Текст книги "Хаос и структура"
Автор книги: Алексей Лосев
Жанры:
Философия
,сообщить о нарушении
Текущая страница: 61 (всего у книги 62 страниц)
Пришла пора уточнить терминологию. Насколько правильно будет связывать «метаматематику» впрямую с именем Лосева? Ведь мы знаем, что сам автор называл свое учение либо, вполне определенно, «диалектическими основами математики» (как в названии основной своей книги по философским вопросам математики), либо, вполне общо, «философией числа» (и этим обозначением мы уже пользовались в предыдущем изложении). Кроме того, термин еще и «занят» под название сугубо математической дисциплины, введенной, как сказано, Д. Гильбертом. И все–таки смысловой пласт этого термина «метаматематика» слишком ценен, чтобы отказываться от него, доверяясь лишь формальным доводам.
Заметим прежде всего, что построения А. Ф. Лосева нигде не расходятся с математическими данными. Автор даже с некоторой (методологически оправданной) назойливостью и монотонностью вновь и вновь показывает, где и как его содержательная аксиоматика, его «основоположения числа» естественно перерастают в аксиомы и теоремы самой математики. Можно сказать, метаматематика А. Ф. Лосева проделывает свой отрезок пути и заканчивает там, где начинает математика, – в изощрениях профессионалов–нефилософов. Логически А. Ф. Лосев оказался раньше, впереди, прежде специалистов по математике и ее основаниям. Исторически имелась уже математика со всеми ее достижениями, принципиальными кризисами, необозримостью тем и предметов, когда явились на свет (точнее, от света, «в стол» А. Ф. Лосева) построения новой метаматематики. Эта ситуация определенно повторяет одну историю, – вспомним происхождение явно родственного «метаматематике» термина. Возник он случайно, когда Андроник Родосский (I в. до Р.Х.), заново упорядочивая и переписывая рукописи Аристотеля, вслед за группой сочинений «о природе» (ta physika) поместил еще группу под условным названием «То, что после физики» (ta meta ta physika). Так наука, «исследующая первые начала и причины» (Met. 982b 10) и самим Аристотелем величаемая «первой философией», стала «метафизикой». То, что в материальном мире занимало локус «после», в мире идей оказалось «до».
Впрочем, это только аналогия. О самом прямом вхождении лосевской «философии числа» как метаматематики в традицию «наук о первоначалах», как и о справедливости притязаний на многообязывающую семантику греческой приставки «мета», легче судить, если привлечь к нашему терминологическому рассмотрению книгу С. Л. Франка «Предмет знания» (1915). Автор книги ставит перед собой задачу построения единой «теории знания и бытия», предпочитает ее называть «не онтологией, а старым и вполне подходящим аристотелевским термином «первой философии»», себя относит опять–таки «к старой, но еще не устаревшей секте платоников» и особо выделяет в последней фигуры Плотина и Николая Кузанско–го [258]. Не правда ли, тут узнаются и предпочтения А. Ф. Лосева? Но еще больше согласий и перекличек обнаруживается в главе «Время и число» книги С. Л. Франка. В основу построений здесь кладется «всеединство» («единство целого», «единство единства и множественности»), которое и рассматривается как «единственный подлинный источник, из которого может быть выведено понятие числа». Единственный – ибо только на этом пути не возникает логический круг, ибо, только отправляясь от «всеединства», замечает С. Л. Франк, «мы действительно не предполагаем математических понятий единого и многого, а восходим к тому, в чем, как таковом, этих моментов еще нет и из чего они должны возникнуть» [259]. Далее следовало непосредственное «выведение числа из всеединства». Именно этой части «Предмета знания» А. Ф. Лосев посвятил специальный комментарий в книге «Музыка как предмет логики» (1927), где он тоже строил концепцию числа с опорой на трактат Плотина (Эннеады VI. 6 «О числах») и обнаруживал согласованность конструкций—своей, Франка и Плотина. Это и не удивительно: «одни и те же предпосылки приводят при правильном методе и к тождественным результатам» [260].
