355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 5)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 38 страниц)

Глава 3. Вечность и бесконечность
Инфляционная мультивселенная

В середине XX века впервые было осознано, что если потушить Солнце и удалить все другие звёзды из Млечного Пути и даже размести по сторонам более удалённые галактики, то окружающее пространство всё равно не будет чёрным. Для человеческого глаза оно по-прежнему будет чёрным, но если бы мы могли видеть в микроволновой части спектра, то куда бы мы не посмотрели, повсюду будет однородное свечение. Где его начало? В начале! Физики замечательным образом обнаружили всепроникающее море микроволнового излучения, заполняющее пространство, – дошедший до наших дней отголосок рождения Вселенной. История этого достижения является очередной демонстрацией феноменального успеха теории Большого взрыва, но одновременно с этим вскрывает один из фундаментальных недостатков теории и создаёт площадку для последующего ключевого, после новаторских работ Леметра и Фридмана, прорыва в космологии – инфляционной космологии.

Инфляционная космология видоизменяет теорию Большого взрыва, дополняя её интенсивной вспышкой невероятно быстрого расширения в течение первых мгновений жизни Вселенной. Мы увидим, что такая модификация оказывается существенной для объяснения некоторых свойств реликтового излучения, которые иначе объяснить не удаётся. И более того, инфляционная космология играет ключевую роль в нашем повествовании, потому что в течение последних нескольких десятилетий учёные постепенно осознали, что наиболее убедительные варианты теории приводят к огромному количеству параллельных вселенных, коренным образом изменяя характер реальности.

Следы жаркого начала

Георгий Гамов, советский физик, иммигрировавший в США, за два метра ростом, известен благодаря своим открытиям в квантовой и ядерной физике в начале XX века. У него была непростая судьба, но он был жизнерадостный и находчивый (в 1932 году он и его жена хотели сбежать из Советского Союза за границу, пытаясь переплыть Чёрное море на байдарке с запасом шоколада и коньяка; когда плохая погода заставила беглецов вернуться на берег, Гамов заговорил зубы представителям властей, рассказав им историю про неудавшийся научный эксперимент в открытом море). В 1940-х годах, успешно перебравшись за железный занавес (по суше, без особых запасов шоколада) и обосновавшись в университете Вашингтона в Сент-Луисе, Гамов занялся космологией. Исследования, проведённые им при содействии своего феноменально талантливого аспиранта Ральфа Альфера, прояснили и оживили картину первых мгновений жизни Вселенной, по сравнению с ранними работами Фридмана (который был учителем Гамова в бытность его в Ленинграде) и Леметра. С учётом небольших современных дополнений картина, нарисованная Гамовым и Альфером, выглядела следующим образом.

Сразу после рождения, будучи невероятно горячей и плотной, Вселенная пребывала в угаре активной деятельности. Пространство быстро расширялось и остывало, что приводило к образованию частиц из первичной плазмы. В течение первых трёх минут температура быстро падала, однако оставалась достаточно высокой, чтобы Вселенная была похожа на космическую ядерную печь, где образовывались простейшие атомные ядра: водород, гелий, небольшие количества лития. По прошествию ещё нескольких минут температура упала до 108 градусов по Кельвину, что примерно в 10 000 раз выше температуры поверхности Солнца. Несмотря на то, что согласно привычным стандартам такая температура крайне высока, её уже не хватает для дальнейшего поддержания ядерных процессов, и, начиная с этого момента, интенсивность движения частиц сильно падает. Последующие миллиарды лет почти ничего не происходило, пространство просто продолжало расширяться, а плазма частиц продолжала остывать.

