Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"
Автор книги: Брайан Грин
сообщить о нарушении
Текущая страница: 35 (всего у книги 38 страниц)
35
Первое указание на парность форм Калаби – Яу возникло в работе Ланса Диксона, а также в независимой работе Вольфганга Лерхе, Николаса Уорнера и Кумруна Вафы. В моей работе с Роненом Плессером был предложен метод построения первого конкретного примера таких пар, которые мы назвали зеркальными парами, а соотношение между ними – зеркальной симметрией. Плессер и я также показали, что трудная задача, такая как определение числа сфер, которые можно упаковать в данную форму, неподъёмная при использовании одного из партнёров по паре, может стать гораздо легче на зеркальной форме. Этот результат был подхвачен Филиппом Канделасом, Ксенией де ла Осой, Полом Грином и Линдой Паркерс – они развили технику вычислений, основанную на равенстве, которое Плессер и я установили между «трудными» и «простыми» формулами. С помощью простой формулы они получили информацию о трудном партнёре, включая числа, связанные с упаковкой сфер, приведённые в основном тексте книги. За последующие годы зеркальная симметрия стала отдельной областью исследований, где было получено много важных результатов. Детальная история этого вопроса приведена в книге Шин-Туна Яу и Стива Надиса: Shing-Tung Yau and Steve Nadis, «The Shape of Inner Space». New York: Basic Books, 2010.
36
Классическая механика: Электромагнетизм: d*F = *J; dF = 0. Квантовая механика:
Общая теория относительности:
37
Я имею в виду постоянную тонкой структуры, α = e2/ħc, численное значение которой (при характерных энергиях электромагнитных процессов) примерно равно 1/137, что приближённо составляет 0,0073.
38
Согласно Виттену, когда константа связи в теории струн типа I становится большой, эта теория преобразуется в O-гетеротическую теорию с малой константой связи, и наоборот; теория типа IIB с большой константой связи преобразуется в себя, в теорию типа IIB, но с малой константой связи. В случае E-гетеротической и теории типа IIA ситуация более тонкая (более подробно см.: «Элегантная Вселенная», глава 12), но общая картина такова, что все пять теорий являются участниками целой сети взаимосвязей.
39
Для подготовленного читателя отметим, что особенность струн – одномерных объектов – состоит в том, что описывающая их движение физика основана на некоторой бесконечномерной группе симметрии. Так как при движении струна заметает двумерную поверхность, то струнный функционал действия, на основе которого выводятся уравнения движения, определяет двумерную квантовую теорию поля. Классически, такие двумерные действия являются конформно-инвариантными (инвариантными относительно сохраняющих углы растяжений двумерной поверхности), и при наложении некоторых ограничений (таких как число измерений пространства-времени, в котором движется струна) конформная симметрия может сохраняться на квантовом уровне. Конформная группа преобразований симметрии бесконечномерная и это существенно для математической согласованности пертурбативного квантового анализа движущейся струны. Например, бесконечное число возбуждений движущейся струны, которые иначе имели бы отрицательную норму (возникающую из отрицательного знака временной компоненты пространственно-временной метрики), может быть устранено с помощью преобразований «вращения» из бесконечномерной группы симметрии. Более подробно можно прочитать в книге: М. Green, J. Schwarz, and Е. Witten, «Superstring Theory». Vol. 1. Cambridge: Cambridge University Press, 1988.
40
Подобно истории многих открытий, заслуживают славы те, чьи идеи легли в основу, и те, кто указали на их важность. Большую роль в открытии бран в теории струн сыграли Майкл Дафф, Пол Хов, Такео Иннами, Келлог Стелле, Эрик Бергшофф, Эргин Жегин, Пол Таунсенд, Крис Халл, Крис Поп, Джон Шварц, Ашок Сен, Эндрю Строминджер, Куртис Калан, Джо Польчински, Петр Хоржава, Джин Дай, Роберт Лей, Герман Николаи и Бернард Девитт.
