 1970-х годах.
Вклад в математику НЕТ. Теории, правильно описывающие природу, не обязаны приводить к математическим открытиям.ОТЛИЧНО. Хотя математические открытия не являются необходимыми для подтверждения теории струн, её развитие привело к значительным достижениям, что продемонстрировало мощь математического фундамента теории.

Оценивая текущей статус теории струн, многие струнные теоретики считают, что следующий важный шаг состоит в том, чтобы придать уравнениям теории наиболее полный и точный вид. Большая часть исследований на протяжении первых двух десятилетий развития теории до середины 1990-х годов была выполнена с помощью приближённых уравнений, ибо многие полагали, что так можно выявить общие свойства теории. Однако приближённые уравнения оказались слишком грубы, чтобы дать точные предсказания. Последние открытия, к которым мы сейчас перейдём, вывели понимание на уровень, намного превосходящий тот, что был достигнут приближёнными методами. Хотя определённые предсказания сделать сложно, открылись новые перспективы. Они опираются на достижения в области удивительных возможных приложений теории, к которым относятся и новые типы параллельных миров.

Глава 5. Вселенные по соседству в других измерениях
Брана и циклические мультивселенные

Однажды, много лет назад я сидел поздно вечером в своём офисе в Корнелльском университете, придумывая на утро экзаменационные задачи для первокурсников. Это была группа отличников, и я решил разнообразить экзамен, добавив в список задач одну посложнее. Однако было поздно, я проголодался, поэтому вместо того чтобы аккуратно подобрать сложную задачку, я взял стандартную, с которой большинство из них уже встречались, быстро изменил некоторые условия, внёс её в экзаменационные билеты и направился домой. (Опуская подробности, в задаче рассматривалось движение лестницы, прислонённой к стене, которая скользит, а потом теряет опору и падает. Я изменил стандартные условия, добавив, что плотность лестницы изменяется по длине.) На следующее утро, во время экзамена, я стал решать задачи и обнаружил, что это скромное изменение условий сделало простую задачу трудно решаемой. Решение исходной задачи вполне уместилось бы на полстраницы. А решение этой заняло все шесть. У меня крупный почерк. Но смысл вам ясен.

Этот небольшой эпизод отражает правило, нежели исключение. Задачи из учебников подобраны очень специально, чтобы их можно было полностью решить разумными усилиями за разумное время. Однако чуть-чуть измените условия, и они быстро станут либо очень сложными, либо вообще не решаемыми. Иными словами, задачи из учебника быстро становятся такими же сложными, как задачи описания реального мира.

Но факт остаётся фактом: подавляющее большинство явлений, от движения планет до взаимодействия частиц, слишком сложно для точного математического описания. Физик-теоретик должен понять, какими усложнениями в данном контексте можно пренебречь, создав при этом доступную математическую модель явления, в которой учтены все существенные детали. Рассчитывая орбиту Земли, следует учитывать только притяжение Солнца; конечно, лучше учесть ещё и притяжение Луны, но тогда математическая сложность резко возрастает. (В XIX столетии французский математик Шарль-Эжен Делоне опубликовал 900-страничную книгу, в которой подробно рассматривался гравитационный танец Солнца, Земли и Луны.) Если попытаться продвинуться дальше и полностью учесть влияние движения остальных планет, то анализ становится необозримым. К счастью, во многих приложениях можно спокойно пренебрегать всем кроме влияния Солнца, так как эффект от воздействия других тел в Солнечной системе на орбиту Земли весьма незначителен. Подобные приближения лишь подтверждают высказывание, что искусство физики лежит в умении отмести несущественное.

Физикам, много работающим с вычислениями, хорошо известно, что приближения – это не только мощный способ достижения прогресса, в них таится и определённая опасность. Минимальные усложнения при ответе на один вопрос неожиданно могут привести к весьма существенным последствиям при ответе на другой. Одна дождевая капля вряд ли сможет повлиять на вес валуна. Но если этот валун еле держится на самом краю отвесного склона, то вполне вероятно, что дождевая капля приведёт к его скатыванию, что послужит толчком для схода лавины. Приближение, не учитывающее эту дождевую каплю, приведёт к потере существенного эффекта.

В середине 1990-х годов струнные теоретики натолкнулись на подобную дождевую каплю. Они обнаружили, что различные математические приближения, широко используемые в анализе теории струн, упускают из виду некоторое важное физическое явление. Развив и применив более точные математические методы, струнные теоретики наконец-то смогли выйти за рамки этих приближений; когда это произошло, в центр внимания попали неожиданные свойства теории. Среди них оказались новые типы параллельных вселенных; кажется, что у одного из них довольно высокие шансы быть обнаруженным экспериментально.

