355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Фейнман » Фейнмановские лекции по гравитации » Текст книги (страница 4)
Фейнмановские лекции по гравитации
  • Текст добавлен: 15 мая 2018, 03:30

Текст книги "Фейнмановские лекции по гравитации"


Автор книги: Ричард Фейнман


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 22 страниц)

Мы благодарны Джиму Бардину, Стенли Дезеру, Брайсу Де Витту, Уилли Фаулеру, Стиву Фраутчи, Джуди Гудстейн, Джиму Хартлю, Ико Ибену, Бобу Крайчману, Чарльзу Мизнеру, Фернандо Мориниго, Джиму Пиблсу, Аллану Сеадеджу и Биллу Вагнеру за ценную помощь, которая была использована при подготовке этого предисловия.

КАЛТЕХ,

май 1995 года

Джон Прескилл и Кип С. Торн

Квантовая гравитация

Фейнман читал свои лекции по гравитации в КАЛТЕХ’e в 1962 – 63 годах, в конце того периода, на который он часто ссылался как на его ”фазу гравитации”. Основной мотивировкой для проведения исследований по гравитации в то время был его интерес к квантовой гравитации. Он говорил мне в 1980 году, что он думал в 50-х годах, что следствия квантовой гравитации могли быть тем ”куском торта”, который стоил того, чтобы над ним поработать. В конце концов, гравитация на самом деле слаба. После грандиозного успеха пертурбативной Квантовой Электродинамики, он рассчитывал, что нет особой нужды разрабатывать что-либо, что находится за пределами первого порядка теории возмущений. Конечно, он ожидал, что могли бы быть трудности при определении согласованной квантовой теории (например, величина гравитационной константы является препятствием для перенормировки). Тем не менее, его идея заключалась не в том, чтобы попытаться построить полную и согласованную теорию квантования и затем получить результаты, а вместо этого двигаться в другом направлении. Суть состоит в том, чтобы вычислить пертурбативные амплитуды для определённых процессов, таких как комптоновское рассеяние гравитоном, а затем биться над любыми интересными трудностями, которые могут возникать одна за другой. По определению ”интересные” трудности могут быть новыми и необычными проблемами, связанными с гравитацией, которые не возникали ранее в квантовой теории поля. Таким образом, первоначально Фейнман игнорировал ультрафиолетовые расходимости и вопросы перенормировки и только позже напряжённо размышлял над этими проблемами. В конце концов, отсутствие формулировки перенормируемости привело к отказу от пертурбативной квантовой теории. Но характерно, что ”план атаки” Фейнмана привёл его к важному открытию в теории поля, а именно к необходимости введения ковариантных духов для того, чтобы сохранить унитарность в однопетлевом приближении (см. обсуждение этого вопроса во введении, написанном Прескиллом и Торном).

Эти лекции появились более 30 лет назад. Мы можем посмотреть на некоторые аспекты анализа Фейнмана вопросов квантовой гравитации и взглянуть в тех направлениях, в которых были проведены исследования.

Связь геометрии и квантовой теории поля

Стандартный и исторический подход к классической гравитации состоит в том, чтобы начать с рассмотрения принципа эквивалентности и развивать в дальнейшем геометрическую точку зрения. Фейнман гордился тем, что он редко следовал стандартному подходу. В углу доски в своём служебном кабинете он написал ”Что я не могу создать, я не понимаю.” Это выражение фактически оставалось нетронутым в углу этой доски в течении более 7 лет. Я впервые увидел его в конце 1980 года, и оно всё ещё оставалось там в феврале 1988 года (см. [Feyn 89]). Таким образом, не удивительно, что Фейнман воссоздаёт общую теорию относительности, исходя не с геометрической точки зрения. Практическая сторона такого подхода состоит в том, что не стоит с самого начала изучать некоторые выкрутасы (”fancy-schmanzy”, как он любил называть это) дифференциальной геометрии для того, чтобы выучить физику гравитации. (На самом деле, существует только необходимость изучить некоторые аспекты квантовой теории поля). Тем не менее, когда конечной целью стала проблема квантования гравитации, Фейнман почувствовал, что геометрическая интерпретация как раз и находится у него на пути. С точки зрения теории поля можно было бы действительно избежать определения таких вещей, как физическое значение квантовой геометрии, флуктуирующая топология, пространственно-временная пена и т.д., а вместо этого посмотреть геометрическое понимание после квантования. (См., например, вопрос Сакса и ответ Фейнмана в работе [Feyn 63b]). Фейнман определённо чувствовал, что геометрическая интерпретация является ”удивительной” (раздел 8.4), но тот факт, что безмассовое поле спина 2 может интерпретироваться как метрика, было просто ”совпадением”, которое "может быть понято как представление некоторого вида калибровочной инвариантности”.

