355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Скрытая реальность. Параллельные миры и глубинные законы космоса » Текст книги (страница 19)
Скрытая реальность. Параллельные миры и глубинные законы космоса
  • Текст добавлен: 4 августа 2017, 16:30

Текст книги "Скрытая реальность. Параллельные миры и глубинные законы космоса"


Автор книги: Брайан Грин


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 19 (всего у книги 38 страниц)

IV. Предсказания в мультивселенной: Что ещё нужно?

Какие ещё препятствия нам предстоит преодолеть, прежде чем мы сможем получить точные предсказания из данной теории мультивселенной? Начнём с трёх самых главных.

Во-первых, как мы наглядно видели в рассмотренном выше примере, анализируемая модель мультивселенной должна давать возможность определить те физические свойства, которые варьируются от одной вселенной к другой, и для этих свойств мы должны уметь вычислять их статистическое распределение. Существенным здесь является понимание космологического механизма, благодаря которому мультивселенная населяется вселенными (такому как образование дочерних вселенных в модели ландшафтной мультивселенной). Именно этот механизм определяет, насколько один тип вселенных превалирует над другим, и, следовательно, именно он задаёт статистическое распределение физических свойств. Если повезёт, то получаемые распределения во всей мультивселенной, либо среди тех вселенных, в которых возможна жизнь, будут достаточно скошены, так что мы сможем извлечь определённые предсказания.

Во-вторых, если мы действительно опираемся на антропный принцип, то следует учесть то основное предположение, что мы, человечество, являемся самым заурядным видом. Жизнь может оказаться редким явлением для мультивселенной; а разумная жизнь ещё более редким. Но согласно антропному принципу, среди всех разумных существ мы настолько типичны, что то, что мы наблюдаем, должно представлять собой средние значения среди всех возможных значений, наблюдаемых любыми другими разумными существами, населяющими мультивселенную. (Александр Виленкин назвал это принципом заурядности.) Если распределение физических свойств среди вселенных, где возможна жизнь, известно, такие средние можно вычислить. Однако, как правило, в этом вопросе нет ясности. Если впоследствии учёные покажут, что наши наблюдения попадают в диапазон вычисленных средних для некоторой частной мультивселенной, то уверенность в нашей типичности – а также в гипотезе мультивселенной – заметно укрепится. Эго было бы здорово! Но если наши наблюдения не попадут в диапазон средних значений, тогда это может свидетельствовать об ошибочности гипотезы мультивселенной или же может означать, что человечество не заурядный вид, а какой-то особенный. Даже на территории, на 99 процентов населённой лабрадорами, всё равно можно натолкнуться на какого-нибудь добермана, нетипичную собаку для этого места. В этой ситуации будет совсем непросто определить, является ли гипотеза мультивселенной ошибочной, или же она верна, но наша Вселенная почему-то оказалась совсем нетипичной.{64}

Прогресс в этом направлении потребует, по всей видимости, более глубокого понимания механизма возникновения жизни в данной мультивселенной; подобные знания могли бы по крайней мере прояснить, насколько типичной была до сих пор наша эволюция. Это, конечно, очень важная задача. На данный момент, в большинстве антропных рассуждений этот вопрос полностью игнорируется под прикрытием идеи Вайнберга, что число разумных форм жизни в данной вселенной пропорционально числу содержащихся в ней галактик. Насколько мы понимаем, для разумной формы жизни необходима тёплая планета, для чего требуется звезда, входящая в какую-нибудь галактику, поэтому есть основания считать идею Вайнберга вполне убедительной. Но поскольку наши знания весьма рудиментарны, даже в вопросе собственной эволюции, это предположение не более чем гипотеза. Чтобы вычисления стали более точными, необходимо лучше понимать происхождение и развитие разумных форм жизни.

Мы подошли к третьему препятствию. На первый взгляд, его просто объяснить, но оно гораздо сложнее, чем кажется. Речь идёт о разделении бесконечности.