Выход за рамки приближений

Каждая из ведущих дисциплин теоретической физики – таких как классическая механика, электромагнетизм, квантовая механика и общая теория относительности – определена некоторым основным уравнением или набором уравнений. (Для нас не важен вид этих уравнений, однако некоторые из них я привёл в примечаниях в конце книги.){36} Проблема в том, что кроме простейших случаев эти уравнения крайне сложно решить. Поэтому физики, следуя заведённому обычаю, пользуются упрощениями – например, не учитывают притяжение Плутона или считают Солнце шаром, – это упрощает вычисления и вселяет надежду получить приближённое решение основного уравнения.

Довольно долго исследования в теории струн сталкивались с ещё бо́льшими трудностями. Даже нахождение основного уравнения оказалось настолько трудным, что физики смогли написать его лишь приближённо. Даже приближённые уравнения были столь сложными, что для нахождения решений пришлось пользоваться упрощающими приближениями, что стало приближённым исследованием приближений. Однако в течение 1990-х годов ситуация кардинальным образом улучшилась. Достижения струнных теоретиков показали, как выйти за рамки использования приближений.

Чтобы понять суть этих открытий, представьте, что некий азартный парень Ральф решил поучаствовать в двух последовательных раундах еженедельной всемирной лотереи, и для этого он с гордостью подсчитал шансы на выигрыш. Он сообщил своей подруге Элис, что если в каждом раунде у него есть один шанс на миллиард, то за два раунда его шанс возрастёт до двух на миллиард, 0,000000002. Элис усмехнулась: «Ну, что-то типа того». «Что значит типа того? – обиделся Ральф, – это именно так!» «Ну, – сказала она, – ты переоцениваешь. Если ты выиграешь первый раунд, то участие во втором раунде твои шансы не поднимет, ведь ты уже выиграл. Если же ты выиграешь два раза подряд, то денег у тебя, конечно, прибавится, но поскольку тебя интересует шанс выиграть сам по себе, то выигрыш во втором раунде после выигрыша в первом уже не будет иметь значения. Поэтому чтобы получить точный ответ, надо вычесть шанс выиграть в обоих раундах, а это 1 на миллиард умножить на 1 на миллиард, или 0,000000000000000001. В итоге получится 0,000000001999999999. Вопросы есть, Ральф?»

Если не отвлекаться на самоуверенность Элис, то её метод демонстрирует то, что физики называют теорией возмущений. В вычислениях, как правило, легче осуществить первый шаг, который содержит только самые очевидные вклады – отправная точка рассуждений Ральфа – затем делается второй шаг, включающий более тонкие детали, изменяя, или «возмущая» ответ на первом шаге, как в рассуждениях Элис. Этот подход может быть легко обобщён. Если бы Ральф решил поиграть в следующие десять еженедельных лотерей, то его шанс на выигрыш на первом шаге составил бы примерно 10 на миллиард, 0,00000001. Но так же как в предыдущем примере, это приближение не может правильно описать многократные выигрыши. Второй шаг Элис правильно описывает случаи, когда Ральф выигрывает два раза подряд – скажем, в первом и втором раундах, или во втором и третьем, или третьем и четвёртом. Эти поправки, как ранее указала Элис, пропорциональны 1 на миллиард умножить на 1 на миллиард. Есть ещё более крошечный шанс, что Ральф выиграет три раза подряд; на третьем шаге возникающая поправка пропорциональна 1 на миллиард, троекратно умноженной на себя, то есть 0,000000000000000000000000001. На четвёртом шаге происходит то же самое, но шанс выиграть подряд четыре раунда становится ещё меньше, и так далее. Каждый новый вклад меньше предыдущего, поэтому в определённый момент Элис сочтёт ответ достаточно точным и на этом остановится.

Вычисления в физике, а также во многих других областях науки, часто происходят аналогичным образом. Если вас интересует вероятность того, что две частицы, летящие навстречу друг другу в Большом адронном коллайдере, столкнутся друг с другом, то на первом шаге представьте, что они сталкиваются и отлетают друг от друга рикошетом (слово «сталкиваются» не означает, что они напрямую соприкасаются, наоборот, это означает, что единственная «пуля»-переносчик взаимодействия, такая как фотон, вылетает из одной частицы и поглощается другой частицей). На втором шаге учитывается возможность того, что эти частицы столкнутся дважды (между ними выстрелят два фотона); на третьем шаге возникающая поправка даёт вклад в предыдущие два и учитывает возможность трёхкратного столкновения частиц; и так далее (рис. 5.1). Как и в лотерее, теория возмущений работает хорошо, если вероятность взаимодействий частиц возрастающей кратности – подобно шансу выигрыша в каждом последующем раунде лотереи – резко падает.

