Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"
Автор книги: Брайан Грин
сообщить о нарушении
Текущая страница: 36 (всего у книги 38 страниц)
64
Само слово «типичное» тоже добавляет проблем, поскольку его смысл зависит от того, как оно определяется и какие измерения за этим стоят. Если, например, мы используем в качестве критерия число детей и машин, то придём к одному виду «типичной» американской семьи. Если использовать другие критерии, такие как интерес к физике, любовь к опере или увлечение политикой, то характеристика «типичной» семьи изменится. Тот анализ, что верен для «типичной» американской семьи, по всей вероятности верен и для «типичных» наблюдателей в мультивселенной: рассмотрение других свойств помимо размера популяции приведёт к другому определению «типичного» наблюдателя. В свою очередь это будет влиять на предсказание вероятности наблюдения того или иного свойства в нашей Вселенной. Чтобы антропные вычисления стали по-настоящему убедительны, они должны учитывать этот аспект. В противном случае, как говорилось в основном тексте, распределения должны иметь очень резко выраженные пики, чтобы отклонения от одной населённой вселенной к другой были бы минимальными.
65
Изучение наборов с бесконечным числом составляющих является богатым и хорошо изученным разделом математики. Любознательный читатель может быть знаком с тем фактом, что проводимые в XIX столетии исследования выявили, что есть различные «размеры» или, как принято говорить, «уровни» бесконечности. То есть одна бесконечная величина может быть больше, чем другая бесконечная величина. Уровень бесконечности, задающий размер множества, содержащего все целые числа, обозначается Ν0. Георг Кантор показал, что эта величина меньше, чем аналогичная величина для множества всех вещественных чисел. Грубо говоря, если попытаться сопоставить целые и вещественные числа, то первые обязательно закончатся раньше вторых. А если рассмотреть множество всех подмножеств вещественных чисел, то уровень бесконечности будет ещё больше.
Во всех обсуждавшихся выше примерах из основного текста речь шла о бесконечности типа Ν0, потому что мы рассматривали бесконечные наборы дискретных, или «счётных», объектов – то есть различные наборы целых чисел. Тогда в математическом смысле во всех примерах размер одинаков; полное число составляющих описывается одним и тем же уровнем бесконечности. Однако, как мы вскоре увидим, для физиков вывод такого сорта не особенно полезен, ибо цель состоит в том, чтобы найти физически обоснованную схему для сравнения бесконечных наборов вселенных, которая приведёт к более точной иерархии, той, что позволит объяснить относительное преобладание одного набора свойств во всей мультивселенной по сравнению с другим набором. Типичный для физиков подход при решении такого сорта задач состоит в следующем. Сперва следует сравнить между собой конечные подклассы рассматриваемых бесконечных наборов (потому что в конечном случае все непонятные вопросы снимаются), а затем добавлять в подклассы всё больше и больше элементов, так чтобы в конце концов включить полный бесконечный набор. Трудность в том, чтобы найти физически оправданный способ выбора конечных подклассов для сравнения, а также обосновать, что при увеличении выбранных подклассов сравнения остаются осмысленными.
66
У теории инфляции есть и другие достижения, в частности решение проблемы магнитных монополей. При попытке объединить три негравитационных взаимодействия в одну теоретическую схему (известную под названием великое объединение) исследователи обнаружили, что Большой взрыв должен сопровождаться образованием большого количество магнитных монополей. Эти частицы представляют собой, по сути, северный полюс линейного магнита, в котором нет привычной пары – южного полюса (и наоборот). Однако до сих пор такие частицы не были обнаружены. Инфляционная космология объясняет отсутствие монополей тем, что быстрое колоссальное расширение пространства сразу после Большого взрыва разметало их по всему пространству, поэтому вероятность их присутствия в нашей Вселенной близка к нулю.
