355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 33)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 33 (всего у книги 38 страниц)

Комментарии

1

Возможность того, что наша Вселенная представляет собой лист, парящий в многомерном пространстве, восходит к статье двух знаменитых советских физиков В. А. Рубакова и М. Е. Шапошникова «Do We Live Inside a Domain Wall?» (V A. Rubakov and М. E. Shaposhnikov, «Physics Letters В» 125 (May 26, 1983): 136) и не использует теорию струн. Рассматриваемый в главе 5 сценарий возникает из теоретико-струнных построений середины 1990-х годов.

2

Эта цитата взята из мартовского выпуска «Literary Digest» 1933 года. Следует отметить, что точность цитаты недавно была поставлена под сомнение датским историком науки Хельге Крагхом (см. его книгу: Helge Kragh, «Cosmology and Controversy». Princeton: Princeton University Press, 1999), который считает, что она может являться перефразировкой более ранней заметки в газете «Newsweek» того же года, где Эйнштейн высказывался о происхождении космических лучей. Однако доподлинно известно, что в этом же году Эйнштейн отрёкся от веры в статичную вселенную и принял динамичную космологию, возникающую из его исходных уравнений общей теории относительности.

3

Этот закон определяет силу гравитационного притяжения F между двумя объектами с заданными массами m1 и m2 и расстоянием r между ними. Математически закон имеет вид F = Gm1m2/r2, где G обозначает константу Ньютона – экспериментально измеренное число, характеризующее силу гравитационного взаимодействия.

4

Для математически подкованного читателя приведём уравнения Эйнштейна:

где g – это метрика пространства-времени, Rμν – тензор кривизны Риччи, R – скалярная кривизна, G – константа Ньютона, Tμν – тензор энергии-импульса.

5

За десятилетия, прошедшие с момента этого знаменитого подтверждения общей теории относительности, возникли вопросы, касающиеся надёжности полученных результатов. Чтобы увидеть световой луч от удалённой звезды, огибающий Солнце, наблюдения должны были проводиться во время солнечного затмения; к сожалению, плохая погода затруднила получение чётких фотографий затмения 1919 года. Вопрос в том, могли ли Эддингтон и его сотрудники внести систематическую ошибку под влиянием ожидаемого результата: отбраковывая фотографии, кажущиеся ненадёжными по причине интерференции, вызванной погодными условиями, они могли бы исключить несоразмерное количество фотографий с данными, которые казались противоречащими теории Эйнштейна. Недавнее подробное исследование Даниэля Кеннефика (см.: www.arxiv.org, paper arXiv:0709.0685, в котором, помимо прочих рассмотрений, делается современная переоценка фотографических пластинок, сделанных в 1919 году) убедительно свидетельствует что подтверждение теории, сделанное в 1919 году, на самом деле является надёжным.

6

Для заинтересованного читателя приведём уравнения Эйнштейна общей теории относительности, которые в рассматриваемом случае выглядят так:

Переменная a(t) является масштабным фактором вселенной – её значение, как указывает название, устанавливает масштаб расстояния между объектами (если значения a(t) в два разных момента времени отличаются, например, в 2 раза, то расстояние между двумя частными галактиками будет отличаться между этими временами также в 2 раза), G – это константа Ньютона, ρ – плотность материи/энергии, и k является параметром, значение которого может быть 1, 0 или −1, в зависимости от того, является ли форма пространства сферической, евклидовой («плоской») или гиперболической. Обычно считается, что вид этого уравнения был найден Александром Фридманом и, собственно, называется уравнением Фридмана.

7

Внимательный читатель может отметить два момента. Во-первых, в общей теории относительности, как правило, мы определяем координаты, которые сами зависят от находящегося в пространстве вещества: мы используем галактики в качестве носителей координат (как будто на каждой галактике «нарисован» частный набор координат – так называемые движущиеся системы координат). Поэтому для задания определённой области пространства обычно ссылаются на присутствующую в ней материю. Тогда более точная перефразировка текста такова: область пространства, в которой находится некоторая группа из N галактик в момент времени t1, будет иметь больший объём в более поздний момент времени t2. Во-вторых, интуитивно понятное утверждение, касающееся плотности материи и энергии, изменяющиеся при расширении или сжатии пространства, содержит неявное предположение насчёт уравнения состояния материи и энергии. Есть ситуации и скоро мы столкнёмся с одной из них, когда пространство может расширяться или сжиматься, а плотность некоторого вклада энергии – плотность энергии так называемой космологической постоянной – остаётся неизменной. Действительно, есть даже более экзотические сценарии, в которых пространство расширяется а плотность энергии при этом растёт. Такое происходит, потому что при определённых обстоятельствах гравитация служит источником энергии. Важный момент этого параграфа состоит в том, что уравнения общей теории относительности в исходном виде противоречат статичной вселенной.

