Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"
Автор книги: Брайан Грин
сообщить о нарушении
Текущая страница: 20 (всего у книги 38 страниц)
Глава 8. Множественные миры квантовой механики
Квантовая мультивселенная
Квантовая реальность
Статус теорий с параллельными вселенными, которые были рассмотрены выше, находится под большим вопросом. Бесконечное пространство, вечная инфляция, миры на бранах, циклическая космология, струнный ландшафт – эти захватывающие идеи возникли из ряда научных открытий. Но каждая из них остаётся гипотетичной, как и породившие их мультивселенные. Хотя многие физики с готовностью высказывают своё мнение «за» или «против» разных схем мультивселенных, большинство признают, что только будущие открытия – теоретические, экспериментальные и наблюдательные – определят, какие из этих идей останутся в науке.
Идея мультивселенной, к рассмотрению которой мы сейчас перейдём, возникает из квантовой механики. У неё особый статус. Многие физики уже определились с окончательным вердиктом по поводу этой мультивселенной. Но особенность в том, что их вердикты не совпадают. Различия проистекают из глубокой и до сих пор нерешённой проблемы перехода от вероятностной интерпретации квантовой механики к определённости повседневной реальности.
В 1954 году, почти тридцать лет спустя после формулировки квантовой теории такими светилами науки, как Нильс Бор, Вернер Гейзенберг и Эрвин Шрёдингер, никому неизвестный студент Принстонского университета по имени Хью Эверетт III придумал поразительную интерпретацию. Анализируя проблему, над которой Бор, мэтр квантовой механики, безуспешно корпел и никак не мог решить, он показал, что для правильного понимания квантовой механики может потребоваться огромное количество параллельных вселенных. Теория Эверетта стала одной из первых математических конструкций, из которой следовало, что мы можем являться частью некоторой мультивселенной.
У теории Эверетта, которая позже будет названа многомировой интерпретацией квантовой механики, весьма извилистая судьба. Изложив математические следствия, вытекающие из его гипотезы, в январе 1956 года Эверетт послал рукопись своей докторской диссертации Джону Уилеру, своему научному руководителю. Уилер, один из наиболее выдающихся мыслителей в физике двадцатого столетия, был очень впечатлён. В мае того же года он посетил Копенгаген и обсудил с Бором идеи Эверетта. Однако Бор воспринял их весьма прохладно. Бор и его коллеги потратили годы, разрабатывая и уточняя своё видение квантовой механики. Для них поднятые Эвереттом вопросы и чудной способ ответа не представляли особой ценности.
Уилер относился к Бору с очень большим уважением и поэтому предпринял меры, чтобы учесть мнение старшего коллеги. После критической оценки Бора Уилер отложил защиту диссертации Эверетта и предложил значительно её переработать. Эверетт должен был убрать части с откровенной критикой подхода Бора и подчеркнуть, что его результаты лишь проясняют и расширяют стандартную формулировку квантовой теории. Эверетт сопротивлялся, но так как он уже принял предложение о работе в министерстве обороны (где он вскоре начнёт играть важную закулисную роль в политике по ядерным вооружениям, проводимой администрацией Кеннеди и Эйзенхауэра), а для работы в министерстве требовалась учёная степень, то он, скрепя сердце, согласился. В марте 1957 года Эверетт подготовил значительно урезанную версию своей диссертации; в апреле она была утверждена в Принстоне, как удовлетворяющая всем условиям, а в июле опубликована в журнале «Reviews of Modern Physics».{68} Но поскольку подход Эверетта к квантовой механике уже был раскритикован Бором и компанией, а более широкое видение проблемы, ясно изложенное в исходной версии диссертации, было заглушено, статья осталась незамеченной.{69}
Десять лет спустя знаменитый физик Брайс ДеВитт вытащил работы Эверетта из забвения. Вдохновлённый результатами своего студента Нила Грахама, развившего математические идеи Эверетта, ДеВитт стал активным сторонником переосмысления квантовой теории, предложенного Эвереттом. Помимо публикации нескольких технических статей, благодаря которым достижения Эверетта были представлены небольшой, но влиятельной группе специалистов, в 1970 году ДеВитт написал обзор для журнала «Physics Today», предназначенный для более широкой научной аудитории. В отличие от статьи 1957 года, в которой Эверетт уклонился от обсуждения других миров, ДеВитт, наоборот, сделал на этом акцент, назвав с необыкновенной искренностью «шоком» вывод Эверетта о том, что мы являемся частью огромного «мультимира». Статья получила значительный отклик в физическом сообществе, ставшем более восприимчивым к экспериментам с ортодоксальной квантовой идеологией, и привела к непрекращающимся по сей день спорам об устройстве природы, когда, как мы верим, правят бал квантовые законы.