67
В настоящее время есть разные точки зрения, насколько трудна эта задача. Некоторые рассматривают проблему измерения как хитроумный технический трюк, который в случае успешного решения станет важным дополнением инфляционной космологии. Другие (например, Пол Стейнхард) считают, что решение проблемы измерения потребует выхода далеко за рамки математического формализма инфляционной космологии, что приведёт к новому подходу, который должен будет рассматриваться как новая космологическая теория. Моя личная точка зрения, которую разделяют немногие, но их число постоянно растёт, состоит в том, что проблема измерения уходит корнями на самый глубокий фундаментальный уровень, и её решение может потребовать серьёзного пересмотра основополагающих идей.
68
Оригинальную версию 1956 года и урезанную версию 1957 года диссертации Эверетта можно найти в книге Брайса ДеВитта: «The Many-Worlds Interpretation of Quantum Mechanics», edited by Bryce S. DeWitt & Neill Graham. Princeton: Princeton University Press, 1973.
69
27 января 1998 года я обсуждал с Джоном Уилером аспекты квантовой механики и общей теории относительности, которые я собирался описать в «Элегантной Вселенной». Прежде чем углубиться в науку, Уилер отметил, насколько важно, особенно для молодых теоретиков, найти правильный способ представления своих результатов. В тот момент я воспринял это как не более чем мудрый совет, возможно, побуждённый его разговором с мной, «молодым теоретиком», проявившим интерес к описанию математических достижений на обычном языке. Однако, читая поучительную историю, изложенную в книге Питера Бирна: Peter Byrne, «The Many Worlds of Hugh Everett III». New York: Oxford University Press, 2010, я был поражён тем, что Уилер также акцентировал эту тему примерно сорок лет назад в его общении с Эвереттом, только в ситуации, где ставки были гораздо выше. Комментируя черновой вариант диссертации Эверетта, Уилер сказал, что надо «подчистить слова, не формализм», и предупредил о «сложности использования обычных слов для описания математического формализма, который удалён от обычной жизни настолько, насколько это вообще возможно; о противоречиях и недопониманиях, которые могут возникнуть; об очень и очень тяжёлой ноше ответственности, с которой следует делать все утверждения, так чтобы эти недопонимания не могли возникнуть». Бирн убедительно свидетельствует, что Уилер балансировал на тонкой грани между восхищением работой Эверетта и уважением к квантово-механическому подходу, над которым трудились Бор и много других знаменитых физиков. С одной стороны, он не хотел, чтобы идеи Эверетта бесцеремонно были принижены старой гвардией только потому, что Эверетт выбрал неудачную форму для презентации или потому что эмоциональные слова (вроде «расщепляющиеся» вселенные) могут резануть своей новомодностью. С другой стороны, Уилер не хотел, чтобы почтенное физическое сообщество подумало, будто он является инициатором ничем не оправданной атаки на успешный квантовый формализм. Относительно Эверетта и его диссертации Уилер предложил компромисс, что развитый математический формализм должен быть сохранён, но трактовка и приложения должны быть облечены в более мягкую форму. В то же время, Уилер настоятельно побуждал Эверетта съездить к Бору и изложить свои доводы лично, у доски. В 1959 году Эверетт так и поступил, однако то, что ему виделось как двухнедельные разносторонние обсуждения, свелось к нескольким непродуктивным разговорам. Никто не изменил своего мнения; позиции остались прежними.
70
Позвольте пояснить одну неточность. Из уравнения Шрёдингера следует, что значения, которые может принимать квантовая волна (или, на языке полей, волновая функция) могут быть положительными и отрицательными; в общем случае, эти значения могут быть комплексными числами. Такие числа не могут быть напрямую интерпретированы как вероятности – что означает отрицательная или комплексная вероятности? Вероятности ассоциируются с квадратом амплитуды квантовой волны в данной точке. Математически это означает, что для определения вероятности нахождения частицы в данной точке мы перемножаем значение волны в этой точке с его комплексно сопряжённым значением. Это пояснение также важно для понимания следующего вопроса. Сокращения между перекрывающимися волнами необходимы для появления интерференционной картины. Но если бы волны действительно описывались как волны вероятности, такие сокращения не происходили бы, потому что вероятности являются положительными числами. Однако, как мы теперь знаем, квантовые волны принимают не только положительные значения; благодаря этому и происходят сокращения между положительными и отрицательными числами, а в общем случае, между комплексными числами. Поскольку нам важны только качественные свойства таких волн, для упрощения обсуждения в основном тексте я не буду различать квантовые волны и связанные с ними волны вероятности (получаемые путём возведением амплитуды в квадрат).
