Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"
Автор книги: Брайан Грин
сообщить о нарушении
Текущая страница: 14 (всего у книги 38 страниц)
Глава 6. Новые мысли о старой константе
Ландшафтная мультивселенная
Разница между 0 и 0,000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 может показаться не такой уж большой. И это именно так при любых обычных измерениях. Однако есть всё усиливающееся подозрение, что эта крошечная разница может оказаться ответственной за кардинальный сдвиг в том, как мы представляем ландшафт окружающей действительности.
Крошечное число, указанное выше, впервые было измерено в 1998 году двумя группами астрономов, которые проводили тщательные наблюдения взрывающихся звёзд в удалённых галактиках. С тех пор эти данные были подтверждены множеством других исследований. Что это за число, почему вокруг него такая шумиха? Это не что иное, как то, что было указано в третьей строке гравитационной декларации – космологическая постоянная Эйнштейна, определяющая количество невидимой тёмной энергии, которой пропитана ткань пространства.
Так как этот результат продолжает подтверждаться в тщательных исследованиях, физики вынуждены признать, что наблюдения и выводы, сделанные в предшествующие десятилетия и убедившие многих в том, что космологическая постоянная равна 0, должны быть отвергнуты. Теоретики начали спешно выяснять, где же они ошибались. Но ошибались не все. Годами ранее высказывались идеи, что ненулевая космологическая постоянна будет однажды обнаружена. В чём состояло ключевое предположение? В том, что мы живём в одной из многих вселенных. Многих вселенных.
Возвращение космологической постоянной
Напомню, что космологическая постоянная, если она существует, наполняет пространство невидимой энергией – тёмной энергией, – знаковым свойством которой является гравитационное отталкивание. Эйнштейн увлёкся этой идеей в 1917 году, считая, что порождаемая космологической постоянной антигравитация сбалансирует гравитационное притяжение обычной материи во Вселенной и таким образом приведёт к картине космоса, который не будет ни сжиматься, ни расширяться.[35]35
Одно пояснение насчёт терминологии. Бо́льшей частью в этой книге термины «космологическая постоянная» и «тёмная энергия» равнозаменяемы. Если требуется большая точность, я говорю о значении космологической постоянной для обозначения количества тёмной энергии, заполняющей пространство. Как было отмечено ранее, физики часто используют термин «тёмная энергия» более свободно, для обозначения всего, что может выглядеть (или маскироваться) как космологическая постоянная на больших временны́х интервалах, однако может медленно меняться и, следовательно, не быть постоянной на самом деле.
[Закрыть]
Часто говорят, что когда Эйнштейн узнал о наблюдениях Хаббла 1929 года, обнаруживших расширение пространства, то назвал космологическую постоянную своей «величайшей ошибкой». Георгий Гамов вспоминал разговор, в котором Эйнштейн сказал об этом, но, учитывая склонность Гамова к литературным гиперболам, есть сомнения в надёжности этих воспоминаний.{44} Но совершенно точно, что Эйнштейн выбросил космологическую постоянную из своих уравнений после того, как наблюдения показали, что его вера в статичную вселенную безосновательна. Спустя много лет он заметил, что если бы «хаббловское расширение было обнаружено в момент создания общей теории относительности, то космологическая постоянная никогда не была бы введена».{45} Но «задний ум» не всегда крепок; иногда он может затуманить исходную идею. В 1917 году в письме, написанном физику Виллему де Ситтеру, Эйнштейн высказался более подробно:
В любом случае остаётся один вопрос. Общая теория относительности позволяет включить космологическую постоянную в полевые уравнения. Однажды наши настоящие знания об устройстве неподвижного звёздного неба, явные движения неподвижных звёзд и положение спектральных линий в зависимости от расстояния, возможно, станут достаточными для эмпирического разрешения вопроса о том, равна нулю или нет космологическая постоянная. Убеждённость – мощная пружина, но ненадёжный судья.{46}
Восемьдесят лет спустя космологический проект «Supernova cosmology», возглавляемый Солом Перлмуттером, и поисковая группа «High-Z Supernova», возглавляемая Брайаном Шмидтом, пошла именно по такому пути. Они аккуратно изучили плотность спектральных линий – свет, испущенный удалёнными звёздами, – и, как предсказывал Эйнштейн, смогли на основе опытных данных изучить задачу, чему равна космологическая постоянная.