Затем, примерно 370 000 лет спустя, когда Вселенная остыла приблизительно до 3000 K, что составляет примерно половину от температуры поверхности Солнца, однообразие космических будней было кардинальным образом нарушено. На тот момент пространство было заполнено плазмой электрически заряженных частиц, в основном протонов и электронов. Поскольку электрически заряженные частицы обладают характерной особенностью отбрасывать частицы света – фотоны, то первичная плазма была непрозрачной; фотоны, непрестанно отталкиваемые электронами и протонами, давали рассеянное свечение, похожее на свет фар автомобиля в плотном тумане. Но как только температура опустилась ниже 3000 K, быстрые электроны и ядра замедлились и стали объединяться в атомы; электроны, захваченные атомными ядрами, сели на орбиты. В этом состояло главное изменение. Так как заряды протонов и электронов равны по величине, но противоположны друг другу, образуемые ими атомы электрически нейтральны. А поскольку фотоны проходят через вещество, состоящее из электрически нейтральных компонент, не хуже, чем вода через сито, образование атомов привело к тому, что космический туман рассеялся, и световое эхо Большого взрыва вырвалось наружу. С тех самых пор первичные фотоны пронизывают всё пространство.

Всё так, но важно сделать одно предостережение. Хотя электрически заряженные частицы больше не отбрасывают фотоны то туда, то сюда, частицы света оказались подвержены другому важному воздействию. При расширении пространства содержимое становится более разреженным и остывает, в том числе и фотоны. Однако, в отличие от частиц материи, фотоны не замедляются при остывании; являясь частицами света, они всегда летят со световой скоростью. Вместо этого при остывании колебательные частоты фотонов уменьшаются, что приводит к изменению цвета. Фиолетовые фотоны становятся голубыми, затем зелёными, жёлтыми, красными, после чего становятся инфракрасными (как те, что видны в приборе ночного видения), затем микроволновыми (как те, что разогревают пищу в микроволновой печи) и, наконец, становятся радиоволнами.

Гамов впервые понял, а Альфер и его соавтор Роберт Герман тщательным образом проделали вычисления, что если теория Большого взрыва верна, то пространство должно быть повсеместно наполнено остаточными фотонами с момента рождения Вселенной, разлетающимися во всех возможных направлениях. Колебательные частоты остаточных фотонов определяются тем, насколько Вселенная расширилась за последние миллиарды лет с момента их высвобождения. Подробные математические вычисления показали, что фотоны должны были остыть почти до абсолютного нуля и иметь частоты в микроволновой части спектра. По этой причине они называются космическим микроволновым фоновым (реликтовым) излучением[8]8
  В отечественной литературе принят введённый И. С. Шкловским термин «реликтовое излучение», которым мы будем пользоваться в оставшейся части книги. (Прим. перев.)


[Закрыть]
.

Не так давно я перечитывал статьи Гамова, Альфера и Германа конца 1940-х годов, в которых были анонсированы и объяснены эти выводы. Эти статьи являются жемчужинами теоретической физики. Техническая сторона дела вряд ли требует подготовки выше уровня знаний первокурсников, в то время как получаемые результаты – выдающиеся. Авторы пришли к выводу, что мы целиком и полностью окружены реликтовыми фотонами, завещанными нам с момента бурного рождения Вселенной.

Теперь можно только удивляться, почему эти статьи остались незамеченными. Это произошло в основном потому, что они были написаны в тот период, когда в науке доминировали квантовая и ядерная физика. Космологии ещё предстояло стать точной наукой, и поэтому физическое сообщество было менее восприимчиво к тому, что, как казалось, лежало на периферии теоретической мысли. Не в последнюю очередь судьба этих статей объясняется необычным шутливым стилем самого Гамова (как-то раз он изменил авторство одной из статей, написанной совместно с Альфером, и включил туда своего друга, будущего нобелевского лауреата Ганса Бете, только для того, чтобы в заголовке стояло Альфер, Бете, Гамов, что звучало как первые три буквы греческого алфавита), это привело к тому, что некоторые физики воспринимали его не так серьёзно, как он того заслуживал. Как они не старались, Гамов, Альфер и Герман так и не смогли заинтересовать кого-либо в своих результатах, не говоря уж о том, чтобы убедить астрономов направить значительные усилия на поиск предсказанного ими реликтового излучения. Статьи были быстро забыты.