Итак, перейдём к обсуждению.
Переворот в понимании, произошедший примерно между 1900 и 1930 годами, привёл к безжалостному удару по нашей интуиции, здравому смыслу и всем известным законам, которые новое авангардное поколение учёных стало называть «классической физикой» – термином, отражающим авторитет и уважение к картине реальности – почтенной, определённой, удовлетворительной и обладающей предсказательной силой. Скажите мне, что происходит сейчас, и я, воспользовавшись законами классической физики, предскажу, что будет в любой последующий момент времени или что было в любой предшествующий момент времени. Такие особенности, как хаос (технически говоря, когда небольшие изменения в текущем состоянии могут привести к огромным ошибкам в предсказаниях) и сложность уравнений, представляют собой проблему для практических применений почти всегда, кроме простых ситуаций, но сами по себе законы непоколебимы и мёртвой хваткой держат как прошлое, так и будущее.
Квантовая революция потребовала от нас отказаться от классической точки зрения, потому что новые результаты ясно продемонстрировали её неправильность. Классические законы прекрасно подходят для описания и предсказания движения больших объектов, таких как Земля или Луна, или повседневных объектов, например, камней или мячей. Но при переходе в микромир молекул, атомов и субатомных частиц законы классической физики перестают работать. Наперекор самой сути классических рассуждений, если вы проведёте одинаковые эксперименты с участием одинаковых частиц, одинаково подготовленных, то, как правило, вы не получите одинаковые результаты.
Представьте, например, что у вас есть 100 одинаковых коробок, и в каждой находится по одному электрону, каждый из которых создан согласно одной и той же лабораторной инструкции. Спустя ровно 10 минут вы и ваши 99 коллег измеряете положения каждого из 100 электронов. В отличие от того, что подумали бы в этом случае Ньютон, Максвелл и даже юный Эйнштейн – возможно, даже жизнью поручились бы за ожидаемый ответ, – 100 измерений не приведут к одному и тому же результату. На самом деле, на первый взгляд полученные результаты будут выглядеть случайными, ведь часть электронов окажется вблизи нижнего левого угла передней части коробки, часть – вблизи верхнего правого угла задней части коробки, какие-то из электронов будут где-то в середине коробки, и так далее.
Принципы и закономерности, благодаря которым физика является строгой и предсказательной дисциплиной, проявятся, только если вы будете снова и снова проводить этот эксперимент со 100 электронами. Проделав это, вы обнаружите следующее. В первой серии из 100 измерений 27 процентов электронов окажутся вблизи нижнего левого угла, 48 процентов вблизи верхнего правого угла и 25 процентов где-то в середине. Вторая серия измерений даст примерно такое же распределение. Аналогично с третьей серией, четвёртой и всеми последующими. Закономерность распределения не видна в отдельно взятом измерении; вы не сможете предсказать, где окажется отдельно взятый электрон. Наоборот, закономерность проявляется в статистическом распределении результатов многих измерений. Она состоит в определённой вероятности обнаружить электрон в том или ином положении.
Впечатляющее достижение основателей квантовой механики состояло в развитии математического формализма, в котором отсутствовали абсолютные предсказания, характерные для классической физики, а вместо них появились вероятности. С помощью уравнения, опубликованного Шрёдингером в 1926 году (эквивалентное, но менее удобное уравнение было получено в 1925 году Гейзенбергом), физики умеют задавать начальное состояние вещей, а затем вычислять вероятность того, что они окажутся в одном состоянии или в другом в любой последующий момент времени.