Разделение бесконечности

Чтобы сформулировать проблему, вернёмся к примеру с нашими собаками. Допустим, вы живёте в районе, в котором 3 лабрадора и одна такса. Закрывая глаза на усложнения типа частоты выгула собак, заключаем, что вероятность встретить лабрадора в 3 раза выше. Тот же вывод справедлив, если вокруг 300 лабрадоров и 100 такс; 3000 лабрадоров и 1000 такс; 3 миллиона лабрадоров и 1 миллион такс и так далее. Но что, если оба этих числа бесконечно большие? Как сравнить бесконечное число такс с троекратно бесконечным числом лабрадоров? Звучит как детский вопрос, ставящий в тупик родителей. Но это на самом деле серьёзный вопрос. Правда ли, что троекратная бесконечность больше обычной бесконечности? Если да, она больше именно в 3 раза?

Как известно, сравнение бесконечно больших чисел является исключительно хитроумной задачей. Для собак на Земле такой проблемы, конечно же, не возникает, потому что их численность конечна. Но для вселенных, входящих в какую-то определённую мультивселенную, эта проблема стоит весьма реально. Возьмём, например, инфляционную мультивселенную. Рассматривая весь кусок швейцарского сыра с точки зрения воображаемого внешнего наблюдателя, можно увидеть, что кусок продолжает увеличиваться и безостановочно порождает новые вселенные. Именно это подразумевается под термином «вечная» в «вечной инфляция». Кроме того, мы видели, что с точки зрения внутреннего наблюдателя каждая отдельная дочерняя вселенная тоже имеет бесконечное число разделённых между собой областей, что приводит к лоскутной вселенной. Пытаясь сделать те или иные предсказания, мы с неизбежностью сталкиваемся с бесконечностью вселенных.

Для понимания математической стороны вопроса представьте, что вы выиграли в телевизионной викторине и вам достался необычный приз: бесконечный набор конвертов, в первом из которых лежит 1 доллар, во втором 2 доллара, в третьем 3 доллара и так далее. Как обычно, под аплодисменты зала ведущий предлагает вам сделать выбор. Либо вы берёте ваш приз, как он есть, либо содержание каждого конверта можно удвоить. На первый взгляд вам очевидно, что второй вариант гораздо выигрышней. «В каждом конверте будет в 2 раза больше денег, чем раньше» – думаете вы, – «поэтому будет правильным выбрать именно второй вариант». Действительно, если число конвертов конечно, то такое решение было бы правильным. Обменять 5 конвертов с 1, 2, 3, 4 и 5 долларами на конверты с 2, 4, 6, 8 и 10 долларами будет более чем разумно. Однако, немного подумав, вы начнёте сомневаться, потому что поймёте, что в бесконечном случае всё не так очевидно. «Если выбрать второй вариант», – думаете вы, – «у меня останутся конверты с 2, 4, 6 и так далее долларами, то есть со всеми чётными числами. Но сейчас в конвертах находятся доллары, пробегающие весь ряд целых чисел, как чётных, так и нечётных. Поэтому если выбрать второй вариант, то из полной суммы денег будут отобраны все конверты с нечётным количеством долларов. Как-то непохоже, что это будет правильным решением». Вы начинаете лихорадочно соображать. Если сравнивать поконвертно, то второй вариант весьма привлекателен. А если сравнивать наборы конвертов, то не очень.

Дилемма, с которой вы столкнулись, иллюстрирует тип математических ловушек, которые так затрудняют сравнение бесконечных наборов. Зрители в зале начинают нервничать, вам пора уже сделать выбор, а ваша оценка того или иного выбора зависит от того, как вы сравниваете два результата.