Лосевская метаматематика, в основе которой лежат глубокие неоплатонические интуиции, получала, таким образом, мощную поддержку примером непосредственного предшественника. Но этого мало. В своем построении и анализе «числовых структур бытия» А. Ф. Лосев сумел избежать одного существенного перекоса «первой философии» по Франку, на который последнему было указано некоторыми наиболее проницательными критиками. Так, в своей рецензии на книгу «Предмет знания» Н. А. Бердяев отмечал неоправданный «монизм» и упрощенность решения проблемы «изменения, творческого движения, возникновения нового, небывшего», напоминал о неустранимом присутствии во всеединстве не только «света» как творящего начала, но и «тьмы», «темных волн безосновной основы бытия», и в итоге определял: «Знание потому имеет творческую природу, что оно должно одолевать этот вечный напор тьмы, пронизывать его светом, оформлять этот изначальный хаос [261]. Для А. Ф. Лосева уже естественно относиться к извечной «меональной тьме» не только с пониманием, но и чрезвычайно конструктивно: «Из этого становящегося мрака как из некоей глины будем созидать те или иные смысловые фигурности» (501), – возглашает он фундаментальный принцип теории строительства математических объектов и повсеместно проводит этот принцип в практике своей метаматематики. Еще и в «Диалектике художественной формы», лет за десять до «Диалектических основ математики», легко отыскиваются те же мотивы и установки. К примеру, эта: «В сфере смысла, где слиты в единое и сплошное тождество категория и ее внутреннее инобытие, вполне позволительно выделять поочередно то самую категорию, подчиняя ей ее инобытие, то ее инобытие, подчиняя ей его категорию» (классификация искусств по «категориальному» и «мео–нальному» принципам). Или прочтем и учтем лосевскую похвалу Шопенгауэру за то, что «он больше всех других почувствовал как раз алогическую основу мира в отличие от всякой оформленности» [262].
§ 5. ДИАЛЕКТИКА КАК ТОЧНАЯ НАУКА
Мы рассмотрели, таким образом, и дальнее, и ближнее окружение лосевской «философии числа», то окружение, в драматическом притяжении–отталкивании с которым и сформировалась последняя. По ходу рассмотрения уже были получены и некоторые содержательные характеристики самого ядра, центра всех соотнесений. Пришла пора сосредоточить наше внимание специально на этом центре, в его смысловой точке.
А. Ф. Лосеву не удалось реализовать в полном объеме замысел строго диалектического обоснования математики. Причиной тому следует указать как обстоятельства общего плана (вряд ли подобное предприятие по силам одному человеку, даже при самых благоприятных внешних условиях), так и частные обстоятельства печального свойства, о которых уже говорилось выше. Добавим еще одно: значительная часть довоенных рукописей периода максимальной активности автора на философско–математическом поприще погибла летом 1941 г. в результате прямого попадания фашистской авиабомбы в дом на Воздвиженке, где была квартира А. Ф. Лосева. Чего–то не успел сделать или не дали, что–то было, готовое, уничтожено. Потому теперь приходится заниматься реконструкцией общей панорамы математических наук, как она представлялась автору «Диалектических основ математики» (особо ценны для нашей задачи § 9, 34, 80 упомянутой книги), а также отыскивать следы прежних замыслов в более позднем творчестве философа. По ходу этих операций будут видны и общие контуры всей конструкции, и следы утраченных ее деталей.
Математика как феномен культуры. Проведя исходное тематическое разделение по сферам
a) философии чистой математики,
b) философии математического естествознания,
c) культурно–социальной истории числа (33), А. Ф. Лосев сосредоточил свой анализ на первой сфере, вынужденно «оставляя пока в стороне естествознание, психологию, социологию, теорию самой диалектики числа и историю» (35). Характерно это «пока». Нам неизвестны лосевские работы, специально посвященные «временно покинутым» темам, однако интерес к социально–культурным типологиям, к «физиономике» математических воззрений можно проследить у него на протяжении всей жизни. В тех же «Диалектических основах математики» нетрудно обнаружить примеры напряженного внимания автора к социально–исторической обусловленности тех или иных математических построений. На них, кстати, особо обращает внимание читателей первый и самый чуткий рецензент книги – В. М. Лосева (14). Или взять один из таких «бродячих» сюжетов в творчестве А. Ф. Лосева, как логику исчисления бесконечно–малых. В роли своеобразного пробного камня она многократно привлекалась философом то для характеристики мировоззренческого стиля Возрождения (с его богоборческим лозунгом quo поп ascendam) и вообще «прогрессизма» новоевропейской культуры, то для анализа телесных интуиций античности и ранней истории представлений о дискретности, пределе и континууме. В своем неизменно типологическом отношении к различным проявлениям духа, к различным культурам А. Ф. Лосев предстает несомненным продолжателем усилий О. Шпенглера, для которого «то, что выражается в мире чисел», всегда «есть стиль души» [263]. Метаматематика обязана быть еще и морфологией культуры.