Но не думайте, что всё так элементарно, как в простом примере с электроном. Квантовая механика применима не только к электронам, но и ко всем типам частиц, и предсказывает не только их положения, но также скорости, угловые моменты, энергии, а также поведение в разных ситуациях, от потока нейтрино, пронизывающих в данный момент ваше тело, до бурных атомных реакций в оболочках далёких звёзд. В таком широком диапазоне явлений вероятностные предсказания квантовой механики согласуются с экспериментальными данными. Всегда. В течение более чем восьмидесяти лет с того момента, как была сформулирована квантовая механика, не появилось ни одного проверяемого эксперимента или астрофизического наблюдения, результаты которых расходились бы с квантово-механическими предсказаниями.
Для целого поколения физиков столкнуться с таким радикальным отходом от интуитивных представлений, основанных на тысячелетнем коллективном опыте, и при этом переосмыслить окружающую нас реальность в рамках совершенно нового подхода, основанного на вероятностях, несомненно явилось поистине великим интеллектуальным достижением. Однако была одна неудобная мелочь, что досаждала квантовой механике с самого момента её возникновения – та самая мелочь, которая проложила путь в мир параллельных вселенных. Для её понимания нам понадобится чуть более подробно познакомится с квантовым формализмом.
Головоломка с альтернативами
В апреле 1925 года во время одного эксперимента в лаборатории Белла, проводимого двумя американскими физиками, Клинтоном Дэвиссоном и Лестером Джермером, стеклянная трубка с раскалённым кусочком никеля внутри неожиданно взорвалась. Дэвиссон и Джермер потратили много дней, облучая образец никеля потоками электронов с целью изучения атомных свойств металлов, и выход из строя оборудования был очень некстати, хотя такие помехи вполне привычны для экспериментатора. Убирая стеклянные осколки, Дэвиссон и Джермер заметили, что во время взрыва кусочек никеля потускнел. Ничего страшного, конечно же. Для восстановления образца его надо было прокалить, чтобы испарились загрязняющие вещества, после чего можно было начинать заново. Так они и поступили. То, что они решили очистить старый образец, а не взять новый, стало счастливой случайностью. Когда они направили пучок электронов на очищенный образец, полученные результаты разительно отличались от того, что они ожидали. К 1927 году стало понятно, что Дэвиссон и Джермер установили важнейшее свойство квантовой теории. Спустя десять лет это открытие было удостоено Нобелевской премии.
Хотя эксперимент Дэвиссона и Джермера был проведён так давно (до появления звукового кино и до начала Великой депрессии в США), он по-прежнему широко применяется для иллюстрации основных идей квантовой теории. Эксперимент объясняется следующим образом. Когда Дэвиссон и Джермер накалили загрязнённый образец, в никеле образовались довольно крупные кристаллы. Поэтому поверхность образца никеля перестала быть однородной, и электронный пучок стал рассеиваться на неоднородностях, порождённых местонахождением больших никелевых кристаллов. Чтобы прояснить самые существенные физические закономерности этого явления, рассмотрим упрощённую версию этого эксперимента, изображённую на рис. 8.1. Пучок электронов падает на пластинку с двумя узкими щелями. Электроны, прошедшие сквозь одну или другую щель, подобны электронам, рассеивающимся на одном кристалле никеля или на соседнем. С помощью этой модели Дэвиссон и Джермер осуществили первый вариант того, что теперь называется экспериментом с двумя щелями.
Рис. 8.1. Суть эксперимента Дэвиссона и Джермера можно передать в опыте «с двумя щелями», где электронами облучают пластинку с двумя узкими щелями. В эксперименте Дэвиссона и Джермера два потока электронов возникают при рассеянии электронов на двух соседних кристаллах никеля; в эксперименте с двумя щелями два аналогичных потока порождаются электронами, прошедшими сквозь соседние щели
Чтобы понять этот потрясающий результатом, представьте, что одна из щелей закрыта, а прошедшие электроны фиксируются поочерёдно на экране детектора. После облучения большим количеством электронов экран детектора будет выглядеть как на рис. 8.2а или 8.2б. Разумный человек, не знакомый с квантовыми рассуждениями, ожидал бы, что картинка, которая появится, когда открыты обе щели, будет простым объединением этих двух результатов. Поразительно, но такого не происходит! Вместо этого Дэвиссон и Джермер обнаружили то, что примерно показано на рис. 8.2в. Возникающая картинка состояла из светлых и тёмных полос, указывающих на места попадания или непопадания электронов.