В самом начале 1960-х годов, ничего не зная о более ранних работах, принстонские физики Роберт Дикке и Джим Пиблс, путём похожих рассуждений, пришли к такому же выводу: Большой взрыв должен был привести к вездесущему фоновому излучению, наполняющему пространство.{15} Однако, в отличие от группы Гамова, Дикке был известным экспериментатором, и ему не надо было никого убеждать начать экспериментальные поиски. Этим он мог заняться и сам. Вместе со своими студентами Давидом Вилкинсоном и Питером Роллом Дикке разработал экспериментальную схему обнаружения реликтовых фотонов, оставшихся после Большого взрыва. Но прежде чем принстонские учёные приступили к осуществлению своих планов, прозвучал один из наиболее знаменитых телефонных звонков в истории науки.

Пока Дикке и Пиблс занимались вычислениями, физики Арно Пензиас и Роберт Вильсон из лаборатории Белла, расположенной менее чем в пятидесяти километрах от Принстона, боролись с радиоантенной (по случайному совпадению антенна была построена по проекту Дикке, разработанному им в 1940-х годах). Как они не бились с настройками, но приёмник антенны издавал постоянный и неустранимый шипящий фоновый шум. Пензиас и Вильсон были убеждены, что что-то не так с оборудованием. Но затем произошла цепочка случайных событий. Всё началось с доклада Пиблса в феврале 1965 года в университете Джона Хопкинса, на котором присутствовал радиоастроном Кеннет Тернер из института Карнеги. После семинара Тернер рассказал об этом своему коллеге из Массачусетского технологического института Бернарду Берку, который, как оказалось, был знаком с Пензиасом из лаборатории Белла. Услышав о принстонских исследованиях, группа лаборатории Белла осознала, что приёмник шипел не просто так: антенна принимала реликтовое излучение. Пензиас и Вильсон позвонили Дикке, и он сразу подтвердил, что они действительно случайно напали на отзвук Большого взрыва.

Обе группы учёных договорились опубликовать статьи одновременно в престижном «Астрофизическом журнале». Принстонская группа обсуждала выдвинутую ими теорию космологического происхождения фонового излучения, а группа лаборатории Белла сообщала, очень кратко, без какого-либо упоминания космологии, об обнаружении однородного микроволнового излучения, пронизывающего пространство. Ни одна из статей не упоминала ранние работы Гамова, Альфера и Германа. За открытие реликтового излучения Пензиас и Вильсон получили в 1978 году Нобелевскую премию по физике.

Гамов, Альфер и Герман были подавлены и в течение многих лет отчаянно боролись за признание своих работ. Лишь со временем и с большим запозданием физическое сообщество признало их ключевую роль в этом монументальном открытии.

Поразительная однородность древних фотонов

За десятилетия с момента первого наблюдения реликтовое излучение превратилось в основной инструмент космологических исследований. Причина этого проста. В большинстве областей науки исследователи многое дали бы за то, чтобы хоть ненадолго заглянуть в прошлое. Вместо этого они, как правило, вынуждены собирать по частям картину далёкого прошлого, основываясь лишь на обнаруженных останках – расколотых окаменелостях, рассыпающихся пергаментах или мумифицированном прахе. Космология является одной из наук, в которой мы можем стать по-настоящему свидетелями давно минувших событий. Свет от звёзд, которые мы видим невооружённым взглядом, это фотоны, летящие к нам в течение нескольких лет или нескольких тысяч лет. Свет от более удалённых объектов, попадающий в объективы мощных телескопов, летел значительно дольше, иногда миллиарды лет. Когда вы видите этот древний свет, то попадаете, буквально говоря, в древние времена. Те первобытные события происходили далеко отсюда, но выявленная однородность Вселенной на больших масштабах решительно свидетельствует в пользу, что то, что происходило там, происходило, в среднем, и здесь. Смотря вверх, мы смотрим в прошлое.

Благодаря реликтовым фотонам мы можем максимально использовать эту возможность. И неважно, как далеко могут продвинуться технологии; реликтовые фотоны – это самое древнее из всего, что можно увидеть, просто потому, что их старшие собратья не смогли пробиться сквозь непрозрачную плазму, заполнявшую Вселенную в более ранние эпохи. Изучая реликтовые фотоны, мы имеем возможность увидеть, как всё было устроено примерно 14 миллиардов лет назад.

