355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 12)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 38 страниц)

Дуальность

В 1980-х годах теоретики осознали, что есть не одна теория струн, а пять разных её вариантов с заковыристыми именами тип I, тип IIA, тип IIB, O-гетеротическая, E-гетеротическая. Я не упоминал об этом усложнении до сих пор, потому что все пять теорий, несмотря на различия в технических деталях, имеют одинаковые общие свойства – вибрирующие струны и дополнительные пространственные измерения, – которые были нами рассмотрены. Однако мы дошли до того момента, когда все пять вариантов теории струн выходят на передний план.

В течение многих лет физики использовали методы теории возмущений для анализа каждой из пяти теорий струн. При изучении теории струн типа I считалось, что её константа связи мала, поэтому физики пользовались многошаговой процедурой, похожей на анализ лотереи Ральфом и Элис. Такая же процедура использовалась при изучении O-гетеротической теории или любой другой теории струн. Однако за пределами ограниченной области малых струнных констант учёные лишь пожимали плечами, полагая, что используемый ими математический аппарат недостаточно силён для получения надёжных результатов.

Так было до весны 1995 года, когда Эдвард Виттен потряс струнное сообщество серией изумительных результатов. Опираясь на результаты таких учёных, как Джо Польчински, Майкл Дафф, Поль Таунсенд, Крис Халл, Джон Шварц, Ашок Сен и многих других, Виттен привёл убедительное доказательство того, что теперь струнные теоретики могут свободно выйти за рамки малых констант связи. Ключевая идея была простая и сильная. Виттен доказал, что при увеличении константы связи в одной из формулировок теории струн, теория замечательным образом постепенно трансформируется в нечто хорошо узнаваемое: в другую формулировку теории струн, в которой константа связи уменьшается. Например, когда константа связи в теории типа I велика, она переходит в O-гетеротическую теорию струн с малой константой связи. Это означает, что пять теорий струн не такие уж и разные. При ограниченном рассмотрении – при малых константах связи – каждая из них отличается от остальных, но при снятии этого ограничения каждая из теорий струн переходит в другие.

Недавно я натолкнулся на замечательную картинку, на которой при близком рассмотрении можно разглядеть Альберта Эйнштейна; отодвинув картинку чуть дальше ничего определённого не видно; а при взгляде издалека возникает изображение Мэрилин Монро (рис. 5.2). Если вы смотрите на изображения, проявляющиеся только в крайних фокусах, есть все основания считать, что это две разные картинки. Но анализируя картинку на промежуточных расстояниях, вы неожиданно обнаруживаете, что портреты Эйнштейна и Монро являются частью единого изображения. Точно так же рассмотрение двух теорий струн в крайнем положении, когда струнная константа каждой мала, приводит к заключению, что они столь же разные как Альберт и Мэрилин. Остановившись на этом, как в течение многих лет делали струнные теоретики, можно прийти к выводу, что изучаются две разные теории. Но если рассматривать теории при промежуточных значениях констант связи, то обнаружится, что подобно Эйнштейну, превращающемуся в Монро, одна теория постепенно переходит в другую.

Рис. 5.2. Если смотреть с близкого расстояния, на картинке виден Альберт Эйнштейн. Если смотреть издалека, появляется Мэрилин Монро. (Автор изображения Од Олива из Массачусетского технологического института)

Превращение Эйнштейна в Монро – не более чем курьёз. Переход от одной теории струн к другой теории струн – это уже настоящая трансформация. Она означает, что если нельзя провести вычисления в одной теории струн по теории возмущений, потому что её константа связи слишком велика, то эти вычисления могут быть легко проделаны на языке другой формулировки теории струн, где применима теория возмущений в силу малости константы связи. Такой переход между кажущимися разными теориями называется в физике дуальностью. Она стала одной из самых распространённых тематик в современных исследованиях по теории струн. Описывая одну и ту же физическую ситуацию двумя разными математическими способами, дуальность удваивает наш вычислительный арсенал. Безнадёжно трудные вычисления с одной стороны становятся вполне осуществимыми с другой стороны.[28]28
  Можно считать это существенным обобщением результатов, затронутых в главе 4, когда различные формы дополнительных измерений могут приводить к тождественным физическим моделям.


[Закрыть]

Разобравшись в деталях, Виттен и другие исследователи показали, что все пять теорий струн связаны друг с другом целой сетью таких дуальностей.{38} В сплетении теорий и дуальностей, названном M-теорией (скоро увидим, почему), объединяются успехи всех пяти формулировок, сшитых вместе посредством дуальных взаимосвязей, что приводит к более глубокому пониманию каждой из них. Одним из открытий, особенно важным для наших целей, оказалось то, что в теории струн есть не только струны.

Браны

Начиная изучать теорию струн, я задавался тем же самым вопросом, который спустя много лет стали задавать мне самому: почему струны такие особенные? Почему надо рассматривать фундаментальные объекты, у которых есть только длина? В конце концов, теория сама требует, чтобы арена, где играют её актёры – пространственная Вселенная, – имела девять измерений, так почему не рассматривать объекты, имеющие форму двумерных листов или трёхмерных шариков, или их многомерные аналоги? Ответ на эти вопросы я узнал, когда был студентом в 1980-х. Потом мне часто приходилось объяснять его в своих лекциях в середине 1990-х годов. Ответ состоит в том, что математика, описывающая фундаментальные составляющие с более чем одним пространственным измерением, приводит к неустранимым противоречиям (таким как квантовые процессы с отрицательными вероятностями, а это математически бессмысленный результат). Но когда эти математические рассуждения проводятся для струн, все противоречия компенсируют друг друга и возникает самосогласованное описание.[29]29
  Такой результат не является таинственным математическим совпадением. Наоборот, в строгом математическом смысле струны обладают высокосимметричной формой, и именно эта симметрия позволяет устранить все противоречия. Более детальное изложение содержится в комментарии {39}.


[Закрыть]
{39} Струны, определённо, чем-то выделены.

По крайней мере так казалось.

Вооружившись новыми вычислительными методами, физики стали анализировать уравнения теории струн более аккуратно и получили ряд неожиданных результатов. Один из самых удивительных результатов состоял в том, что причина, по которой струны казались выделенными, довольно шаткая. Теоретики догадались, что математические проблемы, возникающие при изучении многомерных ингредиентов, подобных диску или шарику, были всего лишь последствиями использования приближённых методов. Вооружившись более точными методами, небольшая группа теоретиков выяснила, что под математическим покровом теории струн действительно скрываются структуры с разным числом пространственных измерений.{40} Техника теории возмущений слишком груба, чтобы обнаружить эти ингредиенты, но новые методы смогли это сделать. К концу 1990-х годов стало совершенно очевидно, что теория струн это не просто теория, описывающая струны.

Были обнаружены объекты, по форме похожие на летающую тарелку или ковёр-самолёт, с двумя пространственными измерениями: мембраны (одно из значений буквы M в M-теории), которые также называют два-бранами. Но это ещё не всё. Также были обнаружены объекты с тремя пространственными измерениями, так называемые три-браны; объекты с четырьмя пространственными измерениями – четыре-браны, и так далее вплоть до девять-бран. Математически было установлено, что все эти структуры, подобно струнам, могут вибрировать и извиваться; поэтому в этом контексте струну лучше всего рассматривать как один-брану – лишь одну из многих сущностей в неожиданно длинном списке фундаментальных кирпичиков теории струн.

С этим связано открытие, поразившее всех, кто провёл лучшие годы своей профессиональной жизни, занимаясь теорией струн. Оказалось, что количество пространственных измерений на самом деле вовсе не девять. Оно равно десяти. И если добавить временно́е измерение, получится точно одиннадцать пространственно-временных измерений. Как такое может быть? Мы же помним, как говорили «(D − 10) умножить на проблему» в главе 4, откуда был сделан вывод о необходимых десяти пространственно-временных измерениях теории струн. Однако, опять-таки, математические выкладки, приведшие к этому уравнению, были основаны на теории возмущений с малой струнной константой. А это приближение (сюрприз!) не учитывало одно измерение. Как показал Виттен, причина состояла в том, что величина струнной константы напрямую контролирует размер десятого пространственного измерения. Полагая константу связи малой, исследователи невольно делали малым и это пространственное измерение, слишком малым – настолько, что оно стало невидимым для самой математической структуры теории. Более точные методы исправили это упущение, что привело к появлению M-теоретико-струнной вселенной с десятью пространственными измерениями и одним временны́м, что в совокупности составляет одиннадцать пространственно-временных измерений.

Я хорошо помню наивно-изумлённые взгляды участников международной струнной конференции, проводимой в университете Южной Калифорнии в 1995 году, на которой Виттен впервые анонсировал часть результатов, совокупность которых теперь называется второй струнной революцией.[30]30
  Первая революция началась с работ Джона Шварца и Майкла Грина 1984 года, в которых была дана современная формулировка теории струн.


[Закрыть]
Именно браны выступают на авансцену в истории с мультивселенными. Благодаря им исследователи обнаружили ещё одно множество параллельных вселенных.

Браны и параллельные миры

Как правило, принято считать, что струны очень малы и именно это свойство становится большим препятствием для проверки теории. Однако в главе 4 было замечено, что струны не обязательно малы. Длина струны определяется её энергией. Энергии, сопоставляемые массам электронов, кварков, и других известных частиц настолько малы, что соответствующие струны имеют действительно крошечный размер. Но если в струну впрыснуть достаточно энергии, то можно очень сильно её растянуть. В земных условиях нет никаких возможностей осуществить подобное, но в принципе это не более чем технологическое ограничение. Если теория струн верна, технологически развитая цивилизация сможет растянуть струну настолько сильно, насколько она пожелает. Длинные струны могут возникать в природных космологических явлениях; например, струны могут намотаться на часть пространства, а потом сильно растянуться в процессе космологического расширения. Одна из возможных экспериментальных проверок (табл. 4.1) состоит в поиске гравитационных волн, испущенных длинными струнами, которые вибрируют в глубине космоса.

Подобно струнам, многомерные браны также могут быть большими. Отсюда возникает совершенно новый способ описания космоса в рамках теории струн. Чтобы понять, что я имею в виду, нарисуем сначала длинную струну, такую же длинную как электрические провода, тянущиеся за горизонт. Затем нарисуем большую два-брану, похожую на огромную скатерть или гигантский флаг с безграничной поверхностью. Такой рисунок легко себе представить, так как он вписывается в рамки привычных трёх измерений.

Если три-брана очень велика, возможно даже бесконечно большая, ситуация меняется. Три-брана такого типа полностью заполнит пространство, в котором мы живём, подобно воде, заполняющей аквариум. Такая вездесущность предполагает, что вместо того, чтобы считать три-брану объектом, расположенным в обычных трёх измерениях, следует рассматривать её как основу самого пространства. Подобно рыбам в воде, мы живём в заполняющей собой всё пространство три-бране. Пространство, по крайней мере то пространство, в котором мы непосредственно живём, может оказаться гораздо более осязаемым, нежели принято представлять. Пространство предстанет как вещь, объект, сущность – три-брана. Когда мы бежим или идём, живём и дышим, мы движемся внутри три-браны. Струнные теоретики называют это сценарием мира на бране.

Именно в этот момент в теории струн возникают параллельные вселенные.

Я сосредоточился на взаимосвязи между три-бранами и тремя пространственными измерениями, потому что хотел провести аналогию с повседневным опытом. Но в теории струн пространственных измерений больше трёх. В многомерном пространстве есть достаточно места для размещения не только одной три-браны. Допустим для начала, что имеются две огромные три-браны. Возможно, вам это нелегко представить. Мне, по крайней мере, – непросто. В процессе эволюции мы научились распознавать объекты, сулящие удачу или несущие опасность, которые находятся непосредственно внутри трёхмерного пространства. Следовательно, хотя мы можем легко нарисовать два любых трёхмерных объекта, расположенных в некоторой области пространства, мало кто сможет вообразить сосуществующие, но отделённые друг от друга трёхмерные сущности, каждая из которых полностью заполняет собой трёхмерное пространство. Поэтому для наглядности обсуждения сценария мира на бране давайте откажемся от одного пространственного измерения и будем представлять жизнь на гигантской два-бране. Для определённости будем думать о два-бране как о гигантском, сверхтонком ломтике хлеба.[31]31
  Внимательный читатель заметит, что ломтик хлеба на самом деле трёхмерен (у него есть ширина, длина и толщина), но пусть вас это не беспокоит. Толщина хлебного ломтика напоминает, что ломтики – это визуализация больших три-бран.


[Закрыть]

Чтобы в полной мере воспользоваться этой метафорой, представим, что на ломтике хлеба присутствует всё, что мы привыкли называть Вселенной – туманность Ориона, Конская голова, Крабовидная туманность; весь Млечный Путь; другие галактики – Андромеда, Сомбреро, Водоворот; и так далее – всё, что есть внутри нашего трёхмерного пространства, сколь угодно далеко друг от друга (рис. 5.3а). Чтобы представить вторую три-брану, нужно нарисовать ещё один огромный ломтик. Где именно? Расположите его рядом с нашим ломтиком, только чуть сдвиньте его в сторону в направлении дополнительных измерений (рис. 5.3б). Столь же легко представить три или четыре, или большее число три-бран. Нужно лишь добавить ломтиков космического батона. Хотя аналогия с батоном хорошо описывает расположенные стопкой браны, легко представить более общие возможности. Браны могут иметь любую ориентацию, быть других размерностей, бо́льших или меньших, и все они могут быть рассмотрены аналогичным образом.