Рис. 8.2.а) Открыта только левая щель; б) Открыта только правая щель; в) Открыты обе щели
Этот результат отличается от ожидаемого самым странным образом. Тёмные полосы соответствуют местам обильного попадания электронов, когда открыта только правая или только левая щель (яркие области на рис. 8.2а и 8.2б), но они, оказывается, исчезают, когда открыты две щели. Таким образом, наличие левой щели изменяет возможные места попадания электронов, прошедших через правую щель, и наоборот. Это совершенно сбивает с толку. Для таких крохотных частиц, как электрон, расстояние между щелями огромно. Поэтому когда электрон проходит сквозь одну из щелей, то каким образом наличие или отсутствие другой щели может привести к хоть какому-то эффекту, не говоря уже о наблюдаемой поразительной картинке? Это похоже на то, как если бы вы в течение многих лет успешно заходили в здание, где работаете, через одну дверь, а когда руководство, наконец, решило сделать ещё один вход с другой стороны здания, то вы не смогли бы попасть в свой кабинет!
Как это понять? Эксперимент с двумя щелями неизбежно приводит к заключению, которое трудно осознать. Независимо от того, через какую щель прошёл электрон, он каким-то образом «знает» о существовании другой щели. Есть что-то, связанное с электроном, или сопоставляемое с ним, или являющееся его частью, на что влияют сразу две щели.
Что бы это могло быть?
Квантовые волны
Как можно объяснить, что электрон, проходящий сквозь одну щель, «знает» о другой? В качестве подсказки рассмотрим более подробно картинку, показанную на рис. 8.2в. Эта картинка с чередующимися полосами по типу «светлая – темноватая – тёмная» хорошо знакома любому физику. Она говорит нам – нет, она кричит – волны! Если вы когда-нибудь бросали в воду два камешка и потом наблюдали, как возникающие волны разбегаются и накладываются друг на друга, вы поймёте, что я имею в виду. Там, где гребень одной волны накладывается на гребень другой, результирующая волна высока; там, где впадина одной волны совпадает со впадиной другой волны, также впадина и у результирующей волны; но самое главное происходит, когда гребень одной волны пересекается со впадиной другой волны – тогда волны гасят друг друга и поверхность воды остаётся гладкой. Всё это проиллюстрировано на рис. 8.3. Если бы мы положили экран детектора на картинку, на которой отражён уровень волнения в каждой точке – чем сильнее волнение, тем ярче, – то результат предстал бы на экране в виде чередующихся ярких и тёмных областей. Там, где волны усиливают друг друга, что приводит к повышению уровня воды, находятся яркие области; тёмные области соответствуют самому низкому уровню воды там, где волны гасят друг друга. Физики говорят, что накладывающиеся волны интерферируют друг с другом, и называют чередование тёмных и светлых полос интерференционной картиной.
Рис. 8.3. Когда две волны на поверхности воды накладываются, они «интерферируют», образуя чередование областей с бо́льшим и меньшим волнением, что называется интерференционной картиной
Сходство с рис. 8.2в совершенно очевидно, поэтому глядя на данные по рассеянию электронов, мы начинаем думать о волнах. Хорошо. Это уже кое-что. Но детали происходящего по-прежнему остаются неясными. Что за волны? Откуда они? И как они связаны с частицами, такими как электроны?
Следующую подсказку даёт эксперимент, о котором я упомянул вначале. Собранные данные о движении частиц показывают, что полученные закономерности носят исключительно статистический характер. Проведя точно такие же измерения над идентично приготовленными частицами, мы увидим, что частицы, вообще говоря, окажутся в других местах; однако проведя большое количество таких измерений, мы обнаружим, что частицы в среднем обладают одинаковой вероятностью оказаться в любом заданном месте. В 1926 году немецкий физик Макс Борн, собрав воедино эти две подсказки, выдвинул неожиданную идею, которая спустя почти три десятилетия привела его к Нобелевской премии. Итак, есть экспериментальное подтверждение, что волны здесь как-то при чём. Есть экспериментальное подтверждение, что и вероятность здесь как-то при чём. Возможно, предположил Борн, волна, связанная с частицей, является волной вероятности.