Вычисления показывают, что в настоящее время примерно 400 миллионов реликтовых фотонов пролетают сквозь каждый кубический метр пространства. И хотя невооружённым глазом они не видны, их можно увидеть с помощью старого телевизора. Примерно 1 процент помех на экране отключённого от кабеля телевизора, настроенного на станцию, прекратившую вещание, вызван приёмом фотонов, оставшихся от Большого взрыва. А ведь это забавная мысль! Те же самые волны, передающие старые комедии, несут в себе свидетельства древнейшей драмы, произошедшей во Вселенной, которой было всего лишь несколько сотен тысяч лет от роду.

Оправдавшееся предсказание теории Большого взрыва о том, что пространство заполнено реликтовым излучением, стало триумфом. Всего лишь за триста лет научная мысль и технический прогресс человечества прошли путь от разглядывания неба через примитивные телескопы и бросания шаров с «падающих» башен до постижения физических процессов, произошедших в первые мгновения жизни Вселенной. Однако дальнейший анализ данных выявил проблему. Более точные измерения температуры излучения, проделанные, конечно же, не с помощью старого телевизора, а на самом передовом астрономическом оборудовании, показали, что излучение однородно – абсолютно однородно – в пространстве. Неважно, куда вы направите ваш приёмник, температура излучения будет 2,725 градуса выше абсолютного нуля. И задача в том, чтобы объяснить эту фантастическую однородность.

Могу представить, что, вспомнив идеи из главы 2 (и мои комментарии четырьмя абзацами выше), вы скажете: «Ну, это не более чем проявление космологического принципа: никакая точка во Вселенной никак не выделена по сравнению с любой другой точкой, поэтому температура реликтового излучения везде должна быть одинаковой». Весьма справедливый комментарий. Однако вспомните, что космологический принцип был упрощающим допущением, которое физики, включая Эйнштейна, ввели для математического анализа эволюции Вселенной. Так как реликтовое излучение действительно однородно в пространстве, его обнаружение является убедительным аргументом в пользу космологического принципа, что укрепляет нашу уверенность в полученных на его основе выводах. Однако удивительная однородность излучения проливает яркий свет и на сам космологический принцип. Каким бы разумным ни казался космологический принцип, что за механизм лежит за подтверждаемой наблюдениями однородностью Вселенной?

Быстрее скорости света

Всем нам знакомо неприятное ощущение, когда, подав кому-нибудь руку, мы обнаруживаем, что рука тёплая и влажная (что не так плохо) или холодная и липкая (определённо хуже). Однако если задержать руку на какое-то время, то окажется, что небольшая разница в температуре быстро исчезает. При контакте двух предметов тепло передаётся от горячего к холодному, и это продолжается до тех пор, пока их температуры не сравняются. Такое происходит повсеместно. Именно поэтому кофе, забытый на столе, в конце концов остывает до комнатной температуры.

Похожие рассуждения, по-видимому, объясняют однородность реликтового излучения. Точно так же как при рукопожатии и в случае забытого кофе однородность отражает, по-видимому, знакомое всем свойство окружающей среды выравнивать температуру. Единственное новшество состоит в том, что процесс выравнивания должен происходить на космических масштабах.

Однако в рамках теории Большого взрыва такое объяснение не проходит.

Для выравнивания температуры разных предметов существенным условием является взаимный контакт. Он может быть непосредственным, как при рукопожатии, либо по меньшей мере через обмен информацией, вследствие чего условия в разных местах становятся скоррелированными. Только посредством такого взаимного воздействия можно достичь общей среды. Термос, например, устроен так, чтобы избежать подобного взаимодействия и, препятствуя достижению однородности, сохранить разницу температур.

Это простое наблюдение указывает на трудности наивного объяснения однородности космической температуры. Рассмотрим две точки пространства, расположенные на очень большом расстоянии друг от друга: одна – справа от нас, так далеко в ночном небе, что первый испущенный ею луч света только что достиг нас, а вторая – столь же далеко, но слева от нас. Ясно, что они никогда не могли взаимодействовать друг с другом. И хотя мы можем видеть обе точки, расстояние, которое осталось преодолеть свету одной из них, чтобы достичь другую, огромно. Таким образом, воображаемым наблюдателям, находящимся в удалённых друг от друга правой и левой точках, только предстоит ещё увидеть друг друга, а поскольку скорость света является верхним пределом быстроты перемещения, то все взаимодействия для них ещё впереди. На языке предыдущей главы можно сказать, что каждый из них находится за пределами космического горизонта другого.