71
Для математически подготовленного читателя заметим, что квантовая волна (волновая функция) одной частицы с большой массой будет описываться так, как это указано в основном тексте. Однако очень массивные объекты, как правило, состоят из многих частиц. В такой ситуации квантово-механическое описание более сложное. Вы могли бы подумать, что все частицы будут описываться квантовой волной, определённой на той же сетке координат, которая использовалась для одной частицы – с помощью тех же трёх пространственных осей. Но это не так. Волна вероятности использует в качестве начальных данных возможное положение каждой частицы и задаёт вероятность нахождения частиц в этих положениях. Следовательно, волна вероятности живёт в пространстве с тремя осями для каждой из частиц – то есть общее количество осей будет в три раза больше количества частиц (или в десять раз больше количества частиц, если учитывать дополнительные измерения теории струн). Это означает, что волновая функция составной системы, состоящей из n фундаментальных частиц, будет являться комплекснозначной функцией, определённой не на обычном трёхмерном пространстве, а на 3n-мерном пространстве; если число пространственных измерений не 3, а m, то число 3 в этом выражении будет заменено на m. Такое пространство называется конфигурационным. То есть в общем случае, волновая функция будет отображением . Когда мы говорим, что волновая функция имеет острый пик, мы имеем в виду, что это отображение определено на небольшом mn-мерном шаре внутри области определения. Отметим, в частности, что волновая функция, как правило, определена не в привычном пространстве. Конфигурационное пространство совпадает с привычным нам пространством только в идеализированном случае волновой функции одной, полностью изолированной, частицы. Ещё заметим, что когда говорится, что квантовые законы гарантируют распространение остролокализованной волновой функции массивного объекта по траектории, которую задают уравнения Ньютона, можно представлять себе, что волновая функция описывает движение центра масс данного объекта.
72
Из этого описания вы можете сделать вывод, что существует бесконечно много местоположений, где может находиться электрон: для заполнения плавно меняющегося волнового профиля квантовой волны понадобится бесконечное число пикообразных форм, каждая из которых ассоциирована с возможным положением электрона. Как это стыкуется с главой 2, в которой мы обсуждали конечное число различных конфигураций частиц? Во избежание постоянных оговорок, не имеющих важного значения для основного изложения этой книги, я не стал заострять внимание на факте (указанном в главе 2), что для всё более точного определения положения электрона измерительный прибор будет тратить всё больше энергии. Поскольку в реальных ситуациях энергия ограничена, то разрешение прибора не идеально. Для пикообразных квантовых волн это означает, что при любой конечной энергии у пиков имеется отличная от нуля ширина. В свою очередь это означает, что в любой ограниченной области (например, внутри космического горизонта) существует конечное число различных измеряемых положений электрона. Более того, чем тоньше пик (более точное разрешение положения частицы), тем шире квантовая волна, описывающая энергию частиц, что демонстрирует обусловленный принципом неопределённости компромисс между характеристиками частицы.
73
Для читателя с философским складом ума замечу, что описанная выше двухъярусная картина научного объяснения была предметом философских обсуждений и споров. Смежные идеи и обсуждения можно найти в работах: Frederick Suppe, «The Semantic Conception of Theories and Scientific Realism». Chicago: University of Illinois Press, 1989; James Ladyman, Don Ross, David Spurrett, & John Collier, «Every Thing Must Go». Oxford: Oxford University Press, 2007.
74
Физики часто довольно свободно говорят о бесконечном количестве вселенных в контексте многомирового подхода к квантовой механике. Безусловно, существует бесконечно много форм возможных волн вероятности. Даже в одной и той же точке пространства можно непрерывным образом изменять значение волны вероятности, и поэтому число принимаемых ею значений будет бесконечным. Однако волны вероятности не являются физическими характеристиками системы, к которым у нас есть прямой доступ. Наоборот, волны вероятности содержат информацию о возможных различных исходах в заданной ситуации, а их не обязательно бесконечное число. В частности, подготовленный читатель заметит, что квантовая волна (волновая функция) находится в гильбертовом пространстве. Если данное гильбертово пространство конечномерно, то имеется конечное число разных возможных результатов измерений в физической системе, задаваемой этой волновой функцией (то есть любой эрмитов оператор имеет конечное число различных собственных значений). Это приведёт к конечному числу миров для конечного числа наблюдений или измерений. Считается, что гильбертово пространство, ассоциированное с физическими явлениями, происходящими внутри пространства конечного объёма и с ограниченной энергией, является с необходимостью конечномерным (мы остановимся на этом более подробно в главе 9), откуда следует, что число миров также будет конечно.
75
См.: Peter Byrne, «The Many Worlds of Hugh Everett III». New York: Oxford University Press, 2010, p. 177.
76
В разное время многие учёные, включая Нила Грахама; Брайса де Витта; Джеймса Хартли; Эварда Фархи, Джефри Голдстоуна и Сэма Гутмана; Дэвида Дойча; Сидни Коулмена; Дэвида Альберта и других, включая меня самого, независимо обнаружили удивительный математический факт, который, по видимому, является центральным для понимания природы вероятности в квантовой механике. Приведём его формулировку для математически подготовленного читателя: пусть ψ – волновая функция квантово-механической системы – вектор, являющийся элементом гильбертова пространства H. Волновая функция для n тождественных копий системы имеет, таким образом, вид . Пусть A – это произвольный эрмитов оператор с собственными значениями αk и собственными функциями . Пусть FK(A) – это оператор «частоты», который подсчитывает число раз, которое появляется в данном состоянии, принадлежащем . Тогда имеем следующий математический результат:
То есть при неограниченном росте числа тождественных копий системы волновая функция всей составной системы стремится к собственной функции оператора частоты с собственным значением . Это замечательный результат. Из самого определения собственной функции тогда следует, что в указанном пределе наблюдатель, измеряющий A, обнаружит αk дробное число раз, равное , что выглядит как самый прямой вывод знаменитого правила Борна для квантово-механической вероятности. С точки зрения многомирового подхода это означает, что миры, в которых число наблюдений αk не согласуется с правилом Борна, обладают нулевой нормой в гильбертовом пространстве в пределе произвольно больших n. В этом смысле кажется, будто квантово-механическая вероятность имеет прямую интерпретацию в рамках многомирового подхода. Все наблюдатели в многомировом подходе будут видеть результаты с частотами, которые соответствуют возникающим из стандартной квантовой механики, за исключением множества наблюдателей, норма которых в гильбертовом пространстве становится исчезающее мала при n, стремящемся к бесконечности. Хотя это выглядит многообещающим, но по зрелому размышлению возникают сомнения. В каком смысле можно говорить, что наблюдатель, норма которого в гильбертовом пространстве мала или норма которого стремится к нулю при n, стремящемся к бесконечности, неважен или не существует? Мы хотим сказать, что такие наблюдатели аномальны или «маловероятны», но как установить связь между нормой вектора в гильбертовом пространстве и этими характеристиками? Ситуацию можно разъяснить на примере. В двумерном гильбертовом пространстве с состояниями спин-вверх и спин-вниз рассмотрим состояние . При измерении это состояние даёт вероятность состояния спин-вверх примерно 0,98 и состояния спин-вниз примерно 0,02. Если рассмотреть n копий этой спиновой системы, , то при стремлении n к бесконечности подавляющее большинство членов в разложении этого вектора имеют примерно одинаковые количества состояний спин-вверх и спин-вниз. Поэтому подавляющее большинство наблюдателей (копий экспериментаторов) будут видеть состояния спин-вверх и спин-вниз в отношении, которое не согласуется с квантово-механическими предсказаниями. Лишь небольшое количество членов в разложении , у которых 98 процентов состояний спин-вверх и 2 процента состояний спин-вниз, будут согласованы с квантово-механическим ожиданием. Этот результат говорит нам, что только эти состояния и будут теми единственными, имеющими ненулевую норму при n, стремящемся к бесконечности. Тогда абсолютное большинство членов в разложении (абсолютное большинство копий экспериментаторов) следует рассматривать в некотором смысле как «несуществующие». Проблема состоит в том, чтобы понять, что всё это вообще значит.