Философия чистой математики. Область собственно математики, с точки зрения философа, разделяется также на три сферы:
a) общая теория (логика) числа, исследующая перво–принципы числа, число как таковое, сущность числа,
b) философия математических дисциплин, специальная теория числа, теория числа в частности, теория числа как явления,
c) философия теории вероятностей и математической статистики, исследующая число в казусах, в жизни, в действительности (40).
Дошедшая до нас часть «Диалектических основ математики» вполне представляет всю общую теорию числа (§ 10—78) и дает переход к специальным вопросам (§ 81 и далее). Специального исследования «числа в жизни» (теоретико–вероятностной проблематики) автор не оставил, однако о многом мы можем–таки судить: каждый шаг лосевской аксиоматики получал завершение именно на материале данного слоя математической реальности.
Специальная теория числа. Здесь также проводится классически–триадное разделение:
а) науки о бытии или сущности числа, об интенсивном числе (арифметика, алгебра, анализ),
b) геометрические науки об инобытии или явлении числа, об экстенсивном числе,
c) теория множеств как наука о синтезе арифметической и геометрической ипостасей числа, об эйдетическом числе.
Второй и третий разделы, строго говоря, нужно отнести к утратам. Исчез, например, целый том по геометрии, о котором несколько раз (227, 302) А. Ф. Лосев упоминает и куда отсылает за подробностями. Однако примем в расчет, что логико–диалектической проработкой геометрических идей автор занимался уже на страницах книги «Античный космос и современная наука». С тем же упреждением осваивалась и теоретико–множественная проблематика, если иметь в виду раннюю «Музыку как предмет логики». Словом, уже дошедшего—много. Даже одно только напоминание о глубинном единстве наглядно–геометрических и счетно–арифметических подходов, убедительно демонстрируемое лосевской метаматематикой, будет весьма кстати сегодня, когда философы и математики все еще бьются над во многом уже решенными, как оказывается, проблемами. Для примера укажем на оппозицию «арифметического» (Rechnen) и «геометрического» (Zeichnen), о которой всерьез заговорил за рубежом Д. Фанг, а у нас—К. И. Вальков [264]. Пора на самом деле «обратиться к беспристрастному и ко всему одинаково равнодушному суду диалектики» (389), а не замирать, по Фангу, в безмолвном ужасе перед сфинксом «единой и неделимой и, в конечном итоге, непостижимой тотальности» математики или же вместо одной крайности – излишней «арифметизации» впадать в другую – в крайность «геометризма» [265].
Бытие числа (интенсивное число). Науки о бытии или сущности числа можно представить, согласно А. Ф. Лосеву, в виде диалектической триады:
a) арифметика и алгебра как учения о неизменной сущности числа, о постоянных величинах и их функциях,
b) дифференциальное, интегральное и вариационное исчисления как учения об инобытийной изменчивости числа, о переменных величинах и их функциях в скалярной форме,
c) векторное и тензорное исчисления как учения о действительности числа, о числе синтетическом, ориентированном, направленном (442).
Здесь второй и третий разделы, если опираться только на «Диалектические основы математики», также следует считать утраченными. Однако определенный анализ диалектической сущности, например, интеграла и дифференциала также отыскивается в книге «Музыка как предмет логики». Утрату содержательной части второго раздела в некоторой мере восполняет публикуемая в настоящем томе работа А. Ф. Лосева «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых».
Арифметика и алгебра. Внутри первой сферы интенсивного числа А. Ф. Лосев выделяет очередную триадическую структуру:
a) арифметика как учение о непосредственной сущности числа в ее бытии, о числе в себе,
b) алгебра как учение о непосредственной сущности числа в ее инобытии, о числе функционально выраженном,
с) алгебраический анализ (теории форм, инвариантов и др.) как учение о непосредственной сущности числа в ее становлении (430, 446).
Как следует из публикуемого «Содержания» первой книги «Диалектических основ математики» (23), степень детализации построений лосевской метаматематики была столь велика, что к темам алгебры переход планировался лишь в самом конце целого тома. Все дальнейшее кануло в Лету. Да и от собственно арифметической части книги сохранилось далеко не все. Так что, предприняв еще одно посещение мира числовых триад, нам остается назвать и последние структуры, и последние утраты.
Арифметика. Внутри арифметики, согласно общедиалектической схеме А. Ф. Лосева, следует различать:
a) натуральный ряд как бытие сущности числа, как акт ее полагания,
b) типы чисел (отрицательные, рациональные, мнимые и др.) как инобытие чисел натурального ряда,
c) действие с числами как становление сущности числа, типы чисел в разнообразных направлениях и комбинациях счета (ООО).
Сохранившийся текст «Диалектических основ математики» обрывается на материалах заключительной части второго из названных разделов. Впрочем, в предыдущем изложении заключено достаточно общих указаний и конкретных примеров, по которым вполне уверенно достраиваются логико–диалектические аналоги для арифметических операций.
На полученную последовательность—анфиладную последовательность одна в другую врастающих триад—еще нужно наложить объединяющий все шаги и этапы процесс, чтобы картина получилась полной: ведь вся математика, показывает и доказывает А. Ф. Лосев, есть не что иное, как развитое и детализированное понятие числа. Число как первая категория, первая «осмысленная, оформленная по ложенность, категориально оформленная положенность» (105), как «слепительное», напомним, «Да» составляет саму основу математических объектов. Все есть число. Остается только оговорить: ту перво–категорию, тот «акт полагания подвижного покоя самотождественного различия», что пронизывает любые закоулки величественного здания математики, не обязательно называть «числом». Действительно, в угоду пуританской строгости можно окрестить фундаментальную логико–диалектическую конструкцию каким–либо специальным термином, к примеру назвать ее по случаю и в честь А. Ф. Лосева «L–выражением» или же, в более математизированном духе, «L–кортежем» [266]. Далее придется поступить так, как уже приходилось действовать в области математической логики, т. е. в области формальной, нелосевской метаматематики, причем именно в 30–х годах. В частности, там вместо интуитивно ясного, но строго не определенного понятия «вычислимой функции» стали тщательно изучать свойства так называемых «общерекурсивных функций», определяемых уже алгоритмически точно. Далее было показано, что у вновь введенного формализма достаточно изобразительной мощи, чтобы заместить собой несколько расплывчатое понятие вычислимости. Наконец, между классами содержательных и формальных функций была провозглашена эквивалентность (в форме «тезиса Черча»), – именно провозглашена, а не доказана, поскольку последнее невозможно ввиду принципиально различной природы сравниваемого. Желающим увековечить свое имя в новом «тезисе» можно предложить аналогичную проверку для числа и L–кортежа. Впрочем, изучая «Диалектические основы математики», нетрудно убедиться, что А. Ф. Лосев сам положил много усилий для демонстрации справедливости подобного «тезиса» и повсеместно обнаруживал, как математический материал «с огромной точностью воспроизводит» логико–диалектические прообразы (294).
Обозревая теперь лосевский проект метаматематики и оценивая предложенный философом неблизкий путь от максимально общих принципов «философии числа» до мельчайших фактов самой частной из математических наук, арифметики, мы можем наконец судить и о замысле– он масштабен, и о степени его воплощения – при многих потерях и необходимых оговорках все самое трудное свершено, все главное было сформулировано и предано бумаге. Обозревая труды, в невольном одиночестве исполненные А. Ф. Лосевым, можно констатировать, что «задача философского обоснования математики» если и не разрешена единолично им, то вполне может быть разрешима коллективными усилиями на путях, проложенных лосевской метаматематикой, а саму диалектику как основное орудие этой метаматематики теперь «можно считать <…> настолько зрелой и конкретизированной дисциплиной, что она вполне может (и даже обязана) войти» – и, как мы знаем, успешно–таки вошла – «в детали числовых конструкций, не ограничиваясь общими рассуждениями только о самом понятии числа» (424).
§ 6. ВМЕСТО ЗАКЛЮЧЕНИЯ
Итак, определенный период научной биографии А. Ф. Лосева, пройденный, по его собственной квалификации, под знаком ярко выраженного «отвлеченно–диалектического эроса», вполне закономерно завершился систематическими логико–математическими исследованиями. Как бы ни относиться к некоторым лосевским сочинениям, «гипертрофированным в смысле логики и диалектики» (В. М. Лосева), к этому всеохватному «унифицированному строительству из диалектических блоков» (С. С. Хоружий), ясно и достоверно следующее: мощный творческий эрос позволил А. Ф. Лосеву занять достойное место в ряду немногих подлинных мыслителей, для которых постижение интегрального целого, обретение Логоса в Хаосе было превыше всего. До А. Ф. Лосева в этот ряд входили и входят преимущественно естествоиспытатели – отечественные созидатели систем, прежде всего Д. И. Менделеев, Е. С. Федоров, В. И. Вернадский, Н. И. Вавилов, А. А. Любищев, среди современных исследователей – Г. М. Идлис, Ю. А. Урманцев, Ю. И. Кулаков. Последний из названных, вспоминая предысторию созданной им теории физических структур, высоко оценивал совет своего учителя И. Е. Там–ма, выдающегося физика–теоретика: в поисках «единого универсального языка» природы нужно вооружаться примером «прежде всего русских философов», которые «о многом догадывались, хотя и не могли сформулировать свою идею всеединства» достаточно строго [267]. Творчество А. Ф. Лосева показывает, что русская философия оказалась способна не только «о многом догадываться», но и «многое сформулировать».
В. Я. Троицкий
ПРИМЕЧАНИЯ
Настоящий том произведений А. Ф. Лосева целиком составляют работы, ранее не публиковавшиеся – если не считать небольших отрывков из «Диалектических основ математики>ч(Начала. 1993. № 2; 1994. № 2—4). Все работы обнаружены в архиве автора. Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений.
«Диалектические основы математики» замышлялись как первый том серии из двух или более томов. Текст сохранился в двух неидентичных экземплярах машинописи 30–х годов. Работа не окончена: в рукописи 107 параграфов, тогда как в содержании (см. наст, т., с. 18—23) указаны 128; поправки А. Ф. Лосева и В. М. Лосевой и вписанные авторской рукой формулы имеются лишь в первой ее половине. Машинопись не была сверена автором и содержит многочисленные лакуны и искажения. Книга датируется серединой 30–х годов, но не позднее 1936 г. (во всяком случае ее основная часть), когда было написано «Предисловие» В. М. Лосевой.
При подготовке публикации привлекался ряд изданий, либо прямо указанных в тексте, либо таких, о которых с высокой долей вероятности можно предположить, что они были использованы автором. Из последних часть приведена нами в примечаниях, остальные перечислим здесь, указав тематику и характер использования: 1ильберт Д. Основания геометрии. Пг м1923 (уточнение формулировок аксиом геометрии); Бертитейн С. Η. Теория вероятностей. Μ.; Л., 1927 (уточнение формулировок аксиом теории вероятностей); Математический сборник. 1922. Т. 31. Вып. I (уточнение формулировок аксиомы выбора и библиографии); Флоренский П. А. Мнимости в геометрии. Μ., 1922 (библиография трудов о мнимых числах); Клейн Ф. Элементарная математика с точки зрения высшей. Μ., 1933 (недостающая формула расстояний циклических точек); Лузин И. Н. Интеграл и тригонометрический ряд. Μ., 1916 (уточнение формулировок из теории функций). Рисунки воспроизведены—с учетом авторских отсылок—по изданиям: Энциклопедия элементарной математики. Т. 2. Одесса, 1909 (рис. 1—5); Богомолов С. А. Основания геометрии. М.; Пг., 1923 (рис. 6, 7); Лямип А. А. Неэвклидова геометрия. Μ., 1914 (рис. 8).
Работы второй части тома публикуются также по машинописи, содержащей авторские поправки. Время написания фрагмента «Математика и диалектика» относится к периоду создания «Диалектических основ математики»; остальные тексты приблизительно датируются первой половиной 40–х годов.
Составители данного тома соблюдали принципы, принятые при работе над предыдущими томами. Без упоминания в примечаниях исправлены опечатки и явные описки (искажения слов, рассогласование членов предложения, механические повторы), изменена устаревшая орфография (коррялат, проэктивный, итти и т. д.), пунктуация приближена к современной, унифицированы шрифтовые выделения, уточнена нумерация параграфов. Все конъектуры помещены в квадратные скобки, в том числе отдельные математические буквенные символы; в случаях, когда не удалось восстановить авторские ссылки на параграфы внутри работы, отсутствующий параграф отмечен пустыми квадратными скобками; кроме того, в наст, томе встречается принятое в математике обозначение квадратными скобками отрезка. Угловыми скобками обозначены имеющиеся в тексте пропуски и даны реконструированные математические формулы. В спорных случаях исправления в тексте оговариваются в примечаниях, тем самым читателю предоставляется возможность судить о правомочности поправок, сравнив их с оригиналом. Если в тексте заподозрено искажение, однако неясно, что должно стоять взамен, в примечании указывается, что так в рукописи. В «Диалектических основах математики» сохранены разночтения между некоторыми пунктами авторского содержания и названиями параграфов в тексте.