Это была поразительно оригинальная идея. Суть в том, что анализируя движение частицы, не стоит представлять её как камешек, летящий отсюда туда. Наоборот, следует думать о ней как о волне, бегущей отсюда туда. Там, где значения волны велики, у её гребней или впадин, обнаружить частицу наиболее вероятно. Там, где значения малы, обнаружить частицу маловероятно. В тех местах, где значения равны нулю, частица оказаться не может. По мере того, как волна катится вперёд, значения меняются, возрастая в одних местах и уменьшаясь в других. Поскольку мы интерпретируем осциллирующие значения как осциллирующие вероятности, такая волна по праву называется волной вероятности.
Для уточнения картины рассмотрим, как это объясняет данные эксперимента с двумя щелями. Квантовая механика говорит нам, что движение электрона по направлению к пластинке на рис. 8.2в следует считать бегущей волной, как на рис. 8.4. Когда волна падает на пластинку, из щелей выходят два фрагмента волны, которые движутся далее по направлению к экрану детектора. А дальше происходит очень важное явление. Подобно перекрывающимся волнам на поверхности воды, волны вероятности, выходящие из двух щелей, перекрываются и интерферируют, приводя к картине, как на рис. 8.3. Распределение больших и малых значений отражает, согласно квантовой механике, распределение больших и малых вероятностей для положений, в которых может оказаться электрон. Электроны, испущенные друг за другом, дают суммарную картину попаданий, которая согласуется с такой вероятностной картинкой. Большинство электронов попадает туда, где вероятность велика, совсем немного оказывается там, где она мала, и ни одного электрона в тех местах, где вероятность равна нулю. В итоге возникают тёмные и светлые полосы, показанные на рис. 8.2в.{70}
Рис. 8.4. Описание движения электрона с помощью бегущей волны вероятности объясняет загадочный интерференционный узор в эксперименте с двумя щелями
Именно так квантовая теория объясняет полученные данные. То, что каждый электрон действительно «знает» о двух щелях, становится при таком описании явным, поскольку волна вероятности каждого электрона проходит сквозь обе щели. Именно объединение двух таких парциальных волн определяет вероятность того, куда попадёт электрон. Именно поэтому само наличие второй щели влияет на конечный результат.
Не так быстро!
Мы рассмотрели детально электроны, однако похожие эксперименты подтвердили, что такое же вероятностно-волновое описание справедливо для всех элементарных объектов в природе. Фотоны, нейтрино, кварки – любые фундаментальные частицы – все они описываются волнами вероятности. Но прежде чем праздновать победу, следует разрешить три неотложных вопроса. Два из них не вызывают затруднений. А один – весьма крепкий орешек. Именно последний вопрос рассматривал Эверетт в 1950-х годах, что привело его к квантовой версии параллельных миров.
Во-первых, если квантовая теория верна и мир развивается вероятностно, тогда почему невероятностный подход Ньютона так хорошо предсказывает движение тел, от бейсбольных мячей до планет и звёзд? Ответ на этот вопрос такой: волны вероятности для крупных объектов, как правило (но не всегда, как мы скоро убедимся), имеют очень специальный вид. Как показано на рис. 8.5а, у них очень узкий профиль, что означает огромную вероятность – чуть менее 100 процентов, – что объект будет находиться в точке самого пика волны, и совершенно ничтожную вероятность, чуть более 0 процентов, что он окажется где-то в другом месте.{71} Более того, квантовые законы показывают, что пики таких узких волн движутся по траекториям, которые возникают из уравнений Ньютона. Поэтому квантовая теория лишь минимально уточняет ньютоновские законы, задающие точную траекторию бейсбольного мяча, говоря, что существует почти 100-процентная вероятность падения мяча в место, вычисленное на основе уравнений Ньютона, и почти 0-процентная вероятность того, что он упадёт в другое место.