Сейчас у нас есть геометрическая интерпретация классических калибровочных теорий, таких к ах электродинамика и теория Янга-Миллса (см., например, [Yang 77]). Векторные потенциалы

𝐴

α

μ

являются коэффициентами связности на главном расслоённом пространстве, где структурная группа есть калибровочная группа (𝑈(1) для электромагнетизма, 𝑆𝑈(2) для полей Янга – Миллса и 𝑆𝑈(3) для классической хромодинамики). Напряжённости поля 𝐹μν (т.е. электрические и магнитные поля в электродинамике) являются компонентами кривизны, ассоциированными со связностями (потенциалами). Заряженное вещество, которое поле связывает, ассоциируется с векторным расслоением (см., например, [DrMa 77]). Отсюда следует, что интуитивная догадка Фейнмана о связи между геометрией и калибровочной инвариантностью оказывается правильной. С точки зрения фейнмановского интеграла по траекториям, квантовая электродинамика и квантовая хромодинамика равнозначно интегралам по пространству связностей на главном расслоённом пространстве. В то время, как может быть показано, что геометрическая интерпретация калибровочных полей не помогает решить проблемы квантовой электродинамики (КЭД) или квантовой хромодинамики (КХД) (т.е. адекватным образом вычислить или оценить эти интегралы), это несомненно приводит ко многим полезным интуитивным догадкам о топологических аспектах этих теорий (например, неоднозначность Грибова, инстантоны, вакуумный угол и топологически неэквивалентные вакуумы) и к построению новых калибровочных теорий типа Янга -Миллса с топологическими массами.

Спин гравитона и антигравитация

Выгодность теоретико-полевого развития теории гравитации состоит в том, что то, что (находящийся в оболочке) гравитон является безмассовым и имеет спин 2, получается непосредственно без того, чтобы начинать с полностью согласованной, полностью ковариантной теории, т.е. без привлечения Принципа Общей Ковариантности. Это выглядит как построение теории гравитации снизу вверх, вместо того, чтобы строить сверху вниз, используя полный геометрический аппарат. Развитие теории начинается в разделе 2.3 лекций и продолжается в разделах 3.1 – 3.4. Краткое изложение этого аргумента состоит в следующем.

В квантовой теории поля точечных частиц сила между двумя частицами передаётся путём обмена виртуальными (или безоболочечными) частицами. С каждой силой ассоциируется заряд. Заряженные частицы чувствуют силу путём связи или взаимодействия с частицами, которые переносят эту силу. Наиболее привычным примером является электродинамика. Частицы, которые чувствуют силу, переносят электрический заряд. Электромагнитная сила передаётся путём обмена фотонами со спином 1. Сами фотоны незаряжены и, следовательно, напрямую не взаимодействуют друг с другом. Получившиеся в результате полевые уравнения являются линейными. В КХД, теории сильного взаимодействия, построенной из калибровочной теории Янга – Миллса (сильное взаимодействие ответственно за сдерживание вместе нуклонов и, таким образом, за существование атомных ядер), этот заряд называется цветом. Фундаментальные частицы, которые чувствуют сильное взаимодействие, являются цветными кварками, а частицы, которые переносят силу, называются глюонами. Сами глюоны являются частицами с цветовым зарядом, отсюда следует, что в отличие от фотона, они могут напрямую взаимодействовать друг с другом, и результирующие полевые уравнения являются нелинейными. Заряд, связанный с гравитацией, есть масса, которая, как мы полагаем, исходя из специальной теории относительности, должна быть эквивалентна энергии. Так как мы знаем почти всё, что имеет энергию, то гравитация должна взаимодействовать со всем. Частица, которая переносит гравитационную силу, называется гравитоном. Так как гравитон имеет энергию, гравитоны должны непосредственно взаимодействовать друг с другом.