41
Внимательный читатель может сказать, что в инфляционной мультивселенной время также было вплетено фундаментальным способом, потому что, в конце концов, граница нашего пузырька служит отметкой начала времени в нашей Вселенной; за пределами нашего пузырька означает за пределами нашего времени. Это безусловно так, но здесь идея носит более общий характер – все обсуждавшиеся до сих пор мультивселенные были основаны на анализе, сфокусированном на процессах, происходящих в пространстве. В обсуждаемой мультивселенной главную роль с самого начала играет время.
42
Александр Фридман, «Мир как пространство и время», 1923.
43
Потоки с большими значениями также приводят к дестабилизации заданной формы Калаби – Яу. То есть потоки стремятся заставить форму Калаби – Яу увеличиваться в размерах, что сразу приводит к противоречию с критерием малости дополнительных измерений.
44
George Gamow, «My World Line». New York: Viking Adult, 1970; J. C. Pecker, Letter to the Editor, «Physics Today». May 1990, p. 117.
45
Albert Einstein, «The Meaning of Relativity». Princeton: Princeton University Press, 2004, p. 127. Отметим, что вместо принятого сейчас названия «космологическая постоянная» Эйнштейн использовал термин «космологический член»; в процитированном тексте я воспользовался этой заменой для наглядности.
46
«The Collected Papers of Albert Einstein», edited by Robert Schulmann et al. Princeton: Princeton University Press, 1998, p. 316.
47
Есть одно усложнение, которое не влияет на основную идею, но которое начинает играть существенную роль при детальном научном анализе. При движении фотонов от сверхновой звезды к нам, плотность числа фотонов рассеивается описанным выше способом. Однако есть и другая причина для уменьшения. В следующем разделе будет рассказано, что растяжение пространства заставляет растягиваться длины волн фотонов, вследствие чего их энергии падают – эффект, называемый красным смещением. Астрономы используют данные по красному смещению для установления размера Вселенной в момент испускания этих фотонов – важный шаг в определении того, как расширение пространства меняется с течением времени. Но растяжение фотонов – уменьшение их энергии – проявляет себя ещё и другим способом: удалённый источник тускнеет. Поэтому для правильного определения расстояния до сверхновой путём сравнения видимой и собственной яркости астрономы должны учитывать не только рассеивание плотности числа фотонов (как описано в основном тексте), но дополнительно также и уменьшение энергии, вызванное красным смещением. (Если быть более точным, то дополнительный фактор уменьшения следует применить дважды; второй фактор красного смещения описывает степень растяжения длины фотона из-за космического расширения в момент приёма.)
48
В определённом смысле и второй вариант ответа на то, какое расстояние измеряется, также может считаться правильным. В примере раздувающейся поверхности Земли, города Нью-Йорк, Остин и Лос-Анджелес удаляются друг от друга, но их географическое положение на Земле остаётся при этом неизменным. Города удаляются друг от друга, потому что поверхность Земли раздувается, а не потому, что их выкапывают гигантским ковшом, кладут на прицеп и перевозят на новое место. Аналогично, хотя галактики из-за космического расширения разлетаются, их положение в пространстве остаётся неизменным. Представим себе, что галактики – это блёстки на космической ткани. Если ткань растягивать, блёстки начинают разъезжаться, но каждая из них остаётся пришитой к тому же самому месту, что и ранее. Поэтому если на первый взгляд второй и третий варианты ответа и кажутся разными – во втором речь идёт о расстоянии между нами и положением удалённой галактики миллиарды лет назад, когда сверхновая излучила свет, дошедший до нас сейчас, а в третьем рассматривается расстояние в данный момент между нами и текущим положением галактики, – на самом деле это не так. Положение удалённой галактики в пространстве оставалось неизменным как в настоящий момент, так и в течение миллиардов лет. Только движение через пространство, а не свободный дрейф по волнам пространственного расширения может изменить её положение. В этом смысле второй и третий ответы действительно одинаковы.