К удивлению многих они обнаружили, что нулю она не равна.
Космическая судьба
Когда астрономы приступили к работе, ни одна из исследовательских групп не ставила своей целью измерить космологическую постоянную. Фокус был направлен на измерение другого космологического свойства – скорости замедления расширения пространства. Обычное гравитационное притяжение притягивает объекты друг к другу всё ближе и ближе, поэтому скорость расширения падает. Точная величина темпа замедления играет ключевую роль в предсказании того, как будет выглядеть Вселенная в далёком будущем. Сильное замедление означает, что в какой-то момент расширение прекратится, после чего пойдёт обратный процесс и начнётся период пространственного сжатия. В результате непрекращающегося сжатия произойдёт Большой хлопок – явление, обратное Большому взрыву, – или возможно отскок, как в циклических моделях, рассмотренных в предыдущей главе. Если замедление небольшое, то развязка будет совсем другая. Подобно мячу, который на большой скорости может преодолеть притяжение Земли и полететь дальше, при достаточно высокой скорости пространственного расширения и достаточно малом темпе замедления пространство может расширяться вечно. Измеряя космическое замедление, вышеназванные исследовательские группы пытались определить окончательную судьбу космоса.
Подход каждой группы был прост: измерить насколько быстро пространство расширялось в некоторые моменты в прошлом и, сравнив эти скорости, определить темп замедления расширения в течение всей истории развития Вселенной. Отлично! Но как это сделать? Подобно многим вопросам в астрономии, всё свелось к тщательному наблюдению света. Галактики подобны сигнальным огням маяков, чьё движение отражает пространственное расширение. Если бы мы могли определить насколько быстро галактики удалялись от нас в тот давний момент, когда они излучили свет, что сейчас дошёл до нас, мы смогли бы определить, как быстро расширялось пространство в различные моменты в прошлом. Сравнивая эти скорости, можно было бы узнать темп космического замедления. В этом и состоит главная идея.
Для проработки всех подробностей необходимо решить два основных вопроса. Как на основе современных наблюдений за удалёнными галактиками можно определить расстояния до них, и как мы можем измерить скорость их движения? Начнём с расстояния.
Расстояние и яркость
Одной из самых старых и важных проблем в астрономии является определение расстояний до небесных объектов. Метод параллакса – один из самых первых способов определения расстояния, можно объяснить даже пятилетнему ребёнку. Дети обычно (моментально) приходят в восторг, когда, смотря на какой-нибудь предмет, поочерёдно закрывая то один, то другой глаз, обнаруживают, что предмет начинает прыгать с место на место. Если вам уже не пять, попробуйте так поэкспериментировать с этой книгой, сфокусировав взгляд на какой-нибудь угол. Прыжки происходят потому, что наши глаза расположены на некотором расстоянии друг от друга, а следовательно, смотрят на предмет под разными углами. Для предметов, расположенных далеко, сдвиг менее заметен, потому что разница в углах уменьшается. Это простое наблюдение можно описать количественно, установив точную связь между разницей в угле между лучами зрения обоих глаз – параллаксом – и расстоянием до объекта, на который вы смотрите. Однако не беспокойтесь о деталях – ваша зрительная система делает это автоматически. Именно поэтому вы видите мир в 3D.[36]36
Именно так работает 3D-технология в кино: подходящим образом подбирая смещение для почти тождественных кадров, кинематографисты заставляют ваш мозг интерпретировать возникающие параллаксы как разные расстояния, создавая таким образом иллюзию ЗD-окружения.
