412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Алексей Лосев » Хаос и структура » Текст книги (страница 55)
Хаос и структура
  • Текст добавлен: 16 октября 2016, 21:33

Текст книги "Хаос и структура"


Автор книги: Алексей Лосев


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 55 (всего у книги 62 страниц)

Рабочий продает свою рабочую силу. Ее потребление есть ее использование, ее употребление по прямому назначению, т. е. производство. Владелец денег затрачивает определенную сумму денег на приобретение этого товара, живой рабочей силы, т. е. на наем рабочих, и этот товар потребляет, т. е. рабочие производят. В таком случае и получается, что затративший деньги может получить гораздо больше товаров, чем стоимость купленной им рабочей силы.

Два обстоятельства здесь надо отметить, и тогда западноевропейский стиль производства сможет получить от нас свое настоящее наименование.

Во–первых, рабочая сила не может быть потребительной ценностью для самого рабочего. Если бы это было так, то незачем было бы рабочему продавать свою рабочую силу. Ему вполне достаточно было бы продавать продукты своей силы, а не саму силу. Свою силу он употреблял бы на себя, а лишний продукт сбывал бы в другие руки. Но тогда этим его трудом не мог бы воспользоваться владелец денег, и вместо стремящегося и томящегося по бесконечным далям субъекта получился бы уравновешенный, денежный и спокойный субъект феодального хозяйства, работающий сам для себя, для удовлетворения своих непосредственных житейских потребностей. Итак, рабочая сила не может быть потребительной ценностью для самого рабочего, но – только для владеющего деньгами.

Во–вторых, если бы у рабочего были свои собственные средства производства, то продавать свою рабочую силу ему было бы опять нецелесообразно. Он и работал бы сам для себя. Значит, продажа собственной рабочей силы имеет смысл только в условиях отделения средств производства от рабочего. Средства производства не должны принадлежать ему.

Отсюда получается, что приведенная формула, где Д превращается в Д+d, осуществляется только тогда, когда рабочий лично свободен, когда он свободно продает свою рабочую силу в качестве товара и когда он свободен во всех отношениях, свободен от средств производства.

Употреблять получаемое знание только для своих потребностей западный индивидуалист не может. Это было бы и бессмысленно. Зачем была бы эта безумная трата сил, вся эта духовная и материальная горячка, которой страдает западная душа? Тогда было бы достаточно тех знаний и тех духовных ресурсов, которыми вполне владел уже средневековый человек. А тут вся новость заключается в том, что человек создает духовно–материальные ценности вовсе не для своего экзистенц–минимума, а для чего–то совершенно другого. Ну, пусть рабочий создает эти ценности для предпринимателя. Однако, рассмотревши этого предпринимателя ближе, мы замечаем, что созданные материальные и духовные ценности не нужны также и ему. Сам он есть только некий медиум, через который проносятся эти ценности в непрестанной своей свистопляске. Но для такой структуры общества необходимо, чтобы оно было именно медиумом, не заинтересованным в самих ценностях, но заинтересованным только в процессе их возникновения, в самой этой свистопляске. А для этого надо, чтобы рабочая сила не была потребительной ценностью для самого рабочего и чтобы последний брался в своем чистом виде, т. е. «свободным» от всего—от земли, от средств производства, чтобы никакие силы не мешали ему продавать себя, т. е. чтобы он был свободен лично и политически. Предприниматель же должен быть свободен от привязанности к продукту как таковому, от непосредственного отношения к вещам, от любовного и интимного отношения к бытию. Он должен все это приносить в жертву безудержному стремлению к накоплению. И рабочий, и предприниматель свободны тут от вещей, и оба находятся в кабале от вечного процессуализма; но у одного кабала выражена материально, а у другого—духовно.

Теперь мы можем назвать этот тип культуры подобающим ему именем. Это есть капитализм с антитезой предпринимателя и рабочего и с такой структурой хозяйства, которая обеспечивает неизменное нарастание Д, обеспечивает всем внутренним характером производственных отношений.