Вот мы и пришли к загадке. Вы бы сильно удивились, если бы узнали, что жители этих удалённых друг от друга мест говорят на одном языке, а их библиотеки заполнены одинаковыми книгами. Как может возникнуть общее наследие, если не было никакого контакта? Вы также должны удивиться, узнав, что без какого-либо явного контакта температура этих разделённых большим расстоянием областей одинакова с точностью, превышающей четыре знака после запятой.

Много лет назад, впервые столкнувшись с этой задачей, я действительно удивился. Однако, немного подумав, я уже удивился самой задаче. Как могли два предмета, когда-то находившиеся рядом друг с другом – а мы верим, что всё в наблюдаемой части Вселенной в момент Большого взрыва находилось рядом друг с другом, – отдалиться настолько быстро, что свету, испущенному одним из них, не хватит времени, чтобы достичь другого? Скорость света предельна для всего в космосе, поэтому как можно разнести предметы на такое расстояние, что даже свет не успевает его преодолеть?

Ответ на это вопрос выдвигает на передний план то, чему часто уделяют незаслуженно мало внимания. Предел скорости, устанавливаемый светом, относится исключительно к движению объектов сквозь пространство. Однако галактики удаляются друг от друга не потому, что они движутся в пространстве – у них нет реактивных двигателей, – а потому, что само пространство расширяется и галактики лишь увлекаются общим потоком.[9]9
  Следует отметить, что хотя у галактик нет реактивных двигателей, в общем случае они движутся чуть быстрее, чем ожидается из расширения пространства – как правило, это результат крупномасштабных межгалактических гравитационных сил, а также внутреннего движения вращающегося газового облака, из которого образуются звёзды в галактиках. Скорость такого движения называется пекулярной и, как правило, она достаточно мала, поэтому в космологическом анализе ею можно смело пренебречь.


[Закрыть]
Смысл в том, что теория относительности не накладывает никаких ограничений на скорость расширения пространства, и поэтому нет никаких ограничений на скорость разбегания галактик, увлекаемых общим расширением. Скорость разбегания галактик может быть выше любой скорости, включая скорость света.

Действительно, математический аппарат общей теории относительности показывает, что в самые ранние моменты Вселенной пространство может расширяться так быстро, что области будут удалятся друг от друга быстрее скорости света. В результате возможность оказывать друг на друга какое-либо влияние исчезает. Однако трудность теперь в том, чтобы объяснить, как практически одинаковые температуры возникли в независимых областях космоса: вопрос, который космологи назвали проблемой горизонта.

Расширяя горизонты

В 1979 году Алану Гуту (в ту пору сотруднику Стэнфордского линейного ускорителя) пришла идея, которая, подвергшись критическому осмыслению Андреем Линде (на тот момент сотрудником Физического института им. Лебедева в Москве), Полом Стейнхардом и Андреасом Альбрехтом (профессорско-студенческий дуэт из университета Пенсильвании), решает, по общему признанию, проблему горизонта. Это решение – инфляционная космология – основывается на тонких свойствах общей теории относительности Эйнштейна, которые я скоро объясню подробно, но основные черты можно сформулировать уже сейчас.

Проблема горизонта портит стандартную теорию Большого взрыва, потому что области пространства отдаляются слишком быстро для установления теплового равновесия. Инфляционная теория решает эту проблему, уменьшая скорость разделения областей пространства в начальные моменты времени и обеспечивая таким образом достаточно времени для выравнивания температуры. Затем из теории следует, что после завершения такого «космического рукопожатия» наступает непродолжительный период чрезвычайно быстрого и постоянно ускоряющегося расширения, названного инфляционным расширением, которое более чем достаточно компенсирует вялый старт и быстро разносит разные участки неба на огромные расстояния. Наблюдаемые нами однородные условия больше не являются загадкой, так как общая температура установилась до того, как разные области пространства были быстро разнесены.{16} В общих чертах, в этом и состоит суть идеи инфляционной теории.[10]10
  Аналогично, сверхбыстрое расширение пространства означает, что регионы, достаточно отдалённые друг от друга в настоящий момент, находились в ранней Вселенной гораздо ближе, чем предсказывает стандартная теория Большого взрыва, обеспечивая таким образом выравнивание температуры до того, как инфляция разметала эти регионы друг от друга.