Аналогичная неоднозначность возникает и при сравнении самих основ таких наборов: числа элементов в каждом из них. Пример с телевизионной викториной также хорошо иллюстрирует эту сторону вопроса. Чего больше: всех чётных чисел или всех целых чисел? Большинство людей ответят, что больше целых чисел, потому что чётные числа составляют лишь половину от общего количества. Однако опыт викторины позволяет более аккуратно подойти к этому вопросу. Представьте, что вы выбираете второй вариант – получить все чётные суммы долларов. В этом случае вам не придётся откладывать в сторону часть конвертов или требовать новые, так как ведущий просто удвоит сумму денег в каждом из них. Таким образом, заключаете вы, число конвертов, необходимых для размещения всех нечётных и всех целых сумм долларов является тем же самым, и, следовательно, заполнение каждой категории чисел равно между собой (табл. 7.1). И это странно. Сравнивая одним методом – рассматривая чётные числа как подмножество всех целых чисел, – вы делаете вывод, что целых чисел больше. Применяя другой метод – подсчитывая, сколько надо конвертов для размещения каждого вида чисел, – вы делаете вывод, что множество целых чисел и множество чётных чисел имеют одинаковое заполнение.

Таблица 7.1. Каждое целое число спарено с чётным числом, и наоборот, откуда возникает предположение, что их количества совпадают

Таблица 7.2. Каждое целое число спарено с дважды чётным числом, в результате чего остаётся бесконечный набор чётных чисел без пары. Отсюда возникает предположение, что чётных чисел больше, чем целых

Можно даже убедить себя, что чётных чисел больше чем целых. Представьте, что в качестве альтернативного варианта на викторине предлагается учетверить деньги в каждом конверте так, что в первом окажется 4, во втором 8, в третьем 12 долларов и так далее. Так как число конвертов опять не изменилось, возникает предположение, что количество целых чисел из первого варианта равно количеству чисел кратных 4 из второго варианта (табл. 7.2). Однако такое составление пар, когда каждое целое число сопоставляется числу кратному 4, даёт бесконечный набор чётных чисел, оставшихся без пары – 2, 6, 10 и так далее, – что наводит на мысль, что чётных чисел больше чем целых.

С одной стороны, количество чётных чисел меньше чем целых. С другой стороны, эти количества равны друг другу. С третьей стороны, чётных чисел больше чем целых. И выходит, что нет какого-то одного правильного вывода. Абсолютного ответа на вопрос, какой из этих бесконечных наборов больше, попросту не существует. Получаемый вами результат зависит от способа сравнения.{65}

Здесь возникает головоломка для теорий с мультивселенными. Как определить, что тот или иной тип вселенных имеет больше галактик и более расположен к возникновению жизни, если число рассматриваемых вселенных бесконечно? Мы столкнёмся с точно такими же двусмысленностями, как были описаны выше, если физические соображения не продиктуют, что взять за основу при определении способа сравнения. Теоретики сформулировали несколько способов сравнения, аналогичных составлению пар в приведённых выше таблицах, которые возникают в той или иной физической модели, – однако определённой процедуры, с которой согласны все, пока не разработано. Разные подходы приводят к разным результатам, подобно примерам с бесконечными наборами чисел. Согласно одному способу сравнения, преимущество имеют вселенные с одним набором свойств; согласно другому способу – другие.

Такой произвол сильно влияет на определение типичных или средних свойств в данной мультивселенной. Физики называют это проблемой измерения. Смысл этого математического термина вполне отражён в его названии. Необходимо иметь способ измерения размеров различных бесконечных наборов вселенных. Именно эта информация необходима для того, чтобы делать предсказания. Именно эта информация необходима, чтобы разобраться, насколько вероятнее, что мы находимся во вселенной одного типа, а не другого. Пока не будет найден фундаментальный принцип для сравнения бесконечных наборов вселенных, мы не сможем математически предсказывать результаты наблюдений и экспериментов, проводимых типичными обитателями мультивселенной, то есть нами. Поэтому нам не удастся избежать решения проблемы измерения.