Примечания ограничены текстологическими комментариями и переводами иностранных терминов и выражений. Выполнены В. П. Троицким.
notes
Примечания
1
В рукописи сноска к этому месту не сохранилась.
2
В рукописи сноска к этому месту не сохранилась. А. М. Горький в своей статье «О борьбе с природой» (Правда. 1931. 12 дек.) относил А. Ф. Лосева к «людям, которые опоздали умереть».
3
В рукописи: всегда.
4
В современной транскрипции – Брауэра.
5
В рукописи сноска к этому месту не сохранилась. См.: Франк С. Новая русская религиозная система (Путь (Париж). 1928. № 9. С. 89): «...после «Феноме-нологии духа» Гегеля едва ли найдется много примеров философских построений, подобных системе Лосева».
6
В рукописи сноска к этому месту не сохранилась. См.: Деборин А. Со-временные проблемы философии марксизма // Вестник Коммунистической акаде-мии. 1929. № 32 (2).
7
В рукописи: внутренний символ.
8
В рукописи: явно.
9
то же самое через то же самое (лат.).
10
В рукописи: нечто.
11
В рукописи: оно.
12
Так в рукописи.
13
В рукописи: математических.
14
В рукописи: становящегося эволютивно данного личностного бытия.
15
В рукописи: прогресса.
16
В рукописи: получим.
17
Так в рукописи.
18
В рукописи: числа.
19
Здесь и ниже нумерация аксиом дана по кн. Д. Гильберта «Основания геометрии».
20
[Д. Гильберт. Основания геометрии. Пг., 1923. С. 109.]
21
В рукописи: сопоставлением.
22
Клейн сообщает, что сам Кантор сказал ему однажды, что он, Кантор, хотел достигнуть в теории множеств «истинного слияния арифметики и геометрии» («Элем, матем. с т. зр. высшей». 1933. I 397).
23
В рукописи: других.
24
с соответствующими изменениями (лат.).
25
В рукописи: принципа.
26
См. его «Опыт аксиоматического обоснования теории вероятностей» в «Сообщениях Харьковского математич. общества» за 1917 г. и в общем курсе «Теории вероятностей». М.; Л., 1934. II.
27
М. Pasch. Vorles. ub. neuere Geometrie. Lpz., 1882; 1926 2.
28
Mathem. Ann. 59 Bd.
29
предвосхищение основания (лат.).
30
Букв.: анализ положения (лат.).
31
A. Fraenkel Einl. in d. Mcngcnl.2, 213.
32
Hausdorff. Grundz., 70.
33
Теория вероятностей 3, 23.
34
Так в рукописи.
35
А. Пуанкаре. Последние мысли. Пер. под ред. А. П. Афонасьева. Птгр., 1923 (статья «Почему пространство имеет три измерения?»).
36
Определение непрерывности у Р. Дедекинда. Непрерывность и иррацион. числа. Пер. С. Шатуновского. Од., 1909.
37
<...> 1871. V 128.
38
В рукописи сноска к этому месту не сохранилась. Возможно, имеется в виду: Mathemathische Annalen. Berlin, 1872. Bd. 5. S. 128.
39
Так в рукописи.
40
Учение о континууме Г. Кантор формулировал в «Основах общего учения о многообразиях». Рус. пер. в «Нов. идеях в математике». СПб., 1914. № 6. § 10.
41
Так в рукописи.
42
В рукописи: переключаемые.
43
В рукописи: многогранники.
44
В рукописи: видели.
45
В рукописи: перспективной.
46
В рукописи: примере.
47
Так в рукописи.
48
В рукописи: научаются.
49
В рукописи: что.
50
В рукописи: видение.
51
В рукописи: вовне.
52
В рукописи: не важна.
53
Д. Гильберт. Основ, геометр. 12.
54
[G. Veronese. Grundzuge der Geometric. Leipzig, 1894 2. ]
55
В рукописи: категорий.
56
В рукописи сноска к этому месту не сохранилась.