Я независимо пришёл к описанному выше математическому результату во время подготовки к лекциям по курсу квантовой механики. Было бы полным восторгом получить вероятностную интерпретацию квантовой механики, напрямую следующую из математического формализма – я представляю как учащённо бились сердца всех физиков, которые, как и я, получили этот результат. Поражает, однако, сколь мало известен этот результат в физическом сообществе. Например, я не знаю ни одного стандартного учебника по квантовой физике, в котором он содержится. Я считаю, что этот результат можно осмыслить с нескольких ракурсов: во-первых, как сильную математическую мотивацию вероятностной интерпретации волновой функции Борном – если бы Борн не «угадал» эту интерпретацию, то кто-нибудь, в конце концов, вывел бы её прямо из математического формализма; во-вторых, как проверку совместимости вероятностной интерпретации – если бы этот математический результат не выполнялся, то встал бы вопрос о внутренней осмысленности вероятностной интерпретации волновой функции.
77
Я использовал выражение «рассуждения закстарианского типа» для обозначения подхода, в котором понятие вероятности возникает благодаря неведению каждого обитателя из множества миров относительно того, какому конкретному миру он принадлежит. Лев Вайдман предложил отнестись более серьёзно к идее закстарианского сценария. Он говорит, что понятие вероятности возникает в многомировом подходе во временном промежутке между завершением измерения и считыванием полученного результата экспериментатором. Но, возражают скептики, ложка хороша к обеду: обязанность квантовой механики и науки вообще состоит в том, чтобы давать предсказания о том, что произойдёт, а не о том, что произошло. Более того, сомнительно, чтобы понятие квантовой вероятности основывалось на отсрочке во времени, которая легко поддаётся устранению: если учёный имеет немедленный доступ к результатам эксперимента, то возникает опасение, что квантовая вероятность может быть вообще вытеснена из формализма. (Подробное обсуждение содержится в работах: David Albert, Probability in the Everett Picture, «Many Worlds: Everett, Quantum Theory, and Reality», eds. Simon Saunders, Jonathan Barrett, Adrian Kent, David Wallace. Oxford: Oxford University Press, 2010; Peter Lewis, Uncertainty and Probability for Branching Selves, philsciarchive.pitt.edu/archive/00002636.) Окончательный вердикт о гипотезе Вайдмана и подобной вероятности неведения таков: если я подбрасываю монетку в контексте обычной, одной единственной Вселенной и говорю, что есть 50-процентная вероятность того, что выпадет орёл, то я говорю так по той причине, что хотя я и получил всего один результат, на самом деле существуют два результата, которые я мог бы получить. Однако давайте я закрою глаза и представлю, что я только что измерил положение нашего электрона. Я знаю, что монитор детектора показывает либо Земляничные поля, либо мемориал Гранта, но я не знаю, что именно. Тогда вы обращаетесь ко мне. «Брайан, – говорите вы, – какова вероятность того, что монитор показывает мемориал Гранта?» Чтобы ответить, я вспоминаю подбрасывание монетки, но как только я начинаю рассуждать в том же духе, меня одолевают сомнения. «Ммммм, – думаю я, – действительно ли есть два результата, которые я мог бы получить? Единственное, что отличает меня от другого Брайана, – это показание монитора. Представить, что на мониторе показана другая надпись, – это всё равно что представить, что я – это не я. Это представить, что я – другой Брайан». Поэтому, хотя я не знаю, что написано на мониторе, я – тот парень, который говорит сейчас в моей голове – не мог бы получить никакого другого результата; отсюда следует, что моё неведение не может быть причиной вероятностного мышления.