355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 34)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 34 (всего у книги 38 страниц)

18

В описанном только что подходе к инфляции нет фундаментального объяснения, почему значение поля инфлатона должно находиться на возвышенной части кривой потенциальной энергии, а также нет объяснения, почему кривая потенциальной энергии имеет именно такую форму. Всё это предположения теории. В последующих версиях теории инфляции, в особенности версии, разработанной Андреем Линде, которая называется хаотическая инфляция, более «обычная» кривая потенциальной энергии (параболическая форма без плоских участков, выводимая из простейших математических уравнений для потенциальной энергии) также может приводить к инфляции. Для запуска инфляционного расширения значение поля инфлатона также должно находиться высоко на этой кривой потенциальной энергии, однако неимоверно горячая среда в ранней Вселенной естественным образом создаёт для этого все условия.

19

Внимательного читателя заинтересует следующая подробность. Быстрое расширение пространства в инфляционной космологии приводит к сильному остыванию (подобно тому как быстрое сжатие пространства, или чего-нибудь ещё, вызывает повышение температуры). Однако, когда инфляция подходит к завершению, поле инфлатона колеблется около минимума своей кривой потенциальной энергии, трансформируя свою энергию в газ частиц. Этот процесс называется «повторным разогревом», потому что порождённые таким образом частицы получают кинетическую энергию и, следовательно, могут характеризоваться температурой. По мере того как пространство продолжает расширяться обычным (не-инфляционным) способом, в сценарии Большого взрыва температура газа частиц постепенно снижается. Однако важный момент в том, что возникшая при инфляции однородность задаёт однородные условия для этого процесса, и поэтому приводит к однородным результатам.

20

Значение поля инфлатона определяет количество энергии и отрицательное давление, которыми оно наполняет пространство. Чем больше энергия, тем быстрее темп расширения пространства. В свою очередь быстрое расширение пространства оказывает обратное влияние на само поле инфлатона: чем быстрее расширение пространства, тем сильнее флуктуации значений поля инфлатона.

21

Давайте рассмотрим вопрос, который, возможно, уже возникал у вас, и к которому мы вернёмся в главе 10. Когда пространство испытывает инфляционное расширение, его полная энергия возрастает: чем больше объём пространства, заполненного полем инфлатона, тем больше полная энергия (если пространство бесконечно, энергия тоже бесконечна – в этом случае следует говорить об энергии, содержащейся в конечной области пространства, по мере того как эта область растёт). Что естественным образом приводит к следующему вопросу: где источник энергии? В аналогичной ситуации с бутылкой шампанского источник дополнительной энергии в бутылке обеспечивается усилиями ваших мускулов. Что играет роль мускулов в расширяющемся космосе? Ответ – гравитация. Подобно тому как ваши мускулы обеспечивают расширение доступного пространства в бутылке (путём вытаскивания пробки), гравитация является движущей силой расширения доступного пространства в космосе. При этом важно понимать, что энергия гравитационного поля может быть сколь угодно отрицательно большой. Рассмотрим две частицы, падающие друг на друга при взаимном гравитационном притяжении. Гравитация заставляет эти частицы приближаться друг к другу всё быстрее, при этом их кинетическая энергия становится всё более положительной. Гравитационное поле может обеспечить частицы такой положительной энергией за счёт расходования своего собственного энергетического резерва, который в таком процессе становится сколь угодно отрицательным: чем сильнее частицы сближаются, тем более отрицательной становится гравитационная энергия (эквивалентно, тем более положительна энергия, которую надо приложить, чтобы преодолеть силу гравитации и заново разнести частицы). Таким образом, гравитация подобна банку, который предоставляет безграничную кредитную линию и может давать бесконечное число денег; гравитационное поле может дать бесконечное количество энергии, потому что его собственная энергия может становиться при этом всё более отрицательной. Именно в этом состоит источник энергии, запускающий инфляционное расширение.

22

Для математически подготовленного читателя отметим, что более точное описание горизонтальных осей на рис. 3.5 таково: рассмотрим двумерную сферу, состоящую из точек пространства в момент времени, когда реликтовое излучение начало свободно распространяться. Подобно любой двумерной сфере, удобный набор координат на этой поверхности – это угловые переменные сферической системы координат. Тогда температура реликтового излучения может рассматриваться как функция этих угловых переменных и, соответственно, может быть разложена в ряд Фурье по сферическим гармоникам Ylm(θ, ϕ). Вертикальная ось на рис. 3.5 отражает величину коэффициента каждой моды в этом разложении – перемещение вправо вдоль горизонтальной оси соответствует уменьшению углового разделения. Технические подробности могут быть найдены, например, в отличной книге Додельсона: Scott Dodelson, «Modern Cosmology». San Diego, Calif.: Academic Press, 2003.