57
Ниже излагаются элементы теории лебеговской меры плоских множеств. Вся формульная часть этого п. 6 реконструирована по изд.: Александров Π. С., Колмогоров А. Н. Введение в теорию функций действительного переменного. М.; Л., 1933.
58
В рукописи: разрешимость. Везде далее вместо «точка разрежения» в ру-кописи значится «точка разрешения».
59
Η. Лузин. Интеграл и тригонометрия, ряд. Математич. сборн. 1916. Т. XXX, 12слл.
60
В рукописи фраза искажена, исправлено по цитируемой кн. Η. Н. Лузина.
61
В рукописи: неизмеримой.
62
Так в рукописи.
63
В рукописи: в геометрии мы получаем.
64
В рукописи: над.
65
В рукописи: принимаемые в математике решительно по всему.
66
В рукописи: сравнивать.
67
В рукописи: мирами.
68
В рукописи: п. 2b.
69
В рукописи схема не сохранилась.
70
Относительно того, какие именно теоремы основаны на аксиоме Цермело и насколько она необходима в разных отделах теории множеств, деловую сводку можно найти у В. К. Серпинского.—Аксиома Zermelo и ее роль в теории множеств и в анализе//Математический сборник. 1922. Т. 31. Вып. 1.
71
В рукописи: но.
72
В рукописи: величины.
73
В рукописи: независимых.
74
В рукописи: в бесконечность.
75
H. Poincare. Theorie des groupes fuchsiens.– Acta mathem. 1882. I; Он же. Memoire sur les groupes kleineens.—Там же. 1893. Ill; F. Klein. Nicht-Eukleidische Geometrie; H. Weber и У. Wellstein. Энциклопедия элементарной математики, т. II, кн. 1-я /Пер. под ред. В. Кагана. Одесса, 1909 (ценные примечания редактора перевода); В. Каган. Основания геометрии. Т. II // Исторический очерк развития учения об основаниях геометрии. Одесса, 1907.
76
На полях рукописи карандашом: Wsb.– Wfellst. стр. 65.
77
В рукописи: точки.
78
На полях рукописи карандашом: W;b.– Wfellst. 65 стр. рис. 29.
79
В рукописи оставлено место для рисунка.
80
На полях рукописи карандашом: рис. пов. Мёбиуса.
81
Так в рукописи.
82
На полях рукописи карандашом: Богомолов рис. 27.
83
На полях рукописи карандашом: Лямин. Неэвкл. геом. рис. 23.
84
Billetin de la Societe mathematique de France. Т. XV. N 7, 203—216. Есть рус. пер. Д. Μ. Синцова: «Об основных гипотезах геометрии» в сб. «Об основаниях геометрии». Каз., 1895.
85
В рукописи сноска к этому месту не сохранилась.
86
В рукописи: места.
87
В рукописи: если.
88
В рукописи: произошли.
89
Так в рукописи.
90
Так в рукописи.
91
В рукописи: склонность (ниже—склонности).
92
В рукописи: склонность (ниже—склонности).
93
Journal fur d. reine u. angcwandte Mathemat. 1878. Bd 84.
94
В рукописи: одноместному.
95
Я. Я. Лузин. Современное состояние теории функций действительного переменного. М.; Л., 1933, 52.
96
способ выражения (φρ.).
97
В рукописи: чего.
98
В рукописи: понятие.
99
В рукописи сноска к этому месту не сохранилась.
100
В рукописи: распределения.
101
Дальнейшее изложено главным образом по Я. И. Френкелю. «Волновая механика». Л.; Μ., 1934. I.
102
В рукописи: редкий.
103
В рукописи: индивидуальность.
104
В рукописи: облегчить.
105
В рукописи: значения.
106
Так в рукописи.
107
В рукописи: очевидности.
108
В рукописи: принятия.
109
В рукописи: пополнения.
110
В рукописи: заполняемое.
111
В рукописи: функций.
112
В рукописи: тела.
113
В рукописи: так что.
114
Исходя из контекста, мы даем формульное выражение для т. н. задачи Лагранжа.
115
Из многих возможных вариантов мы выбрали оценку Гаусса, самую известную.
116
В рукописи: нуля.
117
В рукописи: полагает.
118
В рукописи: единство.
119
В рукописи далее оставлено место, видимо, для иноязычных терминов.
120
В рукописи: ее.
121
В рукописи: комбинаторной.