Если теория поля используется для описания гравитации, тогда эта теория должна воспроизводить Закон Всемирного Тяготения Ньютона в соответствующем статическом нерелятивистском пределе, т.е. мы должны вновь получить

𝐹

=-

𝐺𝑚₁𝑚₁

𝑟²

(K.1)

путём обмена гравитоном между частицами 1 и 2, разделёнными расстоянием 𝑟 в соответствующем пределе. Как хорошо известно, гравитационная сила – дальнодействующая (сила пропорциональна 1/𝑟², а потенциал пропорционален 1/𝑟), отсюда следует, что находящийся в оболочке или свободный изолированный гравитон должен быть безмассовым, точно также, как и для случая фотона. Однако, в отличие от случая электромагнетизма, одинаковые заряды в гравитации притягиваются.

Для того, что воспроизвести статическую силу, а не просто рассеяние, излучение или поглощение одиночного гравитона другой частицей должно оставлять обе частицы в одном и том же внутреннем состоянии. Это исключает возможность того, что гравитон переносит полуцелый спин (например, связанный с тем фактом, что он имеет вращение на угол 720° для того, чтобы возвратить себе назад волновую функцию спина 1/2). Следовательно, гравитон должен иметь целый спин. Далее, для того, чтобы решить, какие значения целого спина оказываются возможными, мы разберём два случая, когда частица 2 является идентичной частице 1 и когда частица 2 является античастицей частицы 1, так что будучи заряженными, эти частицы переносят одинаковый и противоположные заряды соответственно. Когда вычисляется потенциал для обоих случаев и взяты соответствующие пределы, мы находим, что когда частица, с помощью которой переносится взаимодействие, переносит целый нечётный спин, похожие заряды отталкиваются и противоположные заряды притягиваются, точно также, как в случае электродинамики. С другой стороны, когда частица, с помощью которой переносится взаимодействие, переносит чётный целый спин, то потенциал определяет универсальным образом притяжение (похожие заряды и противоположные заряды притягиваются). Отсюда следует, что спин гравитона должен быть равным 0, 2, 4,…

Для того, чтобы исключить возможность спина 0, мы замечаем, что эксперимент Этвеша и его недавние усовершенствования эмпирически показывают, что гравитация действительно взаимодействует с содержащейся в объектах энергией, отсюда следует, что на такие объекты, как фотоны, действует гравитация, например, они должны ”падать” в гравитационном поле. Если мы предполагаем, что частица, которая переносит взаимодействие, имеет спин 0, тогда мы теряем взаимодействие гравитации с фотоном со спином 1. Так как мы знаем, что фотон отклоняется массивным объектом, например Солнцем, то гравитон не может иметь спин 0.

На качественном языке теории поля функции Грина для распространения частицы, с помощью которой передаётся взаимодействие от частицы 1 к частицы 2 в импульсном пространстве, есть

Δ

~

1

𝑘²

,

скалярное поле,

Δ

~

ηνμ

𝑘²

,

векторное поле,

Δ

~

ηνμησρ

𝑘²

,

тензорное поле,

(K.2)

где 𝑘² есть квадрат 4-импульса, переносимого виртуальной частицей, осуществляющей перенос взаимодействия, и ηνμ есть метрика плоского пространства Минковского. Скалярное поле представляет спин 0, векторное поле спин 1 и соответствующим образом спроектированное тензорное поле представляет спин 2. Для вычисления амплитуды для обмена мы помещаем пропагаторы Δ между тензорами 𝑇νμ(1) и 𝑇αβ(2) для двух частиц. При обмене частицей со спином 0 пропагатор Δ₀ не содержит никаких множителей ηνμ в числителе для того, чтобы свернуть индексы 𝑇νμ(1) с индексами 𝑇αβ(2), отсюда следует, что мы должны сами свернуть индексы отдельно у этих тензоров энергии-импульса. Таким образом, при обмене частицей со спином 0 амплитуда пропорциональна величине

𝑇

μ

μ

(1)

1

𝑘²

𝑇

α

α

(2)

.