Что ещё волнует скептиков

Я посвятил проблеме измерений отдельный раздел, не только потому что она является огромным препятствием на пути получения предсказаний, но также потому, что из неё вытекают другие проблемные следствия. В главе 3 было объяснено, почему инфляционная теория стала de facto космологической парадигмой. Крайне высокий темп расширения в течение первых мгновений жизни нашей Вселенной привёл к тому, что области, удалённые друг от друга в настоящем, могли быть связаны друг с другом в прошлом, что объясняет общую температуру, обнаруженную в современных экспериментах; быстрое расширение сглаживает также любую пространственную кривизну, что придаёт пространству плоскую форму, которая согласуется с наблюдениями; наконец, такое расширение превращает квантовые флуктуации в мельчайшие температурные колебания по всему пространству, которые наблюдаются в реликтовом излучении и которые важны для образования галактик. Эти достижения неоспоримы.{66} Однако если инфляция продолжается вечно, это может свести успехи на нет.

Когда в игру вступают квантовые процессы, лучшее, что можно сделать, – это предсказать вероятность одного результата относительно другого. Физики-экспериментаторы, понимая всю важность этого, вновь и вновь проводят эксперименты, набирая целую гору данных для статистической обработки. Когда квантовая механика предсказывает, что один результат в 10 раз вероятнее другого, полученные данные должны очень точно отражать это соотношение. Вычисления реликтового излучения, соответствие которого наблюдательным данным является наиболее убедительным аргументом в пользу инфляционной теории, основываются на квантовых флуктуациях, и поэтому тоже имеют вероятностный характер. Однако в отличие от лабораторных экспериментов эти вычисления нельзя проверить, запуская Большой взрыв снова и снова. Тогда как их интерпретировать?

Если в результате теоретического анализа получается, что, скажем, с вероятностью 99 процентов данные по реликтовому излучению имеют один вид, а не другой, и если более вероятный результат согласуется с нашими наблюдениями, то такие данные рассматриваются как серьёзный аргумент в пользу теории. Логика в том, что если некоторый набор вселенных возник на основе одних и тех же физических законов, то теория утверждает, что примерно 99 процентов таких вселенных будут похожи на то, что мы наблюдаем, а 1 процент будет иметь значительные отклонения.

Теперь если бы в инфляционной мультивселенной имелся конечный набор вселенных, то можно было бы прямо утверждать, что число нетипичных вселенных, в которых квантовые процессы привели бы к данным, не соответствующим ожидаемым, останется относительно малым. Однако, когда набор вселенных бесконечен, как в инфляционной мультивселенной, интерпретация чисел становится значительно более трудной задачей. Что такое 99 процентов от бесконечности? Бесконечность. А что такое 1 процент от бесконечности? Тоже бесконечность. Какая из них больше? От нас требуется сравнить два бесконечных набора. А как мы видели, даже когда кажется, что один набор больше другого, ответ зависит от используемого нами метода сравнения.

Тогда скептик делает вывод, что при вечной инфляции становятся условными сами предсказания, на которых зиждется наша уверенность в теории. Любой возможный результат, допустимый квантовыми вычислениями, каким бы маловероятным он ни был – 0,1 процента квантовой вероятности, 0,0001 процента квантовой вероятности или 0,0000000001 процента квантовой вероятности, – будет реализован в бесконечном числе вселенных просто потому, что любое из этих чисел, умноженное на бесконечность, равно бесконечности. Без фундаментального предписания того, как сравнивать бесконечные наборы, мы скорее всего не сможем сказать, что один набор вселенных больше другого, а потому он является наиболее вероятным типом наблюдаемых вселенных – мы теряем способность делать определённые предсказания.