[Закрыть]
Когда вы смотрите на звёзды в ночном небе, параллакс слишком мал, чтобы его заметить; ваши глаза расположены слишком близко друг к другу, чтобы возникла значительная разница в угле. Однако есть хитроумный способ преодолеть данное затруднение: нужно измерять положение звезды в два приёма, с периодом в шесть месяцев, заменив тем самым взаимное расположение ваших глаз двумя положениями Земли в пространстве. Большее расстояние между точками наблюдения увеличивает параллакс; он по-прежнему мал, но в некоторых случаях достаточно велик, чтобы его измерить. В самом начале XIX столетия среди учёных была напряжённая конкуренция, кто первый измерит такой звёздный параллакс; в 1838 году немецкий астроном и математик Фридрих Бессель заслужил лавры победителя, успешно измерив параллакс звезды под названием 61 Лебедя в созвездии Лебедя. Угловая разница оказалась равной 0,000084 градуса, что соответствует расстоянию до звезды в 10 световых лет.
С тех пор метод постоянно улучшался и теперь применяется на спутниках, которые могут измерять гораздо меньшие углы параллакса, чем в наблюдениях Бесселя. Эти достижения позволили проводить точные измерения расстояний до звёзд, если они не превышают несколько тысяч световых лет. Однако если сильно выйти за эти рамки, разница в углах опять становится слишком маленькой и метод перестаёт работать.
Другой подход, который может измерять гораздо бо́льшие расстояния на небе, основан на ещё более простой идее: чем дальше вы отодвигаете светящийся объект, будь это автомобильные фары или яркая звезда, тем больше излучённый свет рассеивается по пути своего движения к нам, и поэтому тускнеет. Сравнивая видимую яркость объекта (то, насколько ярок свет при наблюдении с Земли) с собственной яркостью (то, насколько ярок свет при наблюдении с близкого расстояния), можно найти расстояние до объекта.
Но здесь возникает отнюдь не малое препятствие, как определить собственную яркость астрофизических объектов. Звезда тусклая, потому что находится очень далеко или потому что сама по себе не очень яркая? Это объясняет, почему столь долгим оказался поиск астрономических объектов, которые были бы достаточно распространены в космосе, и собственную яркость которых можно было бы достоверно определить без необходимости находиться рядом. Если бы удалось найти такие стандартные свечи, то была бы найдена единая мера определения расстояний. Разница в яркости одной стандартной свечи по отношению к другой напрямую дала бы нам информацию о расстоянии между ними.
В течение всего столетия с попеременным успехом предлагалось и применялось множество разных стандартных свечей. В последнее время наиболее плодотворным оказался метод, использующий звёздные вспышки, называемые сверхновыми типа Ia. Сверхновая Ia возникает, когда белый карлик вытягивает вещество из своего близкого компаньона, как правило, красного гиганта, вокруг которого он вращается. Из хорошо развитых физических методов изучения звёздных структур следует, что если белый карлик вытянет достаточное количество вещества (так что его масса возрастёт примерно до 1,4 масс Солнца), то он больше не сможет поддерживать свой вес. Раздутый карлик коллапсирует, и происходит настолько мощный взрыв, что порождённая вспышка света сопоставима со светом около 100 миллиардов звёзд в окружающей его галактике.
Такие сверхновые звёзды являются идеальными стандартными свечами. Взрыв настолько мощный, что его можно видеть с фантастически больших расстояний. Важно, что поскольку вспышки являются результатом одного и того же физического процесса – увеличение массы карлика примерно до 1,4 масс Солнца и последующий взрыв, – то образовавшиеся сверхновые имеют примерно одинаковые собственные светимости. Однако проблема в использовании сверхновых типа Ia состоит в том, что в средней галактике такие вспышки происходят раз в несколько столетий: как нам поймать их в процессе взрыва? Обе группы, космологический проект «Supernova cosmology» и поисковая группа «High-Z Supernova», взялись за решение этого вопроса способом, похожим на эпидемиологические исследования: точная информация об однотипных относительно редких событиях может быть получена, если изучать достаточно большую популяцию. Поэтому на помощь пришли телескопы, снабжённые широкоформатными детекторами, способными одновременно анализировать тысячи галактик. Тогда исследователи смогли установить местоположение дюжины сверхновых типа Ia, которые в дальнейшем можно более детально изучать с помощью обычных телескопов. Основываясь на их яркости, учёные смогли определить расстояния до дюжины галактик, удалённых на миллиарды световых лет, – и таким образом завершить первый шаг в решении поставленной задачи.