8

Двумерный тор обычно изображается как пустой бублик. Двухшаговый процесс показывает, что эта картинка согласована с приведённым в тексте книги описанием. Когда, достигнув правого края экрана, вы попадаете назад на левый край, это равносильно отождествлению всего правого края с левым краем. Если бы экран был гибким (например, из тонкого пластика), то такое отождествление могло бы быть буквальным, если скатать экран в цилиндр и объединить вместе правый и левый края. Когда, ступив на верхний край, вы попадаете в нижний, то это тоже равносильно отождествлению этих краёв. Это достигается явным образом на втором шаге, в котором мы скручиваем цилиндр и соединяем верхний и нижний круговые края. Получившаяся фигура выглядит как обычный бублик. Обманчивый аспект этих манипуляций состоит в том, что поверхность бублика выглядит искривлённой; если его поверхность покрыть отражающей краской, то ваше отражение будет искажено. Это артефакт реализации тора в виде объекта, расположенного в объемлющем трёхмерном пространстве. В действительности, являясь двумерной поверхностью, тор не искривлён. Он плоский. Что очевидно, если его представить в виде плоского экрана для видеоигр. Именно поэтому в тексте книги я выбрал более фундаментальное описание в виде фигуры, края которой попарно отождествляются.

9

Искушённый в математике читатель заметит, что под словами «подходящим образом нарезать и скомпоновать» я подразумеваю факторпространства, которые возникают при факторизации односвязных накрывающих пространств по дискретным группам изометрии.

10

Образно говоря, можно считать, что в силу квантовой механики частицы всегда находятся в состоянии, которое мне нравится называть «квантовым дрожанием»: что-то вроде неизбежных случайных квантовых вибраций, что придаёт самому понятию частицы с определённым положением и скоростью (импульсом) приближённый смысл. В этом смысле изменения в положении/скорости, достаточно малые, чтобы быть на равных с квантовыми флуктуациями, являются квантово-механическим «шумом» и, следовательно, не имеют значения.

На более точном языке, если погрешность в измерениях положения умножить на погрешность в измерениях импульса, то результат – неопределённость – всегда больше, чем число, называемое постоянной Планка (в честь Макса Планка, одного из пионеров квантовой физики). Это, в частности, означает, что точное разрешение в процессе измерения положения частицы (небольшая погрешность) обязательно приведёт к большой неопределённости при измерении импульса частицы и, за компанию, её энергии. Поскольку энергия всегда ограничена, разрешение при измерении положения, таким образом, тоже является ограниченным.

Также отметим, что эти понятия всегда будут применяться в конечной пространственной области – как правило, в областях, размер которых сопоставим с современным космическим горизонтом (как в следующем разделе). Область конечного размера, пусть даже большая, подразумевает максимальную неопределённость при измерении положения. Если предполагается, что частица находится в данной области, то неопределённость её положения конечно же будет не больше размера самой области. Согласно принципу неопределённости, такая максимальная неопределённость в положении приводит к минимальной неопределённости при измерении импульса. Помимо ограниченного разрешения при измерении местоположения, мы видим редукцию от бесконечного к конечному числу возможных различных конфигураций положений и скоростей частицы.

Вы всё ещё можете задаваться вопросом о том, что препятствует построению прибора, способного измерять положения частицы с ещё большей точностью. Это также касается энергии. Как описано в книге, если вы хотите измерить положение частицы с большей точностью, необходимо использовать более точный прибор. Для определения местоположения мухи в комнате можно включить обычный верхний свет. Для определения положения электрона необходимо осветить его узким лучом мощного лазера. Для ещё более точного определения положения электрона надо использовать ещё более мощный лазер. Когда более мощный лазер бьёт по электрону, его скорость сильно искажается. Таким образом, ключевой момент здесь в том, что точность определения положения частицы достигается за счёт огромных изменений скорости частицы – и, следовательно, огромных изменений её энергии. Если есть предел того, сколько энергии может иметь частица, а такой предел есть всегда, то также есть предел того, насколько точно можно измерить её положение.

Таким образом, ограниченность энергии в ограниченной пространственной области приводит к конечному разрешению при измерении как положения, так и скорости.

11

Наиболее прямой способ проделать это вычисление состоит в использовании результата, который без привлечения технических подробностей будет описан в главе 9: энтропия чёрной дыры – логарифм числа различных квантовых состояний – пропорциональна площади её поверхности, измеренной в единицах планковской площади. Заполняющая наш космический горизонт чёрная дыра будет иметь радиус примерно 1028 сантиметра, или примерно 1061 планковских длин. Таким образом, её энтропия будет примерно 10122 в единицах планковской площади. Следовательно, полное число различных состояний составляет примерно 10, возведённое в степень 10122, или 1010122.