[Закрыть]

Однако следует иметь в виду, что не физики определяют, как расширяется Вселенная. Насколько мы можем судить из наиболее точных наблюдений, это делают уравнения общей теории относительности Эйнштейна. Таким образом, перспективность инфляционного сценария зависит от того, возникает ли предложенная модификация стандартной модели Большого взрыва из уравнений Эйнштейна. На первый взгляд это не так очевидно.

Например, я совершенно уверен, что будь у нас возможность встретиться с Ньютоном и объяснить ему в течение пяти минут основные положения общей теории относительности, не забыв про искривлённость пространства и расширяющуюся Вселенную, то он расценил бы наш последующий рассказ про инфляцию как абсурдный. Ньютон бы твёрдо настаивал, что независимо от вычурной математики и новомодного эйнштейновского языка, гравитация является силой притяжения. Стукнув кулаком по столу, он заявил бы, что гравитация притягивает предметы, снижая скорость любого космического разбегания. Расширение, которое начинается вяло, а затем резко ускоряется на каком-то коротком отрезке времени, могло бы решить проблему горизонта, но это фикция. Ньютон настаивал бы на том, что космическое расширение должно замедлиться со временем, подобно тому как гравитационное притяжение уменьшает скорость подброшенного вверх бейсбольного мяча. Конечно, если расширение полностью прекратится и начнётся космическое сжатие, то скорость схлопывания может постепенно возрастать, ровно так же как скорость мяча может расти по мере того, как он летит обратно вниз. Но скорость пространственного расширения не может увеличиваться.

Ньютон ошибается, но вы не вправе винить его. Ведь у вас было мало времени для подробного обзора общей теории относительности. Не поймите меня неправильно. Понятно, что, имея пять минут (одну из которых вы потратили на объяснение того, что такое бейсбол), вы сосредоточились на искривлённом пространстве-времени как источнике гравитации. Ньютон сам настаивал на том, что механизм распространения гравитации неизвестен, и он всегда считал это зияющей дырой в своей собственной теории. Поэтому естественно, что вы хотели продемонстрировать ему решение этого вопроса Эйнштейном. Однако эйнштейновская теория гравитации – это не просто латание дыр в ньютоновской физике. Гравитация общей теории относительности отличается по самой сути от гравитации ньютоновской физики; и есть одно свойство, которое следует особо отметить для нашего изложения.

В ньютоновской теории гравитация обусловлена лишь массой предмета. Чем больше масса, тем сильнее гравитационное притяжение предмета. В эйнштейновской теории гравитация обусловлена массой предмета (и его энергией), а также его давлением. Взвесьте запечатанный пакет с картофельными чипсами. Теперь сожмите пакет, чтобы воздух, находящийся внутри него, оказался под высоким давлением, и затем снова взвесьте его. Согласно Ньютону, вес не изменится, потому что масса не изменилась. Согласно Эйнштейну, сжатый пакет будет весить немножко больше, потому что, хотя масса осталась прежней, давление увеличилось.{17} При обычных обстоятельствах подобный эффект увеличения веса исчезающе мал, поэтому мы не обращаем на него никакого внимания. Однако из общей теории относительности и подтверждающих её экспериментов со всей очевидностью следует, что давление даёт вклад в гравитацию.

Это отклонение от ньютоновской теории крайне важно. Давление воздуха, будь это воздух в пакете с картофельными чипсами, надутом шаре или в комнате, где вы сейчас читаете эту книгу, положительно, и это означает, что воздух давит наружу. В общей теории относительности положительное давление, как и положительная масса, даёт положительный вклад в гравитацию, что приводит в увеличению веса. Однако, хотя масса всегда положительна, давление в некоторых ситуациях может быть отрицательным. Представьте себе растянутую резинку. Вместо того, чтобы толкать наружу, растянутые молекулы тянут вовнутрь, приводя к тому, что в физике называется отрицательным давлением (или упругостью). И точно так же как из общей теории относительности следует, что положительное давление приводит к гравитационному притяжению, эта теория утверждает, что отрицательное давление приводит к противоположному – гравитационному отталкиванию.