23

Напомним, что при обсуждении лоскутной мультивселенной предполагалось, что компоновки частиц варьируются случайным образом от лоскутка к лоскутку. Связь между лоскутной и инфляционной мультивселенными также позволяет прояснить это предположение. Пузырёк-вселенная образуется в данной области, когда падает значение поля инфлатона; когда это происходит, энергия инфлатона трансформируется в частицы. Точный набор этих частиц в любой момент времени определяется точным значением инфлатона во время процесса трансформации. Поскольку поле инфлатона испытывает квантовые флуктуации, при спускании оно начинает испытывать случайные колебания – такие же случайные колебания, которые приводят к образованию структуры из чуть более горячих и чуть более холодных пятнышек на рис. 3.4. Применительно к лоскуткам внутри пузырька-вселенной это будет соответствовать тому, что на значении инфлатона будут отражаться случайные квантовые колебания. Такая случайность обеспечит случайность получающихся распределений частиц. Именно поэтому мы ожидаем, что любая конфигурация частиц, например такая, которая отвечает за то, что мы видим вокруг нас прямо сейчас, будет повторяться так же часто, как любая другая.

24

Я благодарен Вальтеру Исааксону за личное обсуждение этого и ряда других исторических вопросов, связанных с Эйнштейном.

25

Давайте рассмотрим этот вопрос подробнее. Глэшоу, Салам и Вайнберг предположили, что электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия. Электрослабая теория была подтверждена в экспериментах на ускорителе в конце 1970-х и начале 1980-х годов. Глэшоу и Джорджи пошли дальше и предложили, что электрослабое и сильное взаимодействия являются проявлениями ещё более фундаментального взаимодействия, в рамках подхода, который был назван великим объединением. Однако простейшая версия великого объединения была отброшена, когда учёным не удалось экспериментально подтвердить одно из предсказаний – что протоны должны время от времени распадаться. Тем не менее есть много других вариантов великого объединения, которые пока экспериментально не отвергнуты, например потому, что предсказываемая ими скорость распада протона настолько мала, что чувствительность современного экспериментального оборудования недостаточна для обнаружения распада. Однако даже если великое объединение не подкрепляется экспериментальными данными, уже нет никаких сомнений, что три негравитационных взаимодействия могут быть описаны на едином математическом языке квантовой теории поля.

26

Открытие теории суперструн дало толчок к развитию других, тесно связанных теоретических подходов, направленных на поиски единой теории фундаментальных взаимодействий. В частности, суперсимметричная квантовая теория поля и её гравитационное расширение (супергравитация) глубоко изучались в середине 1970-х годов. Суперсимметричная квантовая теория поля и супергравитация основаны на новом принципе суперсимметрии, который был открыт в рамках теории суперструн, но эти подходы подключают суперсимметрию к обычным теориям точечных частиц. Позже в этой главе мы кратко обсудим суперсимметрию, но для заинтересовавшихся читателей я здесь замечу, что суперсимметрия – это самая последняя из имеющихся симметрий (помимо вращательной симметрии, трансляционной симметрии, симметрии Лоренца и, в общем случае, симметрии Пуанкаре) в нетривиальной теории элементарных частиц. Она связывает частицы различных квантово-механических спинов и вскрывает глубокое математическое родство между частицами-переносчиками взаимодействий и частицами, из которых состоит материя. Супергравитация – это расширение суперсимметрии посредством включения гравитационного поля. В ранний период исследований по теории струн учёные осознали, что суперсимметрия и супергравитация возникают в низкоэнергетическом пределе теории струн. При низких энергиях протяжённость струны разглядеть нельзя, поэтому она выглядит как точечная частица. Соответственно, как будет обсуждаться в этой главе, применительно к низкоэнергетическим процессам математический аппарат теории струн преобразуется в аппарат квантовой теории поля. Учёные обнаружили, что поскольку суперсимметрия и гравитация выживают при таком преобразовании, то низкоэнергетические теории струн приводят к суперсимметричным квантовым теориям поля и супергравитации. Как будет обсуждаться в главе 9, связь между суперсимметричной теорией поля и теорией струн впоследствии стала ещё более глубокой.

27

Осведомлённый читатель может не согласиться с моим утверждением, что каждое поле ассоциируется с частицей. Более точное утверждение звучит так: малые флуктуации поля около локального минимума его потенциала обычно интерпретируются как возбуждения частиц. Этого определения будет достаточно для наших обсуждений. К тому же осведомлённый читатель заметит, что локализация частицы в точке сама по себе является идеализацией, потому что для этого потребуется – из принципа неопределённости – бесконечный импульс и энергия. Опять же суть в том, что в квантовой теории поля нет, в принципе, предела того, как можно в конце концов локализовать частицу.