12

Можно поинтересоваться, почему не учитываются поля. Как мы увидим, описания частиц и полей дополнительны друг к другу – поле может описываться в терминах определённых частиц, из которых оно состоит, подобно тому как океанские волны могут описываться в терминах составляющих их молекул воды. Выбор описания в терминах частиц или полей является в основном вопросом удобства.

13

Расстояние, проходимое светом за заданный промежуток времени, сильно зависит от скорости расширения пространства. В последующих главах мы обсудим доводы, указывающие на то, что темп пространственного расширения ускоряется. Если так, то существует предел того, насколько далеко свет может распространиться в пространстве, даже если ждать сколь угодно долго. Удалённые области пространства будут удаляться от нас так быстро, что излучаемый нами свет не сможет достичь их; аналогичным образом испущенный ими свет не сможет достичь нас. Это будет означать, что космические горизонты – та часть пространства, с которой можно обмениваться световыми сигналами, – не будут расти бесконечно. (Заинтересовавшийся читатель может найти соответствующие формулы в комментарии {49}.)

14

Дж. Эллис и Дж. Бандрит исследовали повторяющиеся миры в бесконечной классической вселенной; Ж. Гаррига и А. Виленкин изучали такие миры в квантовом контексте.

15

В ранних работах Дикке рассматривал идею осциллирующей Вселенной, которая многократно проходит через вереницу циклов Большой взрыв – расширение – сжатие – схлопывание и снова Большой взрыв. В любом цикле будет присутствовать заполняющее пространство остаточное излучение.

16

Проблема горизонта довольно тонкая, и приведённое мной описание решения на основе инфляционной космологии несколько отличается от стандартного, поэтому, возможно, читателя заинтересует чуть более подробное обсуждение этого вопроса. Сначала опять постановка проблемы: рассмотрим две области в ночном небе, настолько удалённые друг от друга, что они никогда не вступали в контакт. Для определённости скажем, что в каждой области находится наблюдатель, который контролирует термостат, поддерживающий температуру в его области. Эти наблюдатели хотят, чтобы две данные области имели одинаковую температуру, но поскольку наблюдатели не имели возможности контактировать, они не знают на какую температуру устанавливать свои термостаты. Естественная идея состоит в том, что поскольку миллиарды лет назад наблюдатели находились гораздо ближе, то тогда им было проще установить контакт и сравнять температуры в своих областях. Однако, как отмечалось в основном тексте, в стандартной теории Большого взрыва эти рассуждения не проходят. И этому есть причины. В стандартной теории Большого взрыва Вселенная расширяется, но в силу гравитационного притяжения темп расширения со временем замедляется. Это очень похоже на подбрасывание мяча вверх. Во время подъёма он сначала быстро удаляется от вас, но в силу притяжения Земли постепенно замедляется. Замедление пространственного расширения имеет серьёзные последствия. Для пояснения я воспользуюсь аналогией с подброшенным мячом. Представьте, что мяч достигает верхней точки за шесть секунд. Поскольку изначально (после того как отрывается от вашей руки) он двигался быстро, он может пройти первую половину расстояния за две секунды, но из-за уменьшения скорости пройдёт четыре секунды, прежде чем он одолеет вторую половину пути. Таким образом, на половине временного интервала, через три секунды, он пролетел больше половины пути. Аналогичным образом происходит процесс замедляющегося во времени пространственного расширения: в середине космической истории два наших наблюдателя будут разделены расстоянием бо́льшим, чем половина современного расстояния между ними. Давайте подумаем, что это значит. Два наблюдателя будут ближе друг к другу, но им будет тяжелее – а не легче – установить контакт. Посылаемый одним из наблюдателей сигнал будет располагать половиной от прошедшего интервала времени для достижения второго наблюдателя, но расстояние, которое он должен будет преодолеть, больше половины от современного расстояния. Половина времени для взаимодействия на расстоянии, превышающем половину текущего расстояния между ними, осложняет установление контакта между наблюдателями.

Таким образом, расстояние между наблюдателями – лишь один из факторов при анализе возможности наблюдателей влиять друг на друга. Другой фактор – время, прошедшее с момента Большого взрыва, поскольку это ограничивает дальность распространения сигнала. В стандартной теории Большого взрыва, хотя в прошлом всё действительно располагалось ближе друг к другу, Вселенная также и расширялась быстрее, поэтому, пропорционально говоря, для распространения влияния было меньше времени.