Капитал имеет смысл только тогда, когда он неизменно растет, когда он постоянно уходит в предприятие и оттуда возвращается обогащенным. Капитал, никак не растущий, не есть капитал. Но для постоянного роста нужны специальные производственные и хозяйственные отношения; и они превратились в специальный культурный тип только в течение новой истории Западной Европы.

В капитализме нет никакой заинтересованности в самих вещах, в самом объективно–индивидуальном бытии. Тут никто ни для кого не является личностью. Для капиталиста рабочий не личность, но лишь арена для превращения Д в Д+ό. Равным образом и производимые вещи для него не вещи; они ему нужны только для превращения Д в Д+d. И для рабочего производимые им вещи не суть вещи. Он не только ими не пользуется, но часто даже не видит их в законченном виде. При той рационализации и дифференциации производства, которой отличается капитализм, рабочий часто является автором только некоторой мелкой части создаваемой вещи, и ему меньше всего доступно ощущать создаваемую на производстве вещь именно как цельную вещь. Таким образом, никто ни для кого не является в капиталистической культуре индивидуально–объективной субстанцией и ценностью. Строго говоря, даже Д не является для капиталиста той вещью, которую бы он действительно ценил, к которой бы он стремился. Даже больше того. Его не интересует в этом смысле даже Д+d. Ничто личностное и индивидуально–вещественное его не интересует. Единственное, что его интересует, – это не Д и не Д+d, но самый переход от Д к Д+d, самый процесс, идущий от Д к Д+d, этот европейский уход в бесконечную даль власти, могущества, риска, борьбы, наслаждения и страдания.

То, что создает в науке бесконечную, не имеющую границ вселенную, эти бесконечные миры Джордано Бруно, то самое в экономической жизни ведет к капиталистическому способу производства. То самое, что заставляет человека направлять свой рассудок в отношениях с природой и видеть в них лишь схему, лишь арену для рассудочных исследований, то самое в экономике заставляет предпринимателя бросать наивные, непосредственные методы феодализма и переходить ко всеобщей рационализации хозяйства, к детальной дифференциации труда, к превращению рабочего в схему, в арену для рассудочного, жесточайше расчетливого и рационального использования живого человеческого материала для собственных романтических полетов.

II. ИСЧИСЛЕНИЕ БЕСКОНЕЧНО–МАЛЫХ И ЕГО ОСНОВНЫЕ КАТЕГОРИИ

1. Бытие, небытие, становление. Приступая к логическому анализу всех основных категорий, оперирование с которыми создает науку математического анализа, мы должны помнить, что далеко не все, понятное математически, тем самым является понятным и с философской точки зрения. Часто бывает так, что математик ограничивается каким–нибудь очень коротким разъяснением или формулой, философ же затрачивает массу времени и пространства, чтобы эту короткую и простую формулу разъяснить для себя и понять. Точно так же нередки и случаи, когда весьма пространные математические выкладки для философа не имеют почти никакой цены и из массы доказательств важной оказывается только какая–нибудь одна идея. Тем не менее давно уже настало время, когда математический анализ требуется понять широко философски и ощущается насущная потребность вывести его из формалистического тупика и пустой, бессодержательной трактовки.

Мы рассмотрим ряд категорий, приводящих к самому понятию бесконечно–малого, потому что понятие это с логической точки зрения довольно сложное и те определения, которые мы имеем в руководствах по анализу, для нас слишком формалистичны и техничны. Они совсем не вскрывают ту логическую структуру, которая кроется в понятии бесконечно–малого.

Мы начнем с тех трех категорий, с той общезначимой диалектической триады, без которой невозможно вообще никакое логическое построение, и каждое логическое построение есть только вид этой триады, один из бесконечно разнообразных ее случаев. Это та триада, с которой начинается всякая диалектика:

1) бытие,

2) небытие (инобытие),

3) становление.

Тут прежде всего – бытие. Почему диалектика начинается с бытия? Потому что всё, всякая категория, прежде чем быть самой собой, должна просто быть. Прежде чем быть чем–нибудь и как–нибудь, надо сначала просто быть. Вот почему диалектика, желающая дать всю область знания в системе, необходимым образом начинает с «бытия». Бытие—первый шаг, первый жест, первое движение, первая точка диалектики. Без этой точки, без этого первоисточника никакое построение невозможно.