(K.3)

Другими словами, гравитон со спином 0 взаимодействует только со следом тензора энергии-импульса. Тем не менее, тензор энергии-импульса для электромагнитного поля в пространстве Минковского является бесследовым, отсюда следует, что скалярные гравитационные поля не связывают гравитацию со светом, так что гравитон не может быть частицей спина 0.

Так как гравитон не является бесспиновой частицей, то следующей возможностью является спин, равный 2. Классическим путём не найдено ничего такого, что позволило бы нам исключить случай спина, равный 2, так что привлекая правило ”если это работает, не ремонтируй это”, возможностями существования более высоких значений спина пренебрегаем. Тем не менее, несмотря на это мы ещё не совсем закончили (наше рассуждение). Общее тензорное поле содержит части, которые мы всё ещё хотим исключить. Например, антисимметричная часть ведёт себя как взаимодействие полей со спином 1 (напомним, что напряжённости электромагнитного поля 𝐹μν являются антисимметричными) и, следовательно, должна быть отброшена. Таким образом, остаётся симметричное тензорное поле.

В качестве резюме скажем, что гравитон безмассовый, поскольку гравитация является дальнодействующей силой, и он обладает спином 2 для того, чтобы он мог взаимодействовать с содержащейся в веществе энергией путём универсального взаимодействия.

В разделе 1.2 Фейнман кратко обсуждает поведение гравитации и антивещества, популярно называемого ”антигравитацией”. Был только один эксперимент, представляющий собой попытку непосредственно измерить поведение гравитации и антивещества для случая, когда частица и античастица не являются идентичными. Этот эксперимент, проводился В. Файербенком и Ф. Виттерборном [WiFa 67, FWML 74], и очевидно был инициирован комментарием Де Витта на конференции в Чапел Хилле в 1957 году (см. Предисловие, [DeWi 57]), где Файербенк принимал участие (см. также [NiGo 91], где также обсуждается этот вопрос), и это превосходный пример тех трудностей, с которыми сталкиваются в экспериментальной гравитационной физике. В разделе 1.2 Фейнман упоминает два из аргументов против антигравитации, основанные на обсуждении распада каона [Good 61] и на поляризации вакуума в КЭД [Schi 58, Schi 59]. Если бы пертурбативная программа проквантовать гравитацию (программа, которая представлялась Фейнманом в этих лекциях) принесла бы согласованную теорию, тогда этот вопрос был бы приведён в порядок, и здесь антигравитации бы не было. Так как пертурбативная теория квантовой гравитации исходит из пространства Минковского, то мы могли бы ожидать, что CPT – теорема оказывается справедливой во всех порядках и, следовательно, частица и античастица должны были бы иметь одну и ту же массу. К тому же, свойства гравитона, обсуждаемые выше, должны были бы не меняться, что привело бы к универсальности силы притяжения, включал антивещество.

К сожалению, пертурбативная теория не является согласованной теорией, и огромное количество творческой энергии было затрачено в целях поиска согласованной квантовой гравитации. Хотя мы ожидаем, что при низкой энергии, больших расстояниях, предел слабого поля квантовой гравитации был бы общей теорией относительности [Wein 64а, Wein 64b], Природа может потребовать для непротиворечивости гравитационных различий между веществом и антивеществом на очень маленьких расстояниях. Такие эффекты легко могут быть меньше, чем доступные в настоящее время экспериментальные пределы, и оставляют стороне аргументы против антигравитации, но это не значит, что мы когда-нибудь увидим что-либо ”падающим вверх”.

Калибровочная инвариантность и принцип эквивалентности

Другой выгодой использования теоретико-полевого подхода к теории гравитации является то, что мы приходим к Принципу Эквивалентности, фