355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 22)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 22 (всего у книги 38 страниц)

А поскольку Бор и Копенгагенская школа доказывали, что только одна из этих вселенных существует (потому что акт измерения, который, по их утверждению, не описывается уравнением Шрёдингера, приведёт к коллапсу всех остальных вселенных), и поскольку первый шаг в попытке выйти за рамки концепции Бора и расширить применимость уравнения Шрёдингера ко всем частицам, включая те, из которых состоит экспериментальное оборудование и головной мозг, привёл к невероятной путанице (потому что данное устройство или мозг, должны, по-видимому, воспринять все возможные результаты одновременно), Эверетт пришёл к выводу, что более внимательная трактовка уравнения Шрёдингера может дать нечто другое: обширную реальность, состоящую из постоянно растущего числа вселенных.

Препринт статьи Эверетта 1957 года был разослан ряду физиков по всему миру до публикации основной статьи. По настоянию Уилера изложение было настолько урезано, что многие, кто читал его, не были уверены, действительно ли Эверетт считает, что все вселенные в его математическом подходе реальны. Эверетт узнал об этой неясности и решил разъяснить ситуацию. В «примечаниях при корректуре», которые он, по-видимому, написал прямо перед публикацией и, скорее всего, не уведомляя об этом Уилера, Эверетт чётко выразил свою позицию относительно природы разных квантово-механических результатов: «С точки зрения теории, все… являются “настоящими”, ни одна из них не более “реальна”, чем все остальные».{75}

Когда возникает альтернативная вселенная?

Помимо слов «расщеплять» и «клонировать», которые мы довольно вольготно использовали при изложении историй второго типа, мы также употребляли взаимозаменяемым образом такие серьёзные термины, как «мир» и «вселенная». Есть ли какие-то чёткие указания, когда уместно использовать эти термины, а когда нет? Когда мы рассматриваем волну вероятности одного электрона с двумя (или более) пиками, мы не говорим о двух (или более) мирах. Мы подразумеваем один мир – наш – в котором содержится электрон с неоднозначным положением. Однако, применяя подход Эверетта, когда мы измеряем или наблюдаем этот электрон, мы говорим на языке множественных миров. В чём тогда различие между измеренной и неизмеренной частицей, что приводит к столь разительно отличающимся описаниям?

На ум быстро приходит такой ответ: для одного изолированного электрона нет надобности излагать историю второго типа, потому что без измерений или наблюдений нет никакой связи с человеческим опытом, который требует своего описания. Всё, что нужно, – это история первого типа о волне вероятности, распространяющейся согласно уравнению Шрёдингера. Без истории второго типа нет никакой возможности привлечь многократные реальности. Хотя такое объяснение разумно, имеет смысл покопаться поглубже и проанализировать специальные свойства квантовых волн, проявляющиеся в задачах со многими частицами.

Проще всего ухватить основную идею на примере эксперимента с двумя щелями (рис. 8.2 и рис. 8.4). Напомним, что волна вероятности падает на пластину, затем два волновых фрагмента, прошедшие сквозь щели, распространяются дальше и достигают экрана. Вдохновившись обсуждением многомирового подхода, мы можем поддаться соблазну представить две бегущие волны как две раздельные реальности. В одной из них электрон проскакивает сквозь левую щель, а в другой – через правую щель. Но вы быстро сообразите, что наложение этих двух предположительно «разных реальностей» существенно влияет на результат эксперимента; именно перекрывание двух волн приводит к интерференционной картине. Поэтому рассматривать две волновые траектории как существующие в двух разных вселенных не имеет никакого особого смысла и не даёт никакой дополнительной пищи для ума.

Однако если изменить условия эксперимента, расположив позади каждой из щелей детектор, который будет записывать, прошёл электрон сквозь неё или нет, то ситуация изменится коренным образом. Поскольку теперь привлечено макроскопическое оборудование, две различные траектории электрона порождают изменения в огромном количестве частиц – это огромное количество частиц участвует в появлении надписи «электрон прошёл сквозь левую щель» или «электрон прошёл сквозь правую щель». По этой причине соответствующие волны вероятности для каждой возможности становятся настолько несопоставимыми, что у них не оказывается практически никакой возможности как-то влиять друг на друга. Как показано на рис. 8.16а, различия в миллиардах миллиардов составляющих детектор частиц приводят к тому, что волны, соответствующие двум возможным результатам, расходятся друг с другом, практически не перекрываясь. А без перекрытия эти волны не могут участвовать ни в одном из характерных интерференционных явлений квантовой физики. Действительно, когда установлены детекторы, электроны перестают давать полосатый узор как на рис. 8.2в; наоборот, получается обычное объединение результатов, показанных на рис. 8.2а и рис. 8.2б. Физики в таком случае говорят, что волны вероятности декогерируют (более подробно вы можете прочитать об этом, например, в главе 7 книги «Ткань космоса»).

Суть тогда в том, что как только возникает декогерентность, две волны для каждого результата начинают распространяться независимо – они не смешиваются, – поэтому каждая из них может быть названа своим собственным миром или вселенной. В рассматриваемом случае в одной такой вселенной электрон проходит сквозь левую щель, и детектор это подтверждает; в другой вселенной электрон проходит сквозь правую щель, и детектор это подтверждает.

В этом и только в этом смысле есть некоторое перекликание с концепцией Бора. Согласно многомировому подходу, крупные тела, составленные из многих частиц, действительно отличаются от малых тел, составленных из одной или горстки частиц. Крупные тела не стоят особняком от математического аппарата квантовой механики, как думал Бор, но их волны вероятности могут обладать достаточными вариациями, вследствие чего их способность к интерференции становится ничтожной. И как только две и более волны перестают влиять друг на друга, они становятся невидимы друг для друга; каждая «думает», что другие исчезли. Итак, в то время как Бор просто декларировал, что акт измерения отметает все результаты, кроме одного, в многомировом подходе, дополненном декогерентностью, гарантируется, что в каждой вселенной всё оказывается так, как будто все остальные результаты исчезли. То есть в каждой вселенной всё выглядит так, как если бы волна вероятности схлопнулась, оставив лишь один пик. Однако по сравнению с копенгагенским подходом это «как если бы» приводит к совершенно другой картине устройства реальности. В многомировом подходе реализуются все возможные результаты, не только какой-то один.

Неопределённость на переднем крае

Может показаться, что на этом можно было бы и заканчивать главу. Мы видели, как сама математическая структура квантовой механики берёт нас под белы рученьки и подводит к новой концепции параллельных вселенных. Однако это ещё не конец истории. На последующих страницах я объясню, почему многомировое описание квантовой физики остаётся спорным; мы увидим, что неприятие данного подхода основано не просто на нежелании вникнуть в принципиально новую точку зрения на окружающую реальность. Но если вы, читатель, уже насытились и вам не терпится перейти к следующей главе, приведём короткое резюме.

В повседневной жизни мы сталкиваемся с вероятностью, когда видим, что в результате есть несколько возможных вариантов, но по той или иной причине не можем понять, какой из них на самом деле произойдёт. Иногда у нас имеется достаточно информации, чтобы понять, какой из результатов скорее всего произойдёт, и тогда вероятность является тем инструментом, который позволяет дать этому количественную оценку. Наша уверенность в вероятностном подходе возрастает, когда мы обнаруживаем, что результаты, которые считают вероятными, происходят часто, а маловероятные происходят редко. Проблема, стоящая перед многомировым подходом, состоит в том, что необходимо придать смысл вероятности – квантово-механическим вероятностным предсказаниям – в совершенно другом контексте, когда считается, что могут произойти все возможные результаты. Эту дилемму легко сформулировать: как можно говорить о том, что какие-то результаты вероятны, а другие маловероятны, если они все имеют место?

В последующих разделах я остановлюсь на этом более подробно и рассмотрю различные попытки решения. Хочу предупредить: мы сейчас обсуждаем вопросы, которые находятся на самом переднем крае науки, поэтому мнения о том, где мы сейчас находимся, сильно расходятся.

Вероятная проблема

Критика многомирового подхода часто сводится к тому, что этот подход слишком причудлив, чтобы быть правильным. История физики учит нас, что успешные теории просты и элегантны; они объясняют экспериментальные данные на основе минимального количества допущений и приводят к точному пониманию. Теория, в которой вселенные сыплются как из рога изобилия, далека от этого идеала.

Сторонники многомирового подхода справедливо говорят, что при оценке сложности научной теории не следует сосредотачиваться на её следствиях. Значение имеют лишь её фундаментальные свойства. В многомировом подходе считается, что всего одно уравнение – уравнение Шрёдингера – управляет распространением всех волн вероятности, так что по простоте формулировки и экономности допущений с этим подходом трудно соревноваться. Копенгагенский подход никак не проще. Он тоже основан на уравнении Шрёдингера, но при этом содержит туманное, плохо определённое предписание, когда уравнение Шрёдингера не следует применять, и ещё менее понятное описание, касающееся процесса схлопывания волны вероятности, который, как предполагается, имеет место быть. То, что многомировой подход приводит к исключительно богатой картине реальности, говорит о неблагонадёжности теории не более, чем разнообразие жизни на Земле говорит против дарвиновского естественного отбора. Механизмы, фундаментально простые по своей сути, могут привести к сложным заключениям.

Тем не менее, хотя отсюда следует, что бритва Оккама недостаточно остра, чтобы отсечь многомировой подход, переизбыток вселенных действительно приводит к потенциальному затруднению. Ранее я говорил, что физики, применяя какую-нибудь теорию, должны излагать её в двух ипостасях – описывать эволюцию мира с математической стороны, а затем интерпретировать полученные математические результаты с позиции нашего опыта. Но на самом деле есть ещё и третья сторона, связанная с первыми двумя, и физики должны её рассмотреть. Для квантовой механики эта третья сторона выглядит следующим образом: наша уверенность в квантовой механике идёт от её феноменального успеха в объяснении экспериментальных данных. Если физик-теоретик, используя квантовую механику, вычисляет, что при повторении некоторого эксперимента один результат будет возникать, скажем, в 9,62 раза чаще, чем другой, то именно это физик-экспериментатор будет устойчиво наблюдать в своих экспериментах. Перевернув эту фразу, можно сказать, что если эксперимент разойдётся с квантово-механическими предсказаниями, то экспериментаторы придут к выводу, что теория не верна. На самом деле, будучи аккуратными исследователями, они сделают более осторожное заключение. Экспериментаторы скажут, что сомневаются в правильности квантовой механики, но при этом отметят, что их результаты не отвергают эту теорию полностью. Даже для монетки идеальной формы, если её подбросить 1000 раз, может не получиться ожидаемой 50-процентной вероятности выпадения орла или решки. Но чем больше отклонение, тем больше оснований подозревать, что форма монетки отнюдь не идеальна; чем больше экспериментальные отклонения от предсказаний квантовой механикой, тем сильнее экспериментаторы будут подозревать, что теория ошибочна.

То, что уверенность в квантовой механике можно поколебать на основе полученных результатов, является важным моментом. Для любой предложенной научной теории, которая была подходящим образом развита и понята, мы должны быть в состоянии сказать, хотя бы в принципе, что если при осуществлении такого и такого эксперимента мы не получаем такого и такого результата, наша вера в эту теорию должна ослабнуть. И чем сильнее наблюдения отклоняются от предсказаний, тем меньше должно быть доверия такой теории.

Одно из затруднений с многомировым подходом и причина, по которой он остаётся спорным, состоят в том, что он способен лишить нас этих способов оценки уровня доверия к квантовой механике. И вот почему. При подбрасывании монетки я знаю, что с вероятностью 50 процентов выпадет решка и с вероятностью 50 процентов выпадет орёл. Но это заключение основывается на привычном допущении, что подбрасывание монетки даёт единственный результат. Если в одном мире выпадает орёл, а в другом решка, и более того, если есть копия меня в каждом мире, смотрящая на тот или иной результат, то какой тогда смысл у обычной вероятности? В одном мире будет некто, кто выглядит точно как я, обладает всей моей памятью и искренне утверждает, что он – это я, который видит, что выпала решка; а также будет другой, также уверенный что он – это я, который видит, что выпал орёл. Так как выпадают оба результата – есть Брайан Грин, видящий решку, и Брайан Грин, видящий орла, – то привычной вероятности того, что Брайан Грин с равным успехом увидит орла или решку, теперь, по-видимому, не останется.

То же самое можно сказать и про электрон, волна вероятности которого сосредоточена вблизи Земляничных полей и мемориала Гранта (рис. 8.16б). Традиционные квантовые рассуждения говорят, что у вас, экспериментатора, есть 50-процентая вероятность обнаружить электрон в одном из двух мест. Но в рамках многомирового подхода имеют место оба результата. Есть вы, который обнаружит электрон в Земляничных полях, и другой вы, который обнаружит его в мемориале Гранта. Поэтому как понимать традиционные вероятностные предсказания, которые в этом случае говорят, что с равной вероятностью вы обнаружите электрон в одном месте или в другом?

Естественная реакция многих людей, когда они в первый раз сталкиваются с этим вопросом, состоит в том, что они думают, что среди различных ваших копий в многомировом подходе есть какая-то одна, более реальная, чем все остальные. Даже если каждый из вас в любом из миров выглядит одинаково и имеет одинаковые воспоминания, люди будут думать, что только один из вас это действительно вы. И, продолжая эту линию рассуждения, это именно тот вы, который наблюдает один и только один результат, соответствующий вероятностным предсказаниям. Мне нравится подобный ответ. Много лет назад, когда я впервые узнал об этих идеях, я тоже так отвечал. Но эти рассуждения не имеют ничего общего с многомировым подходом. Ему свойственен минималистский стиль. Распространение волн вероятности непосредственно управляется уравнением Шрёдингера. И ничем более. Чтобы представить, что одна из ваших копий это «настоящий» вы, нужно проговорить что-нибудь в духе Копенгагенской школы. Схлопывание волны в копенгагенском подходе – это грубый способ сделать один и только один результат реальным. Если в многомировом подходе вы представите, что лишь одна ваша копия это действительно вы, то получится, что вы делаете то же самое, только менее заметно. Такие действия сведут на нет саму причину появления многомирового подхода. Он возник из попытки Эверетта исправить недочёты Копенгагенской школы, и план состоял в том, чтобы не привлекать ничего, кроме проверенного на опыте уравнения Шрёдингера.

Осознание этого выставляет многомировой подход совсем в другом свете. Наша уверенность в квантовой механике основана на экспериментальном подтверждении её вероятностных предсказаний. Однако в многомировом подходе трудно видеть, какую вообще роль играет вероятность. Тогда как можно говорить о третьей стороне вопроса, которая должна заложить основу нашей уверенности в многомировом подходе? Вот это действительно незадача.

Если подумать, то совсем не удивительно, что мы упёрлись в эту стену. В многомировом подходе нет ничего вероятностного. Распространение волны, её исходный и конечный профиль совершенно и полностью детерминировано описываются уравнением Шрёдингера. Никакой игры в кости; никакой крутящейся рулетки. В противоположность этому, в копенгагенском подходе вероятность возникает посредством туманно определённого схлопывания волны, вызванного измерением (напомним, чем больше высота волны в данной точке, тем больше вероятность того, что в результате схлопывания частица окажется именно там). Именно это является одним из ключевых моментов копенгагенской интерпретации, где начинается «игра в кости». Но так как многомировой подход отказывается от схлопывания, он отказывается от традиционной точки вхождения для вероятности.

Итак, есть ли в многомировом подходе место для вероятности?

Вероятность и множественность миров

Определённо можно сказать, что Эверетт считал ответ на этот вопрос положительным. Основная часть чернового варианта его диссертации 1956 года, а также урезанная версия 1957 года была посвящена объяснению того, как инкорпорировать вероятность в многомировой подход. Но дебаты не прекращаются и спустя полвека. Среди физиков и философов, потративших всю жизнь в поисках ответа на этот вопрос, имеется широкий диапазон мнений насчёт того, где и как встречаются множественность миров и вероятность. Некоторые из них утверждают, что проблема нерешаема, поэтому от многомирового подхода следует отказаться. Другие считают, что вероятность, или по крайней мере нечто, что можно назвать вероятностью, действительно присутствует в этом подходе.

Исходный анализ Эверетта является хорошим примером возникающих трудностей. В повседневном опыте мы пользуемся вероятностью, потому что наши знания, как правило, неполны. Если, подбросив монетку, мы имеем достаточно сведений (точный размер монетки, её вес, то, как она была подброшена), то результат можно предсказать. Но поскольку обычно мы лишены такой информации, приходится обращаться к вероятности. Аналогичные рассуждения справедливы для прогнозирования погоды, лотереи и многих других привычных ситуаций, в которых вероятность играет роль: мы прибегаем к вероятностной оценке того или иного исхода только потому, что наши знания ограничены. Эверетт считал, что вероятность находит дорогу в многомировую интерпретацию, потому что присутствует аналогичная неизвестность, но она имеет совершенно иную природу. У населения миров есть доступ только к своему единственному миру; они никак не контактируют с другими мирами. Эверетт считал, что вероятность возникает благодаря этой ограниченности.

Чтобы понять, как это происходит, оставим ненадолго квантовую механику и рассмотрим несовершенную, но очень полезную аналогию. Представьте, что инопланетяне с планеты Закстар преуспели в строительстве клонирующей машины, способной делать копии вас, меня и кого угодно. Если вы зайдёте в клонирующую машину, то вас выйдет двое, и вы оба будете абсолютно уверены, что именно вы это настоящий вы, и оба будете правы. Закстарианцам нравится ставить перед менее разумными формами жизни экзистенциальные вопросы, поэтому они прилетели на Землю и сделали вам следующее предложение. Сегодня вечером, когда вы пойдёте спать, вас аккуратно переместят в клонирующую машину; через пять минут будут созданы две ваши копии. Когда один из вас проснётся, его жизнь будет течь в привычном русле – но вдобавок вам будет гарантировано исполнение любого желания. Когда же проснётся другой из вас, его жизнь превратится в кошмар; вы будете перемещены в пыточную камеру на Закстаре и никогда не вернётесь обратно. Кроме того, вашему счастливому клону не будет позволено пожелать освобождения. Примете такое предложение?

Ответ большинства людей – нет. Поскольку каждый клон – это действительно настоящий вы, в случае принятия такого предложения вам будет гарантировано, что кто-то из вас, проснувшись, будет обречён на пожизненные муки. Несомненно, будет и другой из вас, который, проснувшись, вернётся к привычной жизни, получив исполнение всех желаний, но для вас, оказавшегося на Закстаре, останутся только пытки. Цена этого слишком велика.

Понимая, что вы вряд ли согласитесь, закстарианцы поднимают ставки. Всё то же самое, но теперь они сделают миллион плюс одну копию вас. Миллион ваших копий просыпается у себя дома, имея возможность исполнения любого желания; но кто-то один попадает в закстарианскую камеру пыток. Согласны? В этот момент вы начинаете сомневаться. «Эх, – думаете вы, – шанс проснуться в своей постели и иметь всё, что захочешь, а не закончить свои дни на Закстаре, очень велик!»

Это последнее рассуждение особенно существенно для многомирового подхода. Если вы начинаете думать о вероятности, потому что представили, что лишь один из миллиона и одного вашего клона – это «настоящий» вы, то вы не полностью осознали суть этого сценария. Каждая копия и есть вы. Один из вас со 100-процентной определённостью проснётся в невыносимом будущем. Если именно поэтому вы начали думать в терминах вероятностей, то об этом следует забыть. Однако для того чтобы думать о вероятности, есть более тонкий способ. Представьте, что вы согласились с предложением закстарианцев и теперь размышляете о том, как это будет – проснуться завтра утром. Завернувшись в тёплое одеяло, только-только осознавая себя, но ещё не открывая глаз, вы вспоминаете предложение закстарианцев. На первый взгляд оно покажется почти реальным ночным кошмаром, но ощущая тяжёлые удары сердца, вы понимаете, что всё реально – что миллион и одна ваша копия сейчас просыпается, причём один из вас просыпается в закстарианской камере, а для всех остальных исполняются любые желания. «Каковы шансы, – нервно спрашиваете вы себя, – что открыв глаза, я окажусь на Закстаре?»

До клонирования не было смысла говорить о том, вероятно или маловероятно то, что вы окажетесь в закстарианской тюрьме – совершенно определённо будет «тот вы», кто точно окажется там, поэтому как такое может быть маловероятным? Но после клонирования ситуация видится иной. Каждый клон ощущает себя как настоящий вы; каждый из них это действительно настоящий вы. Но каждая копия всё равно является отдельной и самостоятельной личностью, которая может интересоваться своим будущим. Каждый из миллиона и одного клона может задаться вопросом, какова вероятность того, что он окажется на Закстаре. Поскольку каждый из них знает, что только один из миллиона и одного проснётся не там, где хочет, то каждый уже подсчитал, что шансы оказаться этим несчастным очень малы. При пробуждении миллион обнаружит, что их радостные ожидания сбылись, и только один поймёт, что нет. Так что хотя в закстарианском сценарии нет ничего неопределённого, ничего вероятностного, ничего случайного – опять же никаких бросаний игральных костей и крутящихся рулеток, – кажется, что вероятность всё-таки появляется. Это происходит в силу субъективного незнания каждым клоном в отдельности того, что именно с ним произойдёт.

Отсюда возникает способ ввести вероятности в многомировую интерпретацию. До того, как поставить эксперимент, вы есть ваше доклонированное существо. Вы оцениваете все возможные результаты, допустимые квантовой механикой, и знаете, что есть 100-процентная вероятность, что ваша копия увидит каждую из них. Пока нет ничего случайного. Затем вы проводите эксперимент. В этот момент, так же как в закстарианском сценарии, возникает понятие вероятности. Каждая ваша копия является независимым разумным существом, способным поинтересоваться, в каком мире ей достанется жить – то есть вероятностью того, что когда результаты эксперимента будут проявлены, она увидит тот или иной определённый результат. Вероятность возникает посредством субъективного опыта каждого клона.

Подход Эверетта, который он охарактеризовал как «объективно детерминированный» с вероятностью, «возникающей на субъективном уровне», согласуется с описанной выше картиной. Эверетт был очень воодушевлён таким ходом мыслей. Он отмечал в черновике своей диссертации 1956 года, что предлагаемый подход перекидывает мостик между позицией Эйнштейна (который, как известно, считал, что фундаментальная физическая теория не должна содержать вероятности) и позицией Бора (который был совершенно доволен своей квантовой механикой). Согласно Эверетту, многомировой подход сочетает в себе обе эти позиции и различие между ними зависит только от угла зрения. Точка зрения Эйнштейна опирается на математический аппарат, в котором единая волна вероятности всех частиц непреклонно распространяется согласно уравнению Шрёдингера, и случай здесь не играет никакой роли.[49]49
  Такая точка зрения, отвергающая случайность, требует отказа от используемого мной разговорного выражения «волна вероятности» в пользу технического термина «волновая функция».


[Закрыть]
Мне нравится представлять Эйнштейна, парящего высоко над множеством миров многомирового подхода и наблюдающего, как уравнение Шрёдингера полностью определяет развёртывание всей панорамы, заключающего с удовлетворением, что даже если квантовая механика верна, всё равно Бог не играет в кости. А Бор со своей точки зрения видит, как обитатель одного из миров, не менее счастливый, с помощью вероятностей объясняет с невероятной точностью доступные ему наблюдения.

Это замечательное зрелище – Эйнштейн и Бор, достигшие согласия по поводу квантовой механики. Но есть досадные мелочи, которые за более чем половину столетия убедили многих, что победу праздновать рано. Те, кто изучил диссертацию Эверетта, в целом согласны, что хотя его подход совершенно ясен – это детерминированная теория, которая, тем не менее, для её обитателей видится вероятностной, – он не смог убедительно показать, как этого достичь. Например, в духе изложения главы 7, Эверетт пытался определить, что «типичный» обитатель одного из множества миров будет наблюдать в любом наперёд заданном эксперименте. Но (в отличие от главы 7, где изложение было сфокусировано на другом) в многомировом подходе те обитатели, с которыми мы должны вести дискуссию, все являются одной и той же личностью; если вы экспериментатор, то все они – это вы, и все они коллективно видят весь набор разных результатов. И тогда возникает вопрос: «типичный» вы – это кто?

Вдохновившись закстарианском сценарием, естественным предложением будет подсчитать число вас, которые видят заданный результат; тогда то, что видит большинство из вас, будет считаться «типичным». Или, более количественно, определим, что вероятность некоторого результата пропорциональна числу тех из вас, кто его наблюдает. Для простых примеров это работает: на рис. 8.16 мы видим, как один из вас наблюдает один из результатов эксперимента, поэтому вы ставите 50:50, что произойдёт один или другой результат. Это уже хорошо; обычное квантово-механическое предсказание также даёт 50:50, потому что высота волны вероятности в каждом из двух положений одинакова.

Однако рассмотрим более общую ситуацию, когда высота волны вероятности в разных точках различается (рис. 8.17). Если волна на Земляничных полях в сто раз больше, чем на мемориале Гранта, то квантовая механика предсказывает, что в сто раз вероятнее вы обнаружите электрон на Земляничных полях. Но в многомировом подходе при проведении измерения вы всё равно получите одного из вас, наблюдающего Земляничные поля, и другого, наблюдающего мемориал Гранта; таким образом, вероятность, основанная на подсчёте числа ваших клонов, остаётся равной 50:50 – неправильный ответ. Причина расхождения очевидна. Число ваших клонов, которые наблюдают тот или иной результат, определяется числом пиков волны вероятности. Однако квантово-механические вероятности определяются другим – не только числом пиков, но и их относительной высотой. И именно эти предсказания – квантово-механические предсказания – получили убедительное экспериментальное подтверждение.

Рис. 8.17. Общая волна вероятности, описывающая вас и ваш детектор, встречается с волной вероятности с многочисленными пиками разной величины

Эверетт разработал математический аппарат, который предназначался для объяснения этой нестыковки; впоследствии он был значительно доработан многими другими исследователями.{76} В общих чертах идея такова, что при вычислении вероятности наблюдения того или иного результата следует придавать всё уменьшающийся вес вселенным со всё уменьшающейся высотой волны, как символически показано на рис. 8.18. Но такой рецепт выглядит неубедительно. К тому же он неоднозначен. Является ли вселенная, в которой электрон находится на Земляничных полях, в каком-то смысле в сто раз более настоящей, или в сто раз более вероятной, или в сто раз более существенной, чем та, в которой электрон находится в мемориале Гранта? Такие рассуждения определённо подорвут веру в то, что каждый мир так же реален, как и все остальные.

Рис. 8.18а. Схематическое изображение эволюции, определяемой уравнением Шрёдингера, общей волны вероятности всех частиц, составляющих вас и ваш детектор, при измерении положения электрона. Волна вероятности самого электрона имеет пики в двух местах, но разной высоты

Рис. 8.18б. Некоторые полагают, что в многомировом подходе разная высота волны означает, что некоторые миры менее настоящие или менее существенные, чем другие. Как бы то ни было, существуют разные точки зрения насчёт того, что бы это значило

Спустя более чем пятьдесят лет, в течение которых выдающиеся учёные пересматривали, перепроверяли и развивали рассуждения Эверетта, многие согласятся, что проблема остаётся. Однако столь соблазнительно думать, что существует математически простой, предельно аскетичный и глубоко революционный многомировой подход, который даёт вероятностные предсказания, составляющие основу нашей веры в квантовую теорию. Благодаря этому возникло многих других идей насчёт совмещения вероятности с многомировой интерпретацией, которые выходят за рамки рассуждений закстарианского типа.{77}

Ведущей группой учёных из Оксфорда, среди которых был Дэвид Дойч, Саймон Саундерс, Дэвид Уоллес и Хилари Гривс, была выдвинута выдающаяся гипотеза. Они разработали хитроумный способ рассуждения, основанный на, казалось бы, глупом вопросе. Если вы игрок и верите в многомировой подход, то какова оптимальная стратегия заключения пари в квантово-механических экспериментах? Их ответ, подтверждённый математически, таков, что вы должны играть по правилам подхода Бора. Высчитывая максимальное увеличение дохода, эти авторы рассуждают таким образом, который поверг бы Бора в шок – они рассматривают среднее по многим обитателям мультивселенной, считающих, что они – это вы. Но даже при этом их вывод таков, что числа, которые Бор и все остальные вслед за ним вычисляли и называли вероятностями, являются теми самыми числами, которые должны подсказать вам, какие ставки делать. То есть даже если квантовая теория является полностью детерминированной, эти числа следует рассматривать, как если бы они были вероятностями.


    Ваша оценка произведения:

Популярные книги за неделю