Далее, бытие не может остаться только бытием, просто бытием. Бытие не есть бытие вообще. Если бы оно всегда оставалось бытием вообще, мы никогда не смогли бы получить никаких конкретных форм бытия. Существует не просто бытие, но и разные виды бытия. А для этого нужна такая универсальная категория, которая бы сделала возможным существование этих разных видов бытия. Такой категорией является инобытие, т. е. иное, другое бытие, являющееся по отношению к первому общему бытию отрицанием его, отсутствием его, небытием. Как только мы положим бытие, так тут же необходимо полагать и небытие; это понятия соотносительные. Если есть черный цвет, то он может быть только тогда, когда есть (или по крайней мере мыслится) не–черный цвет. Если мыслится белое, значит, как–нибудь и где–нибудь существует «не–белое». Также и «бытие», если оно реально есть или мыслится, то тем самым есть или мыслится «инобытие».

Но стоит только немного задуматься над той антитезой бытия и небытия, как становится совершенно ясно, что остаться при такой антитезе совершенно невозможно. Если оставить эти две области бытия и небытия в их голой и абсолютной противоположности, то совсем не будет достигнута цель, ради которой мы и ввели понятие инобытия. Мы ввели его для того, чтобы вместо абстрактного и общего бытия получить его конкретные виды. Но если инобытие будет абсолютно оторвано от бытия и не будет как–то с ним совмещено, – не возникнет и никаких конкретных видов бытия. Необходимо их как–то объединить, эти категории бытия и небытия, как–то нащупать то, что есть в них общего и что могло бы нейтра–лизировать этот дуализм двух противоположных логических стихий. Но что значит найти общее, что значит объединить? Это значит найти такую новую категорию, где обе полученные уже содержались бы и где они были бы покрыты чем–то третьим, что их и объединило бы.

Такой категорией является становление. В становлении мы находим прежде всего то, что становится. Стало быть, тут бытие налично. Но вместе с тем здесь же мы имеем тоже и некое как бы отталкивание от этого бытия. Становление есть ведь некий процесс, где бытие все время меняется и переходит в другое. В каждый мельчайший момент своего становления бытие—все иное, иное и иное. Оно тут никогда не одно и то же. В каждый мельчайший новый момент бытие оказывается небытием в отношении к прежнему бытию, к бытию в его прежней форме. И таким образом, в каждый мельчайший момент становления становление оказывается и бытием, и небытием. Потому в диалектике и говорят, что бытие и небытие синтезируются в становление.

2. Целое, дробное, бесконечность. Тут мы пока еще у преддверия анализа бесконечно–малых, но пока еще не вошли в него, не получили еще самого понятия бесконечно–малого. Попробуем конкретизировать достигнутую нами диалектическую ступень – с тем чтобы дойти постепенно и до этого понятия.

Первое, с чем мы тут встретимся, – это понятие и область числа. Когда мы выставляли указанную диалектическую триаду, мы не имели в виду чисел, а говорили в применении вообще ко всяким возможным предметам мысли. Теперь необходимо эту же самую триаду провести в чисто числовой области.

Разумеется, различных форм приложения этой триады к области чисел очень много. Так, напр., если мы возьмем положительное число, то антитезой к нему будет, очевидно, отрицательное число, а синтезом, в котором соединится то и другое, будет, очевидно, нуль. Но эта триада неинтересна в смысле получения понятия бесконечно–малого, и она ничего не разъясняет нам в математическом анализе. Потому подробно говорить о таких построениях надо только в общей философии числа, но не в логике математического анализа. Что же в числе есть такого, диалектическое понимание чего приводит нас вплотную к математическому анализу?

Математический анализ есть исчисление бесконечно–малых. Стало быть, здесь мы находимся в области учения о бесконечном. Спрашивается: что такое бесконечность?