Рис. 5.3.а) В сценарии мира на бране традиционно понимаемый нами космос оказывается трёхмерной браной. Для простоты мы отбрасываем одно измерение и изображаем мир на бране с двумя пространственными измерениями; брана может тянуться бесконечно далеко, поэтому представлена лишь конечная её часть; б) Многомерное пространство теории струн вмещает в себя много параллельных миров на бране

Во всём наборе бран будут действовать одинаковые, фундаментальные физические законы, потому что все они возникают из одной M-теории/теории струн. Так же как в случае с дочерними вселенными в инфляционной мультивселенной, физические свойства браны могут существенно меняться в зависимости от дополнительных условий, таких как значения полей, пронизывающих брану, или число её пространственных измерений. Некоторые миры на бране могут оказаться очень похожими на наш мир, с галактиками, звёздами и планетами, а некоторые могут сильно отличаться. На одной или нескольких таких бранах могут проживать разумные существа, которые подобно нам однажды решат, что их ломтик – их часть пространства – является всем космосом. Теперь мы понимаем, что в рамках бранного сценария в теории струн такая точка зрения слишком узкая. В бранном сценарии наша Вселенная лишь одна из многих, населяющих бранную мультивселенную.

Как только идея бранной мультивселенной возникла в струнном сообществе, немедленно возник вопрос. Если гигантские браны существуют по соседству, целые параллельные вселенные висят где-то рядом подобно ржаным ломтикам, удобно расположившимся по соседству, то почему мы не видим их?

Цепкие браны и гравитационные щупальца

Струны бывают двух видов: в виде петель и отрезков нитей. До сих пор мы не делали различий, потому что это несущественно для понимания большинства общих свойств теории. Но для миров на бране это различие между петлями и отрезками нитей становится решающим, и следующий простой вопрос объясняет, почему. Могут ли струны улететь с браны? Ответ: петли могут, отрезки нитей нет.

Знаменитый струнный теоретик Джо Польчински впервые осознал, что всё определяется поведением концов струнной нити. Уравнения, убедившие физиков, что браны являются частью струнной теории, также показали, что между струнами и бранами есть особенно тесная связь. Брана – это единственное место для концов струнных отрезков (рис. 5.4). Математические выкладки показывают, что открепить концы струнных отрезков от поверхности браны попросту невозможно, это всё равно, что пытаться уменьшить число π или увеличить квадратный корень из 2. С физической точки зрения такая ситуация сродни попытке удалить северный или южный полюс магнита. Сделать такое просто невозможно. Струнные нити могут свободно двигаться внутри и сквозь брану, играючи скользя туда и сюда, но покинуть её они не могут.

Рис. 5.4. Браны – это единственное место, где могут быть расположены концы отрезков струнных нитей

Если это не просто интересная математика, и мы действительно живём на бране, то прямо сейчас вы ощущаете, как наша брана мёртвой хваткой держит концы струнных отрезков. Попробуйте спрыгнуть с нашей три-браны. Попытайтесь ещё, сильнее. Подозреваю, что вы никуда не исчезли. Струны в бранном мире, из которых состоите вы и вся остальная привычная материя, – это отрезки нитей. Покинуть брану нельзя, хотя можно прыгать вверх и вниз, кидать бейсбольный мяч и посылать звуковые волны, совершенно беспрепятственно со стороны браны. Если вы попробуете спрыгнуть, то концы ваших струнных отрезков наглухо притянут вас к бране. Наш мир – это такой дрейфующий плот в многомерном океане, но мы не можем его покинуть, не можем вырваться и исследовать космос за его пределами.

То же самое происходит с частицами-переносчиками трёх негравитационных взаимодействий. Можно показать, что они тоже составлены из струнных отрезков. Самые важные среди них фотоны – переносчики электромагнитного взаимодействия. Таким образом, видимый свет потоком фотонов может свободно распространяться внутри нашей браны от этого текста до ваших глаз или от галактики Андромеды до Вильсоновской обсерватории, но всё равно не сможет вырваться за её пределы. Вполне возможно, что другой мир на бране находится в нескольких миллиметрах от нас, но свет не может преодолеть этот промежуток, и поэтому мы никогда не получим ни малейшего намёка на его существование.

Единственное взаимодействие, которое отличается в этом отношении – это гравитация. В главе 4 мы отметили особое свойство гравитона – спин-2, превышающий в два раза спин частиц, составленных из струнных отрезков (как фотоны), являющихся переносчиками негравитационных взаимодействий. Тот факт, что спин гравитона в два раза превышает спин отдельного струнного отрезка, означает, что гравитон можно представить в виде двух таких отрезков, причём концы одного слипаются с концами другого и возникает петля. Поскольку у петель нет концов, они не могут быть захвачены бранами. Поэтому гравитоны могут покинуть одну брану и попасть на другую. Тогда в сценарии мира на бране только с помощью гравитации можно прощупать то, что находится за пределами нашего трёхмерного пространства.

Такая идея играет ключевую роль для некоторых возможных тестов теории струн (глава 4, табл. 4.1). В 1980–1990-х годах, до появления концепции бран, физики полагали, что дополнительные измерения в теории струн имеют приблизительно планковский размер (примерно 10−33 сантиметра), естественный масштаб для теории, описывающей гравитацию и квантовую механику. Но сценарий мира на бране заставляет нас думать шире. Поскольку лишь гравитация, слабейшее из всех взаимодействий, может вырваться за пределы привычного трёхмерного пространства, дополнительные измерения вполне могут иметь достаточно большой размер и всё равно оставаться невидимыми. По крайней мере пока.

Если дополнительные измерения существуют и их размер значительно больше, чем считалось прежде – возможно в миллиард миллиардов миллиардов раз больше (примерно 10−4 сантиметра), – есть шанс их обнаружить в экспериментах по измерению силы гравитации (табл. 4.1, вторая строка). Когда объекты испытывают взаимное гравитационное притяжение, они обмениваются потоками гравитонов; гравитоны – это невидимые переносчики гравитации. Чем больше гравитонов летает между объектами, тем сильнее взаимное гравитационное притяжение. Когда часть гравитонов утекает с поверхности нашей браны и попадает в дополнительные измерения, гравитационное притяжение между объектами ослабевает, оно оказывается разбавленным. Чем больше дополнительные измерения, тем сильнее разбавление, тем слабее притяжение. Экспериментаторы считают, что путём точного измерения гравитационного притяжения между двумя объектами, сближенными на расстояние меньшее чем размер дополнительных измерений, можно перехватить гравитоны прежде, чем они утекут с нашей браны; если это так, то экспериментально измеренная сила гравитации должна пропорционально возрастать. Таким образом, хотя эти рассуждения и не упоминались в главе 4, данный способ открытия дополнительных измерений основан на сценарии мира на бране.

Более скромное увеличение размера дополнительных измерений, примерно до 10−8 сантиметра, может потенциально привести к их обнаружению на Большом адронном коллайдере. Осколки столкновений протонов на высоких энергиях могут быть выброшены в дополнительные измерения, что приведёт к очевидной утечке энергии в нашем пространстве, которую можно обнаружить (табл. 4.1, третья строка). Такой эксперимент тоже основывается на сценарии мира на бране. Данные, свидетельствующие об утечке энергии, можно объяснить, если постулировать существование нашей Вселенной на бране и опираться на то, что осколки, способные вырваться с нашей браны – гравитоны, – уносят энергию с собой.

Образование чёрных мини-дыр – это ещё один побочный продукт сценария мира на бране (табл. 4.1, четвёртая строка). Вероятность возникновения чёрных мини-дыр в протон-протонных столкновениях на Большом адронном коллайдере существует только в случае, когда сила гравитационного притяжения растёт при уменьшении расстояний. Как и ранее, именно сценарий мира на бране делает это возможным.

Озвученные выше подробности проливают новый свет на эти три эксперимента. Их целью является не только поиск таких экзотических структур как дополнительные измерения пространства и крошечные чёрные дыры, они также пытаются выяснить, живём мы на бране или нет. В свою очередь, помимо подтверждения сценария мира на бране в теории струн, положительный итог экспериментов станет косвенным свидетельством существования других вселенных за пределами нашей. Если удастся установить, что мы живём на бране, не останется никаких математических оснований считать, что наша Вселенная единственна.


    Ваша оценка произведения:

Популярные книги за неделю