Решение этого вопроса, предложенное в инфляционной космологии, состоит в добавлении некоторой фазы в самые ранние моменты космической истории, в которой темп расширения не замедляется, как скорость подброшенного вверх мяча; наоборот, пространственное расширение начинается неспешно, а затем постепенно наращивает скорость: расширение ускоряется. Согласно только что приведённым рассуждениям, на половине пути такой инфляционной фазы два наших наблюдателя будут разделены расстоянием меньшим половины расстояния между ними в момент завершения инфляционной фазы. А если есть половина времени для распространения сигнала на менее чем половину расстояния, это означает, что в ранние моменты времени контакт мог быть легче установлен. Можно сказать, что ускорение расширения в более ранние моменты времени означает, что для распространения сигнала было больше времени, а не меньше. Это позволяло удалённым на настоящий момент областям легко контактировать в ранней Вселенной, что объясняет их одинаковую температуру сейчас.

Поскольку по сравнению со стандартной теорией Большого взрыва ускоренное расширение приводит к ещё большему пространственному расширению, эти области будут гораздо ближе в начальный момент при инфляции, чем в аналогичный момент времени в стандартной теории Большого взрыва. Эта разница в расстоянии в ранней Вселенной является эквивалентным способом для понимания того, почему контакт между областями, невозможный при стандартном Большом взрыве, легко достигается в инфляционной теории. Если в некоторый момент после начала расстояние между двумя областями меньше, им легче обмениваться сигналами.

Применяя уравнения, описывающие расширение в произвольные ранние моменты времени (представьте, для определённости, что пространство имеет форму сферы), мы увидим, что две области в инфляционной модели будут удаляться друг от друга медленнее, чем при стандартном Большом взрыве: именно поэтому они удаляются на меньшее расстояние по сравнению с теорией Большого взрыва. В этом смысле в инфляционном подходе есть период времени, когда темп разлёта областей меньше, чем в картине обычного Большого взрыва.

При описании инфляционной космологии очень часто всё внимание целиком сосредоточено на фантастическом увеличении скорости расширения по сравнению со стандартными подходами, а не на уменьшении. Различие в описании возникает из того, какие физические свойства двух подходов сравниваются. Если сравнить траектории двух областей, расположенных в ранней Вселенной на некотором расстоянии друг от друга, то в инфляционной теории эти области разлетаются гораздо быстрее, чем в стандартной теории Большого взрыва; на сегодняшний день они находятся гораздо дальше друг от друга, чем после обычного Большого взрыва. Но если рассматривать области, расположенные на определённом расстоянии сегодня (подобно двум участкам в противоположных концах ночного неба), то становится важным приведённое мной описание. А именно: в определённый момент времени в очень ранней Вселенной эти области были гораздо ближе друг к другу, и в теории с инфляционным расширением разлетались гораздо медленнее, чем в теории без такового. Роль инфляционного расширения в том, чтобы компенсировать медленный старт, разгоняя затем эти области быстрее и быстрее, гарантируя, что они окажутся в тех же местах на небе как и в стандартной теории Большого взрыва.

Более полное обсуждение проблемы горизонта включало бы подробное рассмотрение условий возникновения инфляционного расширения, а также последующих процессов, которые, например, приводят к возникновению реликтового излучения. Однако цель приведённых выше рассуждений – подчеркнуть существенное различие между ускоряющимся и замедляющимся расширением.

17

Отметим, что, сжимая пакет, вы добавляете в систему энергию, и поскольку масса и энергия приводят к гравитационному искривлению, то увеличение веса будет частично происходить благодаря увеличению энергии. Однако увеличение давления также даёт вклад в увеличение веса. (Точности ради заметим, что следует представлять этот «эксперимент» в вакуумной камере, поэтому нет необходимости рассматривать выталкивающую силу со стороны воздуха вокруг пакета.) В повседневных примерах обсуждаемое увеличение веса крайне мало. Однако на космических масштабах оно может оказаться весьма значительным. На самом деле, оно играет роль при объяснении того, почему в определённых ситуациях звёзды обязательно схлопываются в чёрные дыры. Как правило, равновесие в звёздах поддерживается благодаря балансу между давлением, направленным наружу, порождённым ядерными процессами в звёздном ядре, и направленной внутрь гравитацией, порождаемой массой звезды. По мере того как звезда расходует ядерное топливо, положительное давление падает, что приводит к её сжатию. При этом вещество внутри звезды сжимается плотнее, вследствие чего гравитационное притяжение возрастает. Для избежания дальнейшего сжатия, необходимо дополнительное давление наружу (что называется положительным давлением, как в следующем абзаце в основном тексте). Однако дополнительное положительное давление само создаёт дополнительную силу гравитационного притяжения и таким образом приводит к необходимости ещё большего дополнительного положительного давления. В определённых ситуациях это приводит к спиральной нестабильности, и положительное давление, на котором обычно держится противодействие звезды внутреннему гравитационному сжатию, настолько усиливает внутреннее притяжение, что становится неизбежным полный гравитационный коллапс. Звезда коллапсирует, и образуется чёрная дыра.


    Ваша оценка произведения:

Популярные книги за неделю