И всё-таки, что за расстояние?
Прежде чем перейти к следующему шагу – определению скорости расширения Вселенной в момент взрыва каждой из сверхновых, стоит вкратце остановиться на одном затруднительном моменте. Когда мы говорим о расстояниях на таких фантастически огромных масштабах, причём в контексте постоянно расширяющейся Вселенной, возникает вопрос, какое именно расстояние измеряют астрономы? Это расстояние между теми положениями, которые мы и наблюдаемая галактика занимали миллиарды лет назад, когда галактика испустила свет, наблюдаемый нами теперь? Или это расстояние между нашим настоящим положением и положением галактики миллиарды лет назад, когда она испустила свет, наблюдаемый нами теперь? Либо это расстояние между нашим настоящим положением и настоящим положением галактики?
Я сейчас хочу предложить вам самый полезный, на мой взгляд, способ размышления об этом и о множестве других запутанных космологических вопросов.
Допустим, вы хотите знать кратчайшие расстояния между тремя городами, Нью-Йорком, Лос-Анджелесом и Остином, поэтому вы берёте карту Соединённых Штатов и измеряете по ней расстояния между городами. Вы обнаружите, что Нью-Йорк находится в 39 сантиметрах от Лос-Анджелеса; Лос-Анджелес находится в 19 сантиметрах от Остина; и Остин расположен в 24 сантиметрах от Нью-Йорка. Затем вы пересчитываете результаты замеров в километры с помощью легенды карты, на которой указано отношение пересчёта: 1 сантиметр = 100 километров – это позволяет выяснить, что данные три города расположены на расстоянии, соответственно, 3900 километров, 1900 километров и 2400 километров друг от друга.
Теперь представьте, что поверхность Земли равномерно раздулась и все расстояния удвоились. Это весьма радикальная трансформация, но и в этом случае ваша карта Соединённых Штатов останется абсолютно пригодной, если вы сделаете одно важное изменение. Понадобится изменить легенду карты так, чтобы отношение пересчёта теперь имело вид: 1 сантиметр = 200 километров. Тогда 39 сантиметров, 19 сантиметров и 24 сантиметра станут теперь соответствовать 7800 километрам, 3800 километрам и 4800 километрам по территории растянутых Соединённых Штатов. Если раздувание Земли продолжится, то статичная, неизменная карта будет оставаться пригодной, если постоянно поправлять её легенду, нужным образом меняя отношение пересчёта в каждый момент: 1 сантиметр = 200 километров в полдень; 1 сантиметр = 300 километров в два часа дня; 1 сантиметр = 400 километров в четыре часа дня – для адекватного отражения процесса удаления двух точек при расширении поверхности.
Такое сравнение с раздувающейся Землёй весьма полезно, потому что аналогичные рассмотрения применимы к расширяющемуся космосу. Сами по себе галактики остаются на месте. Но подобно городам на раздувающейся поверхности Земли, они удаляются друг от друга, потому что субстанция, в которую они погружены, – само пространство – растягивается в разные стороны. Это означает, что если бы космический картограф отметил положения галактик миллиарды лет назад, то такая карта была бы и сегодня так же справедлива, как и тогда.[37]37
Конечно же, некоторые вещи действительно изменяются. Как отмечалось в примечаниях к главе 3, у самих галактик есть небольшие скорости, сверх скорости пространственного расширения. На космологическом масштабе времени такое дополнительное движение может изменить взаимное расположение; оно также может привести к разным интересным астрофизическим событиям, таким как столкновение и слияние галактик. Однако для объяснения космических расстояний эти усложнения можно благополучно проигнорировать.
[Закрыть] Но подобно легенде карты расширяющейся Земли легенда космической карты также должна обновляться, чтобы отношение пересчёта от расстояний на карте до расстояний в реальности оставалось точным. Космологическое отношение пересчёта называется масштабным фактором Вселенной; в расширяющейся Вселенной масштабный фактор увеличивается со временем.
Всякий раз, когда вы думаете о расширяющейся Вселенной, всегда представляйте неизменную космическую карту. Представьте, будто это обычная карта, лежащая на столе, а космическое расширение постоянно подправляет её легенду. Немножко потренировавшись, вы убедитесь, что такой способ помогает преодолевать концептуальные барьеры.
Рассмотрим для примера свет, идущий от взрыва сверхновой в удалённой галактике Ноа. Сравнивая видимую яркость сверхновой с её собственной яркостью, мы определяем уменьшение интенсивности света с момента излучения (рис. 6.1а) до момента поглощения (рис. 6.1в), возникающее из-за рассеяния во время путешествия на огромной сфере (показанной в виде окружности на рис. 6.1 г). Измерив это уменьшение, можно определить размер сферы – площадь её поверхности, – а затем, вспомнив школьную геометрию, можно легко найти её радиус. Радиус сферы полностью совпадает с траекторией движения светового луча, поэтому длина радиуса равна расстоянию, пройденному лучом. А теперь вопрос, из-за которого и написан этот раздел: какому из трёх возможных расстояний соответствуют эти измерения, если вообще они чему-нибудь соответствуют?
Рис. 6.1.а) По мере приближения к нам свет от удалённой сверхновой рассеивается (мы находимся в галактике в правом нижнем углу карты); б) Пока свет путешествует, Вселенная расширяется, что отражено в легенде космической карты; в) Пока свет дойдёт до нас, он рассеется и его интенсивность упадёт; г) Сравнивая видимую яркость сверхновой с её собственной яркостью, мы измеряем площадь поверхности сферы, по которой свет рассеялся (показана в виде окружности) и, следовательно, находим её радиус. Радиус сферы отражает траекторию светового луча. Его длина – это расстояние между нами и галактикой, где находится сверхновая. Это и есть именно та величина, которую определяют в наблюдениях
Пока свет путешествует, пространство по-прежнему расширяется. Но единственное изменение на статичной космической карте состоит в регулярном обновлении масштабного фактора, записанного в легенде. Поскольку мы только что увидели свет от сверхновой, так как он только что завершил своё путешествие, мы должны воспользоваться тем масштабным фактором, который именно сейчас написан на легенде космической карты, и пересчитать расстояние – траекторию от нас до сверхновой (рис. 6.1, г) – в расстояние, пройденное световым лучом в реальном мире. Из этой процедуры ясно следует, что полученный результат является расстоянием в данный момент между нами и текущим положением галактики Ноа – то есть третий из предложенных вариантов ответа.
Также отметим, что вследствие непрерывного расширения Вселенной, более ранние сегменты траектории фотона ещё долго будут продолжать расширяться после того, как фотон пролетел. Если запечатлеть на фотографии путь фотона, то получится линия, длина которой будет увеличиваться по мере расширения пространства. Применив масштабный фактор в момент приёма фотона ко всему путешествию фотона, мы увидим, что третий ответ полностью учитывает всё произошедшее расширение. Это правильное объяснение, потому что степень уменьшения интенсивности света зависит от размера сферы, на которой в данный момент рассеивается свет, – а это сфера, радиус которой равен длине траектории светового луча в данный момент, с учётом всего расширения post factum.{47}
Таким образом, сравнивая собственную и видимую яркости сверхновой, мы определяем расстояние в данный момент между нами и галактикой, в которой она находится. Именно эти расстояния и измеряли две группы исследователей.{48}
Цвета космологии
Но довольно про измерение расстояний до далёких галактик и сияющих сверхновых типа Ia. Теперь выясним, как можно определить скорость расширения Вселенной в те давние времена, когда вспыхивали эти космические маяки. Оказывается, что физика этих процессов не намного сложнее физики свечения неоновых ламп.
Неоновые лампы светят красным цветом, потому что когда ток пропускают сквозь заполняющий их газ, электроны на орбитах атомов неона моментально переходят в возбуждённое состояние. Затем, после того как атомы неона успокоятся, электроны спускаются обратно на свои обычные орбиты, высвобождая при этом лишнюю энергию в виде излучения фотонов. Цвет фотонов – их длина волны – определяется переносимой ими энергией. Ключевое открытие, совершённое квантовой механикой ещё в первые десятилетия XX столетия, состоит в том, что атомы данного химического элемента обладают индивидуальными наборами возможных переходов электронов с орбиты на орбиту; это определяет индивидуальную цветовую гамму испущенных фотонов. Так, для атомов неона определяющим цветом является красный (точнее, красновато-оранжевый), это даёт характерный цвет неоновых огней. Другие элементы – гелий, кислород, хлор и так далее – обладают похожим поведением, отличаясь друг от друга главным образом длиной волны испущенных фотонов. Неоноподобные огни других цветов будут заполнены скорее всего или ртутью (голубой цвет), или гелием (золотой цвет), либо сделаны из стеклянных трубок, покрытых разными веществами, чаще всего фосфором, атомы которых могут излучать свет с другими длинами волн.
Наблюдательная астрономия в значительной мере основана на аналогичных рассуждениях. С помощью телескопов астрономы собирают свет от удалённых объектов и по его цвету – длине волны анализируемого света – могут определить химический состав источника света. Впервые это было осуществлено при солнечном затмении 1868 года, когда французский астроном Пьер Жансен и, независимо от него, английский астроном Джозеф Норман Локьер, изучали свет от солнечной короны, когда солнечный диск был закрыт луной. Они обнаружили странное яркое излучение с длиной волны, которое нельзя было воспроизвести в лаборатории с помощью известных веществ. Это привело к смелому – и правильному – предложению, что свет был испущен неким новым, ранее неизвестным элементом. Неизвестным элементом оказался гелий, в названии которого отражён тот факт, что это вещество было открыто сначала на Солнце, а потом на Земле. Это открытие убедительно показало, что подобно тому как любого из нас можно однозначно идентифицировать по отпечаткам пальцев, различные атомы однозначно определяются длинами волн излучаемого (и поглощаемого) ими света.
В последующие десятилетия астрономы, изучающие длины волн света, приходящего от всё более и более удалённых астрофизических источников, столкнулись с необычным свойством. Хотя набор длин волн наблюдаемого света был похож на тот, что получался в лабораторных экспериментах с хорошо известными атомами типа водорода и гелия, они оказались несколько длиннее. От одного удалённого источника длина волны могла быть на 3 процента больше, от другого источника на 12 процентов больше, от третьего – на 21 процент. Астрономы назвали это явление красным смещением, потому что увеличение длины волны, по крайней мере в видимой части спектра, соответствует покраснению.
Дать название явлению уже полдела, но в чём причина растяжения длины волны? Ответ нам хорошо известен. Как ясно показали наблюдения Весто Слайфера и Эдвина Хаббла, Вселенная расширяется. Упоминавшаяся ранее модель неизменной карты как раз подходит для интуитивного объяснения.
Давайте нарисуем световую волну, бегущую к нам из галактики Ноа. Отмечая на нашей неизменной карте путь, проходимый волной, мы увидим равномерную последовательность гребней волны, непреклонно движущихся как волновой поезд в наш телескоп. Одинаковость волн может побудить нас думать, что длина волны света в момент излучения (расстояние между двумя последовательными гребнями) будет той же самой, что и в момент приёма. Но самое интересное наступает тогда, когда мы подключаем легенду карты для пересчёта расстояний на карте в действительные расстояния. Поскольку Вселенная расширяется, отношение пересчёта в момент окончания пути больше, нежели в самом начале. Из этого следует, что хотя длина световой волны, измеряемая по карте, остаётся неизменной, при пересчёте в реальные длины она увеличивается. Когда свет достигает нашего телескопа, его длина волны больше, чем в момент излучения. Словно длина волны – это стежки на эластичной ткани. Если ткань растянуть, то стежки тоже растянутся. Аналогично, расширение пространства влечёт за собой растяжение световых волн.