Оптимист делает вывод, что замечательное согласие квантовых вычислений в инфляционной космологии с имеющимися данными (рис. 3.5) должно отражать какую-то глубокую истину. При конечном наборе вселенных и наблюдателей глубокая истина состоит в том, что вселенные, в которых данные отклоняются от квантовых предсказаний – те, которые составляют 0,1 процента квантовой вероятности, или 0,0001 процента квантовой вероятности, или 0,0000000001 процент квантовой вероятности, – встречаются действительно редко, и именно поэтому типичные обитатели мультивселенной, как мы с вами, не попадают ни в одну из них. При бесконечном наборе вселенных, заключает оптимист, глубокая истина должна быть в том, что аномальные вселенные встречаются опять-таки редко, однако нам ещё предстоит выяснить, как это происходит. Ожидается, что однажды мы найдём меру, определённый способ, который позволит сравнивать различные бесконечные наборы вселенных, и при этом доля вселенных, возникающих благодаря редким квантовым отклонениям, будет мала по сравнению с теми, квантовая вероятность которых более велика. Достижение этой цели остаётся колоссально трудной задачей, но большинство исследователей в этой области убеждены, что согласие теоретических выводов и полученных данных, представленное на рис. 3.5, означает, что когда-нибудь мы добьёмся успеха.{67}

Нерешённые вопросы и мультивселенные:
Могут ли мультивселенные давать предсказания, которые нельзя получить другими способами?

Вы, безусловно, заметили, что даже в самых оптимистичных планах предполагается, что предсказания на основе мультивселенного подхода будут иметь другой характер, отличный от того, что мы традиционно ожидаем от физики. Прецессия перигелия Меркурия, магнитный дипольный момент электрона, энергия, выделяемая при расщеплении ядра урана на барий и криптон, – всё это примеры предсказаний. Они основаны на тщательных математических вычислениях, опирающихся на цельную физическую теорию, и дают в конце точные, проверяемые числа. Эти числа были подтверждены экспериментально. Например, вычисления дают, что магнитный момент электрона равен 2,0023193043628; измерения показывают, что он равен 2,0023193043622. С точностью до малых ошибок, присущих и первым и вторым, эксперимент таким образом подтверждает теорию с точностью 1 к 10 миллиардам.

В той ситуации, где мы сейчас находимся, кажется, что предсказания теории мультивселенной никогда не достигнут такого стандарта точности. Возможно, что в наиболее продвинутых сценариях мы сможем характеризовать как «весьма вероятные» предсказания того, что космологическая постоянная, или величина электромагнитного взаимодействия, или масса u-кварка будут лежать в некотором диапазоне значений. Но чтобы это улучшить, нам должно очень сильно повезти. Кроме решения проблемы измерения необходимо построить убедительный вариант теории мультивселенной с очень скошенными распределениями (например, чтобы с вероятностью 99,9999 процента наблюдатель оказался во вселенной с наблюдаемым значением космологической постоянной) или с удивительно тонкими корреляциями (например, что существование электрона возможно только во вселенных с космологической постоянной равной 10−123). Если теория мультивселенной не обладает такими правильными свойствами, то точность, всегда отличавшая физику от других дисциплин, будет потеряна. Есть много физиков, которые не готовы заплатить такую цену.

Довольно долго я тоже придерживался такой позиции, но затем моя точка зрения начала меняться. Как любой другой физик, я предпочитаю конкретные, точные и недвусмысленные предсказания. Но я, как и многие другие, пришёл к пониманию, что не все фундаментальные свойства Вселенной подходят для точных математических предсказаний; по крайней мере вполне логично допустить, что могут существовать свойства, не укладывающиеся в рамки точных предсказаний. С середины 1980-х годов, когда я был студентом, изучающим теорию струн, было широко распространено мнение, что эта теория однажды объяснит значения масс частиц, константы взаимодействий, число пространственных измерений и вообще любое фундаментальное физическое свойство. Я по-прежнему надеюсь, что эта цель будет достигнута. Однако я признаю, что чрезмерно требовать от уравнений теории так извернуться, чтобы выдать число типа массы электрона (0,000000000000000000000091095 в единицах планковской массы) или массы t-кварка (0,0000000000000000632 в единицах планковской массы). Когда же наступает очередь космологической постоянной, задача вырастает до исполинских масштабов. Вычисления, которые после многих страниц выкладок и мегаватт, затраченных на компьютерное моделирование, выдадут то самое заветное число, с которого начиналась глава 6, – не то чтобы в принципе были невозможны, но здесь может дать сбой даже самый оптимистичный оптимизм. Увы, теория струн сегодня ни чуть не ближе к вычислению любого из этих чисел, чем когда я был студентом. Однако это не значит, что теория струн или другая, ещё не известная теория, однажды не достигнет этого. Возможно, что оптимистам следует быть более изобретательными. Но в рамках сегодняшней физики имеет смысл поискать новые подходы. Именно этим занимается теория с мультивселенными.