Самое простое и самое «понятное» популярному сознанию – это то, что бесконечность есть нечто, не имеющее конца. Хотя это как будто и ближе всего передает смысл данного понятия, тем не менее считать это вполне ясным совершенно невозможно. Как понимать это отсутствие конца? Обычно это понимается так, что, сколько бы мы ни двигались к границе, мы никогда не можем ее достигнуть. Другими словами, в понятие бесконечности вносят идею процесса. И это вполне справедливо, хотя, быть может, и недостаточно. Самое простое и самое понятное—это понимать бесконечность как бесконечный процесс. Однако этим нисколько задача не решается. Вместо того чтобы определить понятие, выраженное при помощи существительного («бесконечность»), мы в данном случае приходим к необходимости определять понятие, выраженное через прилагательное («бесконечный процесс»). И если мы там не понимаем, что такое бесконечность, то не станет она понятнее и здесь. Какой же процесс мы должны считать бесконечным? Вот вопрос, который теперь предстоит нам решить.

Пусть мы от 1 перешли к 2, от 2 к 3, от 3 к 4 и т. д. Спрашивается: можем ли мы когда–нибудь на этом пути получить бесконечно–большое число? Пусть мы знаем, что такое 2; и пусть нам известно, что такое 10. Можем ли мы путем прибавления отдельных единиц получить из двойки десятку? Конечно, можем. На пути прибавления к двойке отдельных единиц и лежит то самое число, которое называется десяткой. Но можем ли мы на этом же самом пути получить бесконечность? Очевидно, нет. Зная только одни конечные числа, мы, какими бы арифметическими операциями ни пользовались, никогда и никак не можем получить бесконечную величину. Это значит, что бесконечность отличается от конечных величин отнюдь не количественно, а качественно. Это какое–то особое качество среди количественных операций; и к нему нельзя прийти путем обычных количественных операций, но только путем «скачка».

Итак, ни голая процессуальность не определяет бесконечности, хотя и как–то входит в нее, ни голая количественность не определяет бесконечности, хотя тоже как–то входит в нее. Приходится, следовательно, искать иных путей для нахождения понятия бесконечности.

Обратим внимание на следующее. Бесконечность не увеличивается и не уменьшается от количественного ее увеличения и уменьшения. Стало быть, в каждом отдельном пункте бесконечность есть уже вся бесконечность, какие бы операции мы над ней ни производили. Каждый момент бесконечности есть и вся целая бесконечность. Раз оо + А (любое число) =оо, то ясно, что в бесконечности каждая отдельная ее часть равняется всей бесконечности, взятой в целом. Этого, разумеется, никогда не бывает в конечной области. Тут всегда часть меньше целого и целое больше части. Этим область бесконечности коренным образом отличается от области конечных величин. Тут, однако, кроется и еще одна категория. Простое тождество целого и части еще ничего не говорит о бесконечности, если эти категории брать самостоятельно. Нужно точнее определить способ отождествления целого и части и ясно ощущать форму этого отождествления. Этот способ и эта форма не могут быть статическими. Бесконечность, видели мы, есть прежде всего процесс. Следовательно, отождествление целого и части должно быть дано в процессе, в становлении. Становление должно объединить целое и часть или, вообще говоря, целое и дробное, и тут–то и необходимо искать категорию бесконечности.

Как же протекает этот процесс отождествления целого и части в бесконечности?

Чтобы перейти от целого к дробному, надо перейти от бытия к небытию. Дробное—инобытие целого. Целое, воплотившись в инобытие, превращается в отдельные части и их сумму. В целом все элементы существенно связаны один с другим, почему они и являются элементами, или частями. Когда же целое воплощено в инобытии, все его элементы тоже воплощены в инобытии, но они уже дискретны друг в отношении друга, так как всякое инобытие есть всегда прежде всего внеположность и саморазличение, самоотрицание. Итак, целое выражается внешне–инобытийным образом в дробном, в отдельных частях, в сумме частей, в том, что в отличие от внутреннего центра целости можно назвать всем. Всё – воплощенное в инобытии целое.