Гравитационное отталкивание?

Это поставило бы Ньютона в тупик. Для него гравитация была исключительно силой притяжения. Однако нас это не должно смущать: мы и раньше сталкивались с этим странным пунктом в договоре между общей теорией относительности и гравитацией. Помните, как в предыдущей главе мы обсуждали космологическую постоянную Эйнштейна? Я говорил, что при наполнении пространства однородной энергией космологическая постоянная приводит к гравитационному отталкиванию. Однако тогда я не стал объяснять, почему так происходит. Теперь я могу это сделать. Космологическая постоянная не только наполняет пространство однородной энергией, величина которой определяется значением самой константы (число в третьей строчке гравитационной декларации), но также приводит к появлению в пространстве однородного отрицательного давления (скоро увидим, почему). И когда, как в примерах выше, дело доходит до гравитации, отрицательное давление играет роль, противоположную положительной массе и положительному давлению. Так возникает гравитационное отталкивание.[11]11
  Вы можете подумать, что отрицательное давление втягивает вовнутрь и поэтому противоречит гравитационному отталкиванию, то есть выдавливанию наружу. На самом деле, однородное давление, независимо от знака, вообще не давит и не выталкивает. Барабанные перепонки лопаются, только если оказываемое на них давление неравномерно – с одной стороны меньше, чем с другой. Описываемое здесь отталкивание является гравитационной силой, порождённой однородным отрицательным давлением. Трудный, но ключевой момент для понимания. Я повторюсь: положительная масса или положительное давление приводят к гравитационному притяжению, а отрицательное давление приводит к менее привычному гравитационному отталкиванию.


[Закрыть]

Гравитационное отталкивание возникло в работах Эйнштейна лишь однажды, и то с ошибочной целью. Он предлагал получить статичную вселенную путём тонкой подстройки значения отрицательного давления во всём пространстве, так чтобы возникшее гравитационное отталкивание точно компенсировало гравитационное притяжение обычного вещества во вселенной. Как мы видели, впоследствии он отказался от этого предложения. Шестьдесят лет спустя создатели инфляционной теории предложили вариант гравитационного отталкивания, который отличался от эйнштейновской версии, как финал восьмой симфонии Малера от звука камертона. Вместо умеренного и равномерного расширения, которое может стабилизировать вселенную, инфляционная теория порождает гигантскую волну гравитационного отталкивания, невероятно короткую и ураганно-мощную. До этого события, однако, есть достаточно времени, чтобы у разных областей пространства выровнялась температура, после чего они разносятся на волне на гигантские расстояния и занимают наблюдаемое сейчас положение на небе.

В этом месте Ньютон снова неодобрительно посмотрел бы на вас. Будучи скептиком, он нашёл бы другой пробел в вашем объяснении. Разобравшись в тонкостях общей теории относительности, почитав один из стандартных учебников, он согласился бы с тем странным фактом, что гравитация в принципе может быть отталкивающей. Но, спросил бы он, к чему весь этот разговор об отрицательном давлении, заполняющем пространство? Одно дело – использовать натяжение растянутой резинки в качестве иллюстрации отрицательного давления. Но совсем другое дело – доказывать, что миллиарды лет назад, примерно в момент Большого взрыва, пространство было мгновенно заполнено огромным и однородным отрицательным давлением. Что за процесс может обеспечить подобное мгновенное и при этом повсеместное распространение отрицательного давления?

В ответе на этот вопрос проявилось гениальное прозрение первооткрывателей инфляции. Было показано, что отрицательное давление, необходимое для создания антигравитационной волны, естественным образом возникает из нового механизма, составляющие которого известны как квантовые поля. Для нашего повествования детали этого явления очень важны, потому что способ инфляционного расширения играет ключевую роль в сценарии параллельных миров, к которому оно приводит.


    Ваша оценка произведения:

Популярные книги за неделю