28

Исторически математическая техника, известная как перенормировка (или ренормализация), была развита для устранения количественных проявлений жёстких (высокоэнергетичных) колебаний квантового поля на малых расстояниях. При применении к квантово-полевым теориям трёх негравитационных взаимодействий перенормировка устранила бесконечные величины, возникающие при различных вычислениях, что позволило физикам сделать фантастически точные предсказания. Однако, когда перенормировку применили к квантовым флуктуациям гравитационного поля, она оказалась неэффективной: метод не смог устранить бесконечности, возникающие при квантовых вычислениях с учётом гравитации.

С более современных позиций эти бесконечности рассматриваются несколько иначе. Физики осознали, что на пути к более глубокому пониманию законов природы разумно придерживаться той точки зрения, что любая теория приблизительна – если вообще значима – и скорее всего может описывать физические явления только вплоть до некоторого определённого масштаба (или только до некоторого энергетического масштаба). Явления за его пределами не могут описываться данной теорией. Согласно этой точке зрения, безрассудно применять данную теорию на расстояниях, меньших чем область применимости теории (или на энергиях, превышающих область применимости). С учётом таких встроенных отсеканий (подобно тем, что описаны в основном тексте) бесконечности никогда не будут возникать. Наоборот, все вычисления проводятся в теории, диапазон применимости которой обозначен с самого начала. Это означает, что предсказательная сила ограничена явлениями, находящимися в установленных теорией пределах, а на очень коротких расстояниях (больших энергиях) теория не работает. Окончательная цель полной теории квантовой гравитации состоит в устранении встроенных пределов и распространении предсказательной силы теории на произвольные масштабы.

29

Чтобы понять, откуда берутся эти конкретные числа отметим, что квантовая механика (см. главу 8) сопоставляет частице волну, и чем тяжелее частица, тем короче длина волны (расстояние между последовательными гребнями). Общая теория относительности Эйнштейна также сопоставляет длину произвольному объекту – это размер, до которого надо сжать объект, чтобы он стал чёрной дырой. Чем тяжелее объект, тем больше этот размер. А теперь возьмите частицу, которая описывается квантовой механикой, и представьте, что её масса медленно растёт. При этом квантовая волна частицы укорачивается, а её «размер чёрной дыры» увеличивается. При некоторой массе квантовая длина волны и размер чёрной дыры совпадут, что задаст тот уровень массы и размера, при котором квантово-механические и гравитационные рассмотрения одновременно важны. При проведении численной оценки такого мысленного эксперимента масса и размер оказываются равными тем значениям, которые озвучены в основном тексте – планковской массе и планковской длине соответственно. Забегая вперёд, скажу, что в главе 9 мы будем обсуждать голографический принцип. Основываясь на общей теории относительности и физике чёрных дыр, этот принцип утверждает, что существует очень определённое ограничение на количество физических степеней свободы, которые могут существовать внутри произвольной области пространства (это более точная версия рассуждений из главы 2 относительно количества различных конфигураций частиц в заданном объёме пространства; это также обсуждается в комментарии {11}). Если этот принцип верен, то конфликт между общей теорией относительности и квантовой механикой может возникнуть прежде, чем расстояния станут малыми, а кривизны большими. Огромный объём пространства, заполненный газом частиц даже малой плотности, будет обладать, согласно квантовой теории, значительно бо́льшим количеством степеней свободы, чем позволяет голографический принцип (основанный на общей теории относительности).

30

Квантово-механический спин является достаточно тонким понятием. Трудно представить, что значит «вращающийся», особенно в квантовой теории поля, где частицы считаются точками. На самом деле, из экспериментов следует, что частицы могут обладать внутренним свойством, очень похожим на постоянный угловой момент. Более того, из квантовой теории следует, и эксперименты это подтверждают, что частицы могут иметь угловой момент, который является только целым кратным некоторой фундаментальной величины (константы Планка, делённой на 2). Поскольку классические вращающиеся объекты обладают внутренним угловым моментом (который, однако, не является постоянным – он изменяется при изменении вращательной скорости объекта), теоретики заимствовали название «спин» и применили его к аналогичной квантовой ситуации. Отсюда название «спиновый угловой момент». Хотя выражение «вращающийся как волчок» создаёт подходящий зрительный образ, более точно будет представлять, что частицы характеризуются не только их массой, электрическим зарядом, зарядом ядра, а также внутренним неизменным спиновым угловым моментом. Подобно тому как электрический заряд частицы является одним из её фундаментальных определяющих свойств, эксперименты демонстрируют, что таким же свойством является её спиновый угловой момент.

31

Напомним, что причиной напряжённости между общей теорией относительности и квантовой механикой являются мощные квантовые флуктуации гравитационного поля, которые сотрясают пространство-время настолько сильно, что традиционные математические методы перестают работать. Квантовая неопределённость говорит нам, что эти флуктуации становятся тем сильнее, чем меньше расстояние (именно поэтому эти флуктуации в обычной жизни не видны). Вычисления показывают, что именно энергичные флуктуации на расстояниях, меньше планковского масштаба, расстраивают наши математические инструменты (чем меньше расстояние, тем больше энергия флуктуаций). Поскольку в рамках квантовой теории поля частицы описываются как точки, не имеющие пространственного размера, расстояния, достижимые этими частицами, могут быть сколь угодно малыми, и, следовательно, ощущаемые ими квантовые флуктуации могут быть сколь угодно энергичными. В теории струн ситуация изменяется. Струны не являются точками – у них имеется пространственный размер. Это означает, что есть предел малости достижимого расстояния, даже в принципе, так как струна не может уместиться на расстоянии меньшем, чем её длина. В свою очередь самое малое достижимое расстояние задаёт предел того, насколько энергичными могут быть квантовые флуктуации. Этот предел оказывается достаточным, чтобы приручить неуправляемую математику, позволяя теории струн соединить квантовую механику и общую теорию относительности.

32

«What Einstein never knew», NOVA documentary, 1985.

33

Некоторые исследователи могут заметить, что хотя ни квантовая теория поля, ни текущее состояние теории струн не дают объяснения свойств частиц, этот вопрос более насущен для теории струн. Он достаточно сложен, но для заинтересованных читателей приведём краткое резюме. Свойства частиц в квантовой теории поля – например, их массы – задаются числами, которые подставляются в уравнения теории. Сам факт того, что уравнения квантовой теории поля допускают варьирование таких чисел, является математическим способом сказать, что квантовая теория поля не определяет массы частиц, а, наоборот, использует их в качестве начальных данных. В теории струн гибкость в выборе масс частиц имеет схожее математическое происхождение – уравнения допускают свободное варьирование некоторых чисел, – однако проявление этой гибкости более значимо. Свободно изменяющиеся числа – числа, которые могут изменяться без каких-либо затрат энергии – соответствуют наличию в теории безмассовых частиц. (Если вернуться к главе 3 к языку кривых потенциальной энергии, то представьте совершенно плоскую кривую, то есть горизонтальную линию. Подобно тому как прогулка по совершенно плоской поверхности не меняет вашей потенциальной энергии, изменение значения такого поля не приведёт к затратам энергии. Поскольку масса частицы соответствует кривизне кривой потенциальной энергии квантового поля вблизи её минимума, то кванты таких полей являются безмассовыми.) Избыточное число безмассовых частиц является особенно неприятным свойством любой предлагаемой теории, потому что есть строгие ограничения на такие частицы, вытекающие из экспериментальных данных, полученных на ускорителях, и космологических наблюдений. Чтобы теория струн была жизнеспособной, безмассовым частицам необходимо придать массу. В течение последних лет было предложено несколько механизмов генерации масс, основанных на потоках, пронизывающих дырки в пространствах Калаби – Яу дополнительных измерений. Я вернусь к этому в главе 5.

34

Возможно, что в экспериментах будут получены данные, которые сильно пошатнут нашу веру в теорию струн. Структура теории струн гарантирует, что определённые базовые принципы должны соблюдаться во всех физических явлениях. Среди них унитарность (сумма вероятностей всех возможных результатов в данном эксперименте должна быть равна 1) и локальная Лоренц-инвариантность (в достаточно малой области справедлива специальная теория относительности), а также более технические свойства, такие как аналитичность и кроссинг-симметрия (результат столкновения частиц должен зависеть от импульсов частиц таким образом, чтобы удовлетворялся некоторый набор математических критериев). Если будет обнаружено – возможно, на Большом адронном коллайдере, – что любой из этих принципов нарушается, то примирить полученные данные с теорией струн станет трудной задачей. (Согласовать эти данные со Стандартной моделью физики частиц, которая также использует эти принципы, будет столь же проблематично; однако здесь спасает допущение, что при достаточно высоких энергиях Стандартная модель должна уступить место некой новой физике, поскольку она не включает в себя гравитацию. Но если мы получим данные, конфликтующие с любым из перечисленных выше принципов, это будет указывать на то, что новая физика – это не теория струн.)


    Ваша оценка произведения:

Популярные книги за неделю