Но если так, то спрашивается: может ли инобытийная стихия выявить внутреннюю целость вполне и адекватно? Конечно, может. Тогда в инобытии мы находим именно всё. Но она может выявлять его и не полностью, не адекватно. Становление есть как раз такая категория, которая мешает в данном случае адекватному выявлению целости. В целом все дано сразу, а становление все дает постепенно, не сразу. Следовательно, если дать свободу стихии становления, то целое, хотя и будет все время дробиться на части (в инобытии) и будет в них постоянно присутствовать, оно никогда не получит полного выявления и всегда будет только стремиться к полноте выявления. Целое дробится на части, и эти части призваны выразить его целиком; но так как части эти тождественны с целым, то количество элементов целого присутствует в части, она тоже делится на те же части, а часть этой части опять, в силу своего тождества с целым, содержит в себе то же количество частей и т. д. и т. д. Идя по этому пути, мы никогда не сможем выразить всего целого при помощи его частей – и это потому, что части возникают в результате постепенного дробления, т. е. в результате становящегося дробления, в результате становящегося отождествления целого и частей.

Теперь мы можем дать некоторого рода логическую формулу, определяющую понятие бесконечности.

Бесконечность есть становящееся тождество (или становящийся синтез) целого и дробного.

Это простейшая концепция бесконечности, без которой невозможно будет понять и отдельных видов бесконечности. Тут мы видим, что без момента целости нельзя получить понятие бесконечного. Видим также, что в бесконечность входит и момент процесса, становления. Необходимо полнейшим образом представлять себе участие каждого из этих моментов в общем понятии бесконечности.

Целое дробится, выражается своими частями. По условию целое должно содержаться в своей части – тем самым возникает их тождество. Но части должны мыслиться не стационарно, но в последовательном возникновении, в становлении. Тогда получается невозможность исчерпать все части целого, т. е. образуется бесконечность.

В бесконечности дана целость, но не сама по себе, а как подчиненный момент. Если бы ее тут не было, то не могло бы быть и дробления, т. е. не было бы никакого перехода к мельчайшим частям и не было бы, значит, ухода в бесконечность. В бесконечности дана дробность, но опять–таки не сама по себе, а как подчиненный момент. Если бы ее тут не было – опять не могло бы возникнуть процесса дробления и не могло бы возникнуть ухода в бесконечность. Бесконечность не целое и не дробное. Но она и целое, и дробное, и нечто гораздо большее, в чем обе эти категории как бы взаимно растворяются. Это целое, из объединившее, есть становление одного другим, становление целого дробным и дробного, частного—целым. В бесконечности все последовательные моменты равны один другому, но они в то же время и различны, так как возникают они в процессе становления. Целое стремится выразиться в убывающих частях и не может, и части стремятся стать целым и не могут. Все это в процессе становления по самой природе своей алогично, т. е. нерасчленимо, неразличимо.

Бесконечность, таким образом, есть вид становления. От становления рообще этот вид становления отличается тем, что тут совпадает не просто бытие с небытием, но именно целое с дробным. Каждый момент бесконечности представляет собою не просто переход от бытия к небытию и от небытия к бытию, т. е. не просто уничтожение и возникновение, но переход к раздробленности и обратно, т. е. рост целостности и дробления. Когда мы движемся в области бесконечности от одной точки к другой, то тем самым мы, во–первых, удаляемся все в большую дробность, но в то же время, во–вторых, обнимая все большее и большее количество точек, мы неизменно стремимся ко все большей и большей цельности. Такая структура числа, где эти два процесса являются существенно тождественными, такая структура числа и называется бесконечностью.

Из предыдущего вполне ясно, что бесконечность меньше всего определяется размерами. Бесконечность помещается в любых конечных размерах. Если мы возьмем линию длиною в 5 см, то на ее протяжении поместится бесконечное количество точек. Если мы возьмем линию длиною в 1 см, то, очевидно, на ней тоже поместится бесконечное количество точек. Если мы возьмем линию в 0,1 см, в 0,01 см, в 0,001 см длиною и т. д. и т. д., то и на этих линиях, как бы малы или велики они ни были, тоже помещается бесконечное количество точек. Отсюда совершенно ясно: бесконечная величина определяется не абсолютными размерами числа или вещи, но определенно– взаимоотношением их целости и их дробности, а именно тем взаимоотношением, когда они даны как полное тождество.