На самом деле, слова «чуть менее» и «почти» характеризуют физику не с лучшей стороны. Возможность отклонения движения макроскопического тела от предсказываемого ньютоновскими законами настолько фантастически мала, что если бы вы вели астрономические наблюдения в течение последних нескольких миллиардов лет, то с подавляющей долей вероятности ничего подобного бы не обнаружили. Однако, согласно квантовой механике, чем меньше объект, тем, как правило, более размазана его волна вероятности. Например, типичная волна электрона может выглядеть так, как показано на рис. 8.5б, когда есть несколько местоположений, где частица может находиться с существенной вероятностью, – что совершенно чуждо ньютоновской концепции мира. Поэтому именно в микромире вероятностная природа реальности выходит на первый план.
Рис. 8.5.а) Волна вероятности макроскопического объекта, как правило, имеет очень узкий пик; б) Волна вероятности микроскопического объекта, например частицы, как правило, широко размазана
Во-вторых, можем ли мы видеть волны вероятности, составляющие основу квантовой механики? Существует ли какой-нибудь прямой способ пощупать этот непривычный вероятностный туман, как тот, что изображён на рис. 8.5б, когда единственная частица имеет шанс оказаться во множестве положений? Нет. Из стандартного описания квантовой механики, развитого Бором и его группой и названного в их честь копенгагенской интерпретацией, следует, что если вы захотите увидеть волну вероятности, то сам акт наблюдения разрушит ваши планы. Когда вы смотрите на волну вероятности электрона, то слово «смотрите» означает «измеряете его положение», электрон моментально реагирует на это и занимает какое-то выделенное положение. Соответственно, его волна вероятности поднимается в этом месте до 100 процентов, а во всех остальных коллапсирует до 0 процентов (рис. 8.6). Отвернитесь от него, и пикообразный вид волны вероятности электрона быстро расплывётся, извещая о том, что снова имеется шанс обнаружить электрон во множестве мест. Снова посмотрите на электрон, его волна заново схлопнется, перераспределяясь из множества возможных положений в какое-то одно определённое место. Вкратце говоря, каждый раз, когда вы пытаетесь взглянуть на вероятностный туман, он рассеивается – схлопывается, коллапсирует – и замещается привычной реальностью. Экран детектора на рис. 8.2в демонстрирует как раз это явление: он измеряет падающую волну вероятности электрона, и таким образом немедленно заставляет её схлопнуться. Детектор заставляет электрон отказаться от множества допустимых мест его попадания и определиться с каким-нибудь конкретным местом, которое впоследствии станет крохотной точкой на экране.
Рис. 8.6. Согласно копенгагенскому описанию квантовой механики, при измерении или наблюдении волны вероятности частицы она мгновенно коллапсирует везде, кроме одной точки. Из всего множества возможных местоположений остаётся одно выделенное положение
Я вполне пойму, если такое объяснение заставит вас покачать головой. Спору нет, квантовая догма звучит как шарлатанство. Действительно, предлагается теория, утверждающая совершенно поразительную картину реальности, основанную на волнах вероятностей, после чего буквально сразу заявляющая, что увидеть эти волны нельзя. Представьте, что некая барышня говорит, будто она блондинка, но если кто-то взглянет на неё, то она немедленно становится рыжей. Почему физики согласились с теорией, которая помимо того, что странная, ещё и выглядит откровенно ненадёжной?
К счастью, несмотря на все свои странности и скрытые свойства, квантовая механика является проверяемой теорией. Согласно копенгагенской интерпретации, чем выше волна вероятности в какой-то выделенной точке, тем больше шанс, что при схлопывании волны её единственный оставшийся пик – то есть сам электрон – будет расположен именно там. Такое утверждение обладает предсказательной силой. Проводите какой-нибудь эксперимент снова и снова, подсчитайте, как часто вы обнаруживаете частицы в тех или иных местах, и оцените, согласуются ли наблюдаемые частоты появления частиц с вероятностями, которые задаёт волна вероятности. Если волна в 2,784 раза выше здесь чем там, то будете ли вы в 2,784 раза чаще обнаруживать частицы здесь, чем там? Подобные предсказания оказались невероятно успешными. Какой бы лукавой не выглядела квантовая идея, ей трудно противостоять, когда она показывает такие феноменальные результаты.
Трудно, но не невозможно.