49
Поясним подготовленному читателю, как вычислить расстояние – сейчас, в момент времени tнаст, – которое свет прошёл с момента излучения во время tизл. Мы будем рассматривать модель, в которой пространственная часть пространства-времени является плоской, и поэтому метрика может быть записана в виде
ds2 = c2dt2 − a2(t)dx2,
где a(t) – это масштабный фактор Вселенной в момент времени t, а c – скорость света. Используемые координаты называются сопутствующими. На образном языке этой главы их можно рассматривать как координаты, соответствующие точкам на статичной карте, а масштабный фактор даёт информацию, приведённую в легенде карты.
Траектории светового луча характеризуется тем, что ds2 = 0 (это эквивалентно тому, что скорость света всегда равна c), откуда следует, что
или, выбирая конечный интервал времени между tизл и tнаст:
Левая часть этого уравнения задаёт расстояние, пройденное светом по статичной карте от момента излучения до настоящего момента. Чтобы перевести это в расстояние в реальном пространстве, необходимо перемасштабировать формулу с учётом современного масштабного фактора; поэтому полное расстояние, проходимое светом, будет равно
Если пространство не расширяется, полное пройденное расстояние будет
как и ожидалось. Таким образом, при вычислении расстояния, пройденного в расширяющейся Вселенной, мы видим, что каждый участок траектории светового луча умножается на фактор a(tнаст)/a(t), который характеризует то, как на настоящий момент увеличился участок траектории с того момента, как через него прошёл свет.
50
Более точно примерно 7,12 × 10−30 грамма/кубический сантиметр.
51
Пересчёт составляет 7,12 × 10−30 грамма/кубический сантиметр = (7,12 × 10−30 грамма/кубический сантиметр) × (4,6 × 104 планковская масса/грамм) × (1,62 × 10−33 сантиметр/планковская длина)3 = 1,38 × 10−123 планковская масса/кубический планковский объём.
52
Гравитационное отталкивание при инфляции является кратким и интенсивным. Это объясняется огромной энергией и отрицательным давлением, обусловленными полем инфлатона. Однако если изменить форму кривой потенциальной энергии квантового поля, то количество энергии уменьшится и отрицательное давление снизится, что снизит интенсивность ускоренного расширения. Кроме того, при подходящей модификации кривой потенциальной энергии можно продлить период ускоренного расширения. А такой менее интенсивный и более продолжительный период ускоренного расширения – именно то, что требуется для объяснения данных по сверхновым. Однако за более чем десять лет с момента первого наблюдения ускоренного расширения, наиболее убедительным объяснением остаётся наличие у космологической постоянной небольшого отличного от нуля значения.
53
Хотя утверждение о том, что изменения физических свойств нашей Вселенной не будут благоприятствовать жизни в привычном виде, широко признано научной общественностью, некоторые учёные полагают, что диапазон значений, совместимых с жизнью, может быть шире, чем принято думать. Эти вопросы широко обсуждались в литературе. См., например: John Barrow and Frank Tipler, «The Anthropic Cosmological Principle». New York: Oxford University Press, 1986; John Barrow, «The Constants of Nature». New York: Pantheon Books, 2003; Paul Davies, «The Cosmic Jackpot». New York: Houghton Mifflin Harcourt, 2007; Victor Stenger, «Has Science Found God?» Amherst, N. Y.: Prometheus Books, 2003; а также приведённые там ссылки.
54
Опираясь на материал, изложенный в предыдущих главах, можно, казалось бы, легко заключить, что ответ, безусловно, да. Рассмотрим, говорите вы, стёганную мультивселенную, в бесконечном пространственном объёме которой находится бесконечно много вселенных. Однако вам следует быть осторожнее. Даже при бесконечном количестве вселенных список различных значений для космологических постоянных может оказаться коротким. Если, например, основные законы не допускают много различных значений для космологической постоянной, то тогда независимо от числа вселенных, будет реализовываться лишь малый набор возможных космологических постоянных. Поэтому задаваемый нами вопрос такой: (а) есть ли кандидаты на роль физических законов, которые приводят к мультивселенной, (б) содержит ли порождённая таким образом мультивселенная значительно больше, чем 10124 различных вселенных, (в) гарантируют ли эти законы, что значение космологической постоянной варьируется от вселенной к вселенной.