Можно дать количественные оценки. Если длина волны увеличена на 3 процента, то в настоящий момент Вселенная на 3 процента больше, чем в момент испускания света; если длина волны больше на 21 процент, то Вселенная расширилась на 21 процент с того момента, когда свет начал своё путешествие. Таким образом, измерение красного смещения содержит информацию о размере Вселенной в момент испускания света, который сейчас до нас дошёл, по сравнению с размером Вселенной в настоящее время.[38]38
Если пространство бесконечно велико, то вы можете спросить, что подразумевают, когда говорят, что Вселенная сейчас больше, чем в прошлом. Ответ состоит в том, что «больше» относится к современным расстояниям между галактиками по сравнению с расстояниями между теми же галактиками в прошлом. Расширение пространства означает, что сейчас галактики более удалены друг от друга, что математически выражается возросшим масштабным фактором Вселенной. В случае бесконечной вселенной «больше» не указывает на общий размер пространства, так как бесконечное всегда остаётся бесконечным. Но для простоты мы будем продолжать говорить об изменении размера Вселенной даже в случае бесконечного пространства, подразумевая при этом изменение расстояния между галактиками.
[Закрыть] Следующий очевидный шаг состоит в том, чтобы выстроить последовательность измерений красных смещений для нахождения изменения расширения Вселенной во времени.
Засечка на стене в детской комнате отмечает рост ребёнка в определённый момент времени. Последовательность засечек задаёт рост ребёнка при соответствующих датах. Имея достаточно много засечек, можно определить, как быстро рос ребёнок в разные моменты времени. Рывок в девять, более спокойный период до одиннадцати, затем опять рывок в тринадцать, и так далее. Когда астрономы измеряют красное смещение сверхновых типа Ia, они делают аналогичные «засечки» для пространства. Во многом подобно засечкам роста ребёнка, последовательность красных смещений различных сверхновых типа Ia позволяет нам вычислять, как менялась скорость расширения Вселенной в разные периоды в прошлом. Имея такие данные, астрономы могут определить темп замедления расширения пространства. Именно такой подход был разработан упоминавшимися выше исследовательскими группами.
Для его осуществления осталось сделать последний шаг – найти метод датировать такие засечки. Астрономы должны были определить, когда был испущен свет той или иной сверхновой. Это несложная задача. Поскольку разница между видимой и собственной яркостями сверхновой задаёт расстояние и скорость света нам известна, можно непосредственно вычислить, когда именно свет был испущен сверхновой. Это правильные рассуждения, но важно не упустить из виду одну существенную деталь, связанную с рассмотренным выше растяжением траектории светового луча.
Когда свет распространяется в расширяющейся Вселенной, он покрывает заданное расстояние не только потому, что обладает собственной скоростью распространения в пространстве, но и частично благодаря расширению самого пространства. Можно провести аналогию с движущейся дорожкой в аэропорту. На дорожке можно уехать дальше, не увеличивая при этом свою собственную скорость, потому что движение самой дорожки дополняет ваше перемещение. Точно так же свет от удалённой сверхновой доходит дальше, без увеличения собственной скорости, потому что расширяющееся пространство способствует его движению. Для точного определения момента излучения дошедшего до нас света необходимо учесть оба вклада в проходимое им расстояние. Математические выкладки довольно хитроумные (если вы заинтересовались, загляните в примечания), но на сегодняшний день мы их ясно понимаем.{49}
Учитывая эти тонкости, а также многие другие теоретические и наблюдательные данные, обе исследовательские группы смогли определить масштабный фактор Вселенной в различные моменты в прошлом. Таким образом, была найдена последовательность засечек, задающих контур Вселенной, и исследователи смогли определить, как менялась скорость расширения при развитии космоса.