Это приводит нас к третьему и самому трудному вопросу. Коллапс волн вероятности при измерении (рис. 8.6) является ключевым моментом в копенгагенской интерпретации квантовой теории. Совокупность успешных предсказаний и выдающаяся способность Бора убеждать заставили большинство физиков принять копенгагенскую интерпретацию. Однако немного поразмыслив, можно быстро выявить одно неудобное свойство. Уравнение Шрёдингера, математический мотор квантовой механики, определяет изменение формы волны вероятности со временем. Дайте мне исходную форму волны, например, такую как на рис. 8.5б, и я смогу с помощью уравнения Шрёдингера нарисовать, как она будет выглядеть через минуту, час или в любой другой момент времени. Однако из прямого анализа этого уравнения следует, что показанная на рис. 8.6 эволюция – мгновенное схлопывание волны во всех точках, кроме одной, напоминающее замешкавшегося прихожанина в огромном соборе, который остался одиноко стоять во время службы, в то время как все остальные уже опустились на колени – по всей видимости не может быть описана уравнением Шрёдингера. Несомненно, волны могут иметь пикообразный вид, и вскоре мы начнём широко использовать такие волны. Однако способом, предлагаемым Копенгагенской школой, волна вероятности не может приобрести пикообразный вид. Используемый математический аппарат просто-напросто не допускает подобного. (Мы скоро увидим, почему это происходит.)
Бор предложил некий способ, довольно неуклюжий, задвинуть проблему: следует использовать уравнение Шрёдингера и найти волны вероятности, когда не происходит никакого наблюдения или измерения. Но при наблюдении, продолжает Бор, уравнение Шрёдингера следует отодвинуть в сторонку и объявить, что наблюдение заставило волну схлопнуться.
Однако такое предписание не только нескладное, произвольное и не имеет математического обоснования, оно даже не является понятным. Например, в нём отсутствует точное определение того, что значит «посмотреть» или «измерить». Необходимо ли участие человека? Или, как однажды спросил Эйнштейн, хватит беглого взгляда мыши? Как насчёт использования компьютера или воздействия вирусами или бактериями? Могут ли эти «измерения» заставить схлопнуться волну вероятности? Бор заявлял, что есть существенная разница между микромиром, то есть атомами и элементарными частицами, для которых применимо уравнение Шрёдингера, и макромиром, в котором находятся экспериментаторы со своим оборудованием, для которых уравнение Шрёдингера не применимо. Однако он так и не сказал, в чём именно эта разница. В действительности, он не мог бы этого сказать. С каждым годом экспериментаторы подтверждают правильность уравнения Шрёдингера без каких-либо модификаций для постоянно увеличивающихся наборов частиц, и есть все основания полагать, что оно справедливо для изрядного числа частиц, составляющих нас и всё, что угодно. Подобно наводнению, когда уровень воды медленно растёт, затапливая сначала фундамент дома, потом комнаты, грозя затопить второй этаж, математический аппарат квантовой механики постепенно выходит за пределы атомных расстояний, успешно осваивая всё большие масштабы.
Таким образом, мы подходим к следующему способу осмысления этой проблемы. Мы с вами, наши компьютеры, бактерии и вирусы и всё материальное на этом свете состоит из атомов и молекул, которые сами сложены из частиц типа электронов и кварков. Уравнение Шрёдингера выполняется для электронов и кварков, и есть все основания считать, что оно верно и для более сложноустроенных тел, независимо от общего числа составляющих их частиц. Это означает, что уравнение Шрёдингера будет продолжать быть верным и при измерении. Помимо всего прочего, измерение – это всего лишь какой-то набор частиц (человек, прибор, компьютер…), вступающий в контакт с другим набором (измеряемая частица или частицы). В этом случае, если математическая сторона уравнения Шрёдингера остаётся при этом непротиворечивой, рассуждения Бора наталкиваются на проблему. Уравнение Шрёдингера не позволяет волнам схлопнуться. Таким образом, существенный элемент копенгагенской интерпретации оказывается под сомнением.
Итак, третий вопрос таков: если проведённые выше рассуждения верны и волны вероятности не схлопываются, то как перейти от совокупности возможных результатов до проведения измерения к единственному результату после измерения? Или, если сформулировать вопрос более широко, что происходит с волной вероятности во время измерения, что позволяет проявиться привычной, определённой и единственной реальности?