55
Эти четыре автора были первыми, кто показал, что при разумном выборе пространств Калаби – Яу и пронизывающих их отверстия потоков, можно прийти к струнным моделям с небольшими положительными значениями космологической постоянной, сопоставимыми с наблюдаемыми данными. Впоследствии, совместно с Хуаном Малдасеной и Лайамом Макалистером, эта группа опубликовала крайне важную статью о том, как совместить инфляционную космологию с теорией струн.
56
Если быть более точным, этот горный рельеф будет существовать внутри приблизительно 500-мерного пространства, независимые направления которого – координатные оси – будут соответствовать различным полевым потокам.
Рисунок 6.4 даёт приблизительную картину, но позволяет получить представление о взаимосвязях между различными формами дополнительных измерений. Помимо этого, говоря о струнном ландшафте, физики обычно подразумевают, что кроме возможных значений потоков этот горный рельеф отражает также все возможные размеры и формы (различные топологии и геометрии) дополнительных измерений. Долины струнного ландшафта – это те места (определённые формы дополнительных измерений и их потоков), где естественным образом располагаются пузырьки-вселенные, как расположился бы мяч, скатившийся в долину с реального горного ландшафта. С математической точки зрения долины – это (локальные) минимумы потенциальной энергии, ассоциированной с дополнительными измерениями. В классической теории, если пузырёк-вселенная обретёт форму дополнительных измерений, соответствующую долине, то это свойство останется навсегда неизменным. Однако в квантовой теории туннелирование может привести к изменению формы дополнительных измерений.
57
Квантовое туннелирование на более высокий пик возможно, но согласно квантовым вычислениям, значительно менее вероятно.
58
Продолжительность расширения пузырька-вселенной до столкновения определяет силу столкновения и последующие разрушения. Если вернуться к примеру с Трикси и Нортоном из главы 3, такие столкновения поднимают интересный вопрос о времени. При столкновении двух пузырьков-вселенных их внешние края – на которых энергия поля инфлатона имеет большие значения – соприкасаются. С точки зрения наблюдателя, находящегося внутри любого из сталкивающихся пузырьков, большое значение энергии поля инфлатона соответствует ранним моментам времени, близким к моменту Большого взрыва в этом пузырьке. Таким образом, столкновения пузырьков-вселенных происходят на заре их рождения, и потому образовавшиеся волны могут оказывать влияние на ещё один процесс, происходящий в ранней Вселенной, – на образование реликтового излучения.
59
В главе 8 мы рассмотрим квантовую механику более подробно. Как мы увидим, моё утверждение «находятся за кулисами повседневной реальности» может быть интерпретировано разными способами. Здесь я имею в виду самый простой: уравнение квантовой механики подразумевает, что волны вероятности, как правило, отсутствуют в обычных пространственных измерениях. Наоборот, эти волны распространяются в другой среде, которая учитывает не только привычные пространственные измерения, но также число описываемых частиц. Эта среда называется конфигурационным пространством; его объяснение заинтересованный читатель может найти в комментарии {71}.
60
Если наблюдаемое нами ускоренное расширение пространства не постоянно, тогда в некоторый момент в будущем расширение замедлится. Замедление позволит свету от объектов, находящихся в данный момент за пределами нашего космического горизонта, достичь нас; наш космический горизонт увеличится. В этом случае будет совсем странным считать, что миры за пределами нашего горизонта не являются реальными, поскольку в будущем к ним может появится доступ. (Вы можете вспомнить, что в конце главы 2 было отмечено, что показанные на рис. 2.1 космические горизонты будут увеличиваться с течением времени. Это верно для вселенной, в которой темп пространственного расширения не убыстряется. Однако, если расширение ускоряется, то существует расстояние, за которое мы никогда не сможем заглянуть, сколь долго мы не ждали бы. В ускоряющейся вселенной космический горизонт не может превзойти размер, который определяется математически темпом ускорения.)
61
Приведём конкретный пример свойства, которое может быть общим для всех вселенных из некоторой мультивселенной. В главе 2 отмечалось, что современные наблюдательные данные строго указывают на то, что кривизна пространства равна нулю. Однако довольно сложные математические вычисления показывают, что все пузырьки-вселенные в инфляционной мультивселенной обладают отрицательной кривизной. Грубо говоря, пространственные формы с равными значениями инфлатона – формы, определяемые соединением равных чисел на рис. 3.8б, – больше похожи на картофельные чипсы, чем на плоскую поверхность стола. Но даже в этом случае инфляционная мультивселенная остаётся совместимой с наблюдениями, потому что при расширении любой формы её кривизна уменьшается (кривизна жемчужины всем очевидна, а кривизна поверхности Земли не замечалась тысячелетиями). Если наш пузырёк-вселенная продолжает испытывать значительное расширение, его кривизна может быть отрицательной и при этом настолько малой, что современные измерения не смогут уловить отличие от нуля. Отсюда следует возможный тест. Если более точные наблюдения в будущем покажут, что кривизна пространства очень мала, но положительна, это опровергнет гипотезу о том, что наша Вселенная является частью инфляционной мультивселенной, как было отмечено Б. Фрайфогелем, М. Клебаном, М. Родригез Мартинезом и Л. Сасскиндом в статье: B. Freivogel, M. Kleban, M. Rodriguez Martinez, and L. Susskind «Observational Consequences of a Landscape», «Journal of High Energy Physics» 0603, 039 [2006]; если измерения дадут положительное значение для кривизны, равное примерно 10−5, это станет сильным аргументом против квантово-туннельных переходов, которые согласно теории заполняют струнный ландшафт (см. главу 6).
62
Список космологов и струнных теоретиков, внёсших значительный вклад в эту область, включает, помимо многих других, таких исследователей как Алан Гут, Андрей Линде, Александр Виленкин, Жауме Гаррига, Дон Пейдж, Сергей Виницки, Ричард Истер, Юджин Лим, Мэттью Мартин, Майкл Дуглас, Фредерик Денеф, Рафаэль Буссо, Бен Фрайфогель, И-Шен Янг, Делия Шварц-Перлов.
63
Стоит ещё отметить, что описанные вычисления выполнялись без конкретизации типа мультивселенной. Наоборот, Вайнберг и его соавторы рассмотрели модель мультивселенной с изменяющимися характеристиками и вычислили густоту галактик в каждой из составляющих её вселенных. Чем больше галактик во вселенной, тем больший вес приписывается её свойствам при вычислении усреднённых свойств, с которыми столкнётся типичный наблюдатель. Однако, поскольку Вайнберг и его соавторы не конкретизируют модель мультивселенной, их вычисления не могут учесть вероятность нахождения в данной мультивселенной вселенных с теми или иными свойствами (те вероятности, которые обсуждались в предыдущем разделе). Возможно наличие вселенных с космологическими постоянными и флуктуациями, лежащими в определённом диапазоне, так что они готовы для запуска процесса образования галактик, но если такие вселенные редки в данной мультивселенной, то мы вряд ли обнаружим, что находимся в одной из них.
Для упрощения вычислений Вайнберг и его соавторы предположили, что поскольку рассматриваемый ими диапазон значений космологической постоянной очень узок (между 0 и 10−120), то вероятности существования таких вселенные в данной мультивселенной не будут, по всей видимости, сильно варьироваться (подобно как вероятность того, что вы встретите собаку весом в 26,99997 килограмма не сильно отличается от вероятности, что вы встретите собаку весом 26,99999 килограмма). Таким образом, они полагали, что любое значение космологической постоянной в том узком диапазоне, который совместим с образованием галактик, столь же вероятно, как и любое другое. На нашем рудиментарном уровне понимания механизма возникновения мультивселенной это кажется достаточно разумным предположением. Однако дальнейшие исследования поставили под вопрос справедливость данного допущения, требуя более полного анализа. Было показано, что для того чтобы продвинуться дальше, необходимо конкретизировать тип мультивселенной и задать распределение вселенных с разными свойствами. Вычисления, основанные на антропном принципе с самым минимальным набором допущений, являются единственным способом понять, сможет ли этот подход в будущем дать осмысленные плоды, обладающие предсказательной силой.