В рамках хорошо разработанного подхода с мультивселенными можно чётко выделить те физические свойства, которые следует рассматривать с точки зрения, отличной от стандартной: это те свойства, которые изменяются от одной вселенной к другой. В этом сила данного подхода. В теории с мультивселенными можно иметь точный контроль над тем, какие нерешённые загадки, характерные для некоторой частной вселенной, сохранятся в мультивселенном контексте, а какие нет.

Космологическая постоянная являет собой первый пример. Если её значение варьируется в рамках данной мультивселенной, причём во вполне определённом интервале, тогда то, что когда-то было загадкой, – её значение – теперь становится весьма прозаичным. Подобно тому как в обувном магазине с налаженными поставками товара всегда найдутся ботинки вашего размера, так и необъятная мультивселенная заведомо будет содержать вселенные с измеренным нами значением космологической постоянной. Задача, над которой доблестно бились поколения учёных, легко может быть разрешена с помощью идеи мультивселенной. Мультивселенная показала, что этот вопрос, кажущийся столь глубоким и столь непонятным, возникает из-за ошибочного допущения, что космологическая постоянная имеет единственное значение. Именно в этом смысле теория мультивселенной может обладать значительной предсказательной силой и иметь потенциальную возможность оказать неоценимое влияние на ход научных исследований.

С подобными рассуждениями нужно обходиться очень аккуратно. Что если Ньютон, увидев упавшее яблоко, решил бы, что мы являемся частью мультивселенной, в которой яблоки в одних вселенных падают вниз, в других вверх, поэтому падающее яблоко лишь указывает на то, в какой именно вселенной мы находимся, и не стоит предпринимать никакие дальнейшие исследования? Или он бы пришёл к выводу, что в каждой вселенной какие-то яблоки падают вниз, а какие-то вверх, и причина, согласно которой мы видим только падающие вниз яблоки, – это всего лишь вопрос нашего окружения, то есть все падающие вверх яблоки в нашей Вселенной уже упали вверх, поэтому давно оказались где-то в глубинах космоса? Это, конечно же, глупый пример – никогда не существовало причины, в том числе теоретической, так думать – но вопрос сам по себе серьёзный. Привлекая мультивселенную, наука может ослабить стимул решать конкретные задачи, даже если некоторые из этих задач ждут своего решения в рамках стандартного подхода, без мультивселенной. Вместо того чтобы упорно трудиться и расширять своё понимание, можно попасть под обаяние мультивселенной и преждевременно забросить привычные методы исследований.

Здесь кроется потенциальная угроза, которая объясняет, почему некоторые учёные содрогаются при упоминании мультивселенных рассуждений. Именно поэтому концепция мультивселенной, если её воспринимать всерьёз, должна быть строго обоснована с помощью теоретических результатов, она должна чётко характеризовать вселенные, из которых она состоит. Анализ должен быть аккуратными и методичным. Однако отворачиваться от мультивселенной только потому, что она могла бы завести в тупик, также рискованно. Если мы так поступим, мы закроем глаза на реальность.


    Ваша оценка произведения:

Популярные книги за неделю