Рис. 5.1. Две частицы (изображённые двумя сплошными линиями слева на каждой диаграмме) взаимодействуют, выстреливая друг в друга разными «пулями» («пули» – это такие частицы-переносчики взаимодействия, изображённые волнистыми линиями), после чего рикошетят вперёд (две сплошные линии справа). Каждая диаграмма даёт вклад в общую вероятность столкновения частиц друг с другом. Вклады с бо́льшим числом пуль становятся всё меньше

В лотерее спад определяется каждым следующим выигрышем, умноженным на фактор один на миллиард; в физическом примере он определяется каждым следующим столкновением с численным множителем, который называется константой связи, значение которой отражает вероятность того, что одна частица испустит «пулю»-переносчика взаимодействия, а вторая частица поглотит её. Для частиц, участвующих в электромагнитных взаимодействиях, например электронов, экспериментально измерено, что константа связи фотонных пуль равна примерно 0,0073.{37} Для нейтрино, участвующих в слабом взаимодействии, константа связи равна примерно 10−6. Для кварков, из которых состоят протоны, которые мчатся в Большом адронном коллайдере и участвуют в сильном ядерном взаимодействии, константа связи равна примерно 1. Эти числа не так малы, как число 0,000000001 из лотереи, но если многократно умножать 0,0073 на себя, то результат быстро станет исчезающее мал. После одной итерации это примерно 0,0000533, после второй итерации это примерно 0,000000389. Поэтому у теоретиков редко возникают проблемы при подсчёте числа многократных столкновений электронов. Вычисления с многократными столкновениями крайне сложны, а конечный ответ настолько мал, что можно остановиться на нескольких испущенных фотонах и всё равно получить очень точный ответ.

Даже не сомневайтесь, физики очень хотят иметь точные результаты. Однако большинство вычислений слишком сложны, поэтому теория возмущений – это лучший инструмент из тех, что у нас есть. К счастью, при достаточно малых константах связи приближённые вычисления могут приводить к предсказаниям, которые хорошо согласуются с экспериментом.

Похожий способ вычислений по теории возмущений долгое время являлся основой струнных исследований. В теории струн имеется некоторое число, которое называется струнной константой связи (струнная константа, для краткости), определяющая вероятность столкновения двух струн. Если теория окажется правильной, то однажды струнная константа может быть измерена, подобно перечисленным выше константам связи. Но так как такие измерения в настоящий момент совершенно гипотетичны, величина струнной константы остаётся абсолютно неизвестной. В течение последних нескольких десятилетий, не имея каких-либо указаний из эксперимента, струнные теоретики сделали ключевое допущение, что струнная константа мала. До некоторой степени это похоже на поиск потерянных ключей под фонарём, потому что малая струнная константа позволяет физикам с помощью теории возмущений пролить яркий свет на вычисления. Поскольку до теории струн в большинстве успешных теорий константа связи была действительно мала, то продолжая аналогию с фонарём, можно сказать, что ключи часто лежали именно там, где светло. Так или иначе, допущение малости константы связи позволило провести огромное количество математических вычислений, которые не только прояснили базовые процессы взаимодействия струн, но также дали много информации о фундаментальных уравнениях теории.

Если струнная константа действительно мала, то приближённые вычисления достаточно точно отразят физическую суть теории струн. Но что, если она не мала? В отличие от лотереи и сталкивающихся электронов, большая струнная константа означает, что последовательные уточнения к приближению на первом шаге приведут к растущим вкладам, поэтому не будет никаких оснований прекратить вычисления на определённом этапе. Тысячи вычислений, проделанных на основе теории возмущений, станут бессмысленными; годы исследований окажутся потраченными зря. Вдобавок, даже с умеренно малой константой связи всё равно надо заботиться о правомерности сделанных приближений, по крайней мере при определённых условиях, дабы не пропустить тонких, но важных физических эффектов, как с каплей дождя, падающей на валун.

В начале 1990-х мало что можно было ответить на эти неудобные вопросы. Но ко второй половине десятилетия молчание сменилось шумным восторгом открытий. Учёные обнаружили новые математические методы, способные перехитрить приближения по теории возмущений, призвав на помощь то, что получило название дуальность.


    Ваша оценка произведения:

Популярные книги за неделю