3. Антиномии и типы бесконечности. Вопрос об антиномиях, равно как и вопрос о типах бесконечности, – не только сложная вещь, но она потребовала бы и слишком пространного изложения. Заниматься этим, однако, должны теоретико–философские сочинения, в то время как настоящее сочинение имеет очень узкие цели, да и занимается математический анализ, если его брать в чистом виде, только одним специфическим типом бесконечности. Поэтому, не развивая антиномики бесконечного в систематическом виде, формулируем то, что уже было сказано выше, в расчлененно–антиноми–ко–синтетической форме и тем самым дадим по возможности четкое изображение диалектики понятия бесконечности.

I. 1. Целое состоит из частей, так как в нем ничего и нет, кроме частей.

Это значит, что целое тождественно со своими частями.

Но тогда оно распростерто по всем своим частям и, след., находится везде.

Итак, целое, состоя из частей, находится везде.

2. Целое не состоит из частей, так как ни одна часть, взятая сама по себе, не говорит о целом, и, след., не говорят о нем и все части, взятые вместе.

Это значит, что целое не содержится в своих частях, т. е. оно не находится нигде.

Итак, целое, не состоя из частей, нигде не находится.

3. Целое и состоит, и не состоит из своих частей, т. е. оно сразу и одновременно и находится везде, и не находится нигде.

Но «состоять» и «не состоять», равно как и «везде» и «нигде», связаны между собой антитетически, т. е. как бытие и небытие. Поэтому связаны они между собой как становление одного другим.

Следовательно, целое и его части находятся в процессе становления, в котором они взаимно переходят одно в другое, т. е. целое неразличимо становится самими частями и части неразличимо становятся целым.

II. 1. Целое—везде.

Это значит, что части его взаимно неразличимы.

2. Целое – нигде.

Это значит, что части его взаимно различимы.

3. Целое—и везде, и нигде.

Следовательно, части целого находятся в процессе становления, в котором они взаимно переходят одна в другую, т. е. каждая отдельная часть неразличимо становится каждою другою частью.

III. 1. Целое становится частями, как и части целым; и части становятся одна другою.

2. Но в становлении отождествлены бытие и небытие.

Здесь бытие становится небытием; стало быть, оно уничтожается.

И небытие становится бытием; стало быть, оно возникает.

Становление, следовательно, есть противоречие возникновения и уничтожения.

Разрешается это противоречие в такой категории, где возникновение и уничтожение совпадают.

Эта категория есть то, что получается в результате становления, т. е. ставшее. И ставшее возникает в каждый мельчайший момент становления; поэтому ставшее в свою очередь пребывает в процессе становления, рассыпаясь на бесконечное количество ставших моментов и из них восстановляясь.

3. Целое и части, а также части между собой возникают одно из другого и уничтожаются одно в другом при полном отождествлении этих процессов. Становящееся тождество возникновения и уничтожения есть бесконечность.

В результате этого бесконечностью нужно считать такой процесс, в котором каждый мельчайший новый момент есть возникновение нового, небывалого и в то же время уничтожение как всех старых моментов, так и самого себя.

Полученное нами здесь понятие бесконечности может быть развито в трех разных направлениях.

Во–первых, можно в этом понятии выдвигать на первый план момент количества, счетности. Хотя, строго говоря, бесконечность не есть нечто количественное и ее нельзя получить в результате счета, все же она относится к числовой сфере, и какую–то количественность она в себе содержит. Эта количественность совсем особого рода. Тут отдельные моменты количества слиты один с другим до полной неразличимости. И тем не менее они все же наличны. Упирая на счетность, мы получим тип бесконечности, который есть.

I. Арифметическая бесконечность. С этим типом бесконечности мы стараемся производить обычные арифметические операции, хотя своеобразие этой категории приводит к своеобразию и операций над нею.

Во–вторых, в общем понятии бесконечности мы можем выдвинуть то, что является антитезисом всякой раздельной счетности, т. е. чистую стихию становления, чистую процессуальность, становящуюся неразличимость. Без этого момента бесконечность также немыслима, хотя она и не есть только этот момент. Этот тип бесконечности и есть тот тип, который рассматривается в чистом математическом анализе. Отсюда ее можно назвать и соответствующе:

II. Аналитическая бесконечность.

Наконец, можно выдвигать в общем понятии бесконечности оба этих момента вместе – раздельную счетность и неразличимое становление (невозможность счета). Тогда первый момент воплотится на втором, как всякая отвлеченная идея воплощается на безразличном материале. Идея – раздельность, логическая последовательность, форма и система; становление безраздельно, алогично и бесформенно. Объединение их дает фигурную бесконечность, определенным образом оформленную, «упорядоченную», ту, которая является предметом особой математической науки, – учения о множествах. Ей можно дать тоже свое название.

III. Аритмологическая бесконечность.

Арифметическая, аналитическая и аритмологическая бесконечности суть три наиболее ярко отличающиеся друг от друга типа бесконечности. Немудрено, что ими занимаются три столь различные математические науки.

Нас в дальнейшем будет интересовать, конечно, только второй тип бесконечности – аналитический.

4. Непрерывность (постоянная и переменная величина), прерывность и предел. Однако прежде чем войти в рассмотрение самого математического анализа, необходимо определить еще ряд категорий, которые так же основоположены для анализа, как и понятие бесконечности. Их тоже обычно излагают в случайной форме, не связывая в диалектическую систему, в то время как это касается самых основных сторон математики, и они не могут не иметь диалектического строения, если все вообще категории возникают диалектически.

Ряд категорий, которые требуют нашего рассмотрения, отличаются одним общим признаком. Число есть непосредственное бытие; в нем нет еще различия между самим числом и его значением. До сих пор мы имели число само по себе. Целое, дробное и бесконечное число есть значения числа в смысле его внутреннего строения. Чтобы узнать, является ли данное число целым или дробным, необходимо всмотреться в само число непосредственно, не обращая никакого специального внимания на фон, его окружающий. Это касается и не только числа. Чтобы судить, является ли данная вещь цельной, надо, очевидно, рассмотреть строение самой вещи, как оно дано в контурах, внутри контуров данной вещи. Когда сосуд, напр., имеет трещину или дыру, то для констатирования этого достаточно только изучить сосуд в тех границах, которые даны очертанием этого сосуда. И мы вполне будем в состоянии определить, является ли данная ваза целой, или она разбита. Однако о значении числа или вещи можно говорить и с точки зрения их внешней судьбы. Можно представить себе, что вещь мыслится совершенно неизменной сама по себе, но что она погружена или вовлечена в какое–нибудь изменение, оставаясь сама по себе целой. Можно иметь одно и то же число или комбинацию чисел и, оставляя их в одном и том же виде, придавать им те или иные внешние значения. Тут не будет ни просто числа, взятого в его непосредственности, вне каких бы то ни было количественных значений, ни числа, в котором имеются в виду только изменения во внутренней структуре. Тут число вступит в новые значения при полном сохранении внутренних структур или, вернее, независимо ни от каких внутренних структур.

Прежде всего величина с этой внешней точки зрения может никак не меняться; она может иметь, так сказать, нуль изменения. Такую величину называют постоянной величиной. Антитезой к этой постоянной величине является, очевидно, переменная величина.

Что такое постоянная величина и что такое переменная величина, это известно уже из элементарной математики. В анализе эта пара понятий играет, однако, гораздо большую роль. Возьмем, напр., площадь треугольника. Из элементарной геометрии известно, что эта площадь равняется половине произведения основания на высоту. Эта формула – «половина произведения основания на высоту» – нисколько не зависит от величины самого основания и самой высоты. Самая эта связь основания и высоты для выражения площади вполне постоянна. Еще ярче, однако, антитеза постоянной и переменной величин в случае, когда выставляется теорема: «сумма углов треугольника равняется двум прямым». Сколько бы ни увеличивать и ни уменьшать отдельные углы треугольника, сумма их все равно остается равной двум прямым. Ясно, что величины отдельных углов треугольника суть переменные величины и сумма всех трех сторон треугольника есть величина постоянная. В физике устанавливается закон о том, что произведение давления газа на его объем есть величина постоянная. Следовательно, если меняется давление, то соответствующе меняется объем газа, произведение же обеих величин никогда не меняется. Ясно, что объемы и давления суть в этом законе переменные величины, их же произведение—постоянная величина.


    Ваша оценка произведения:

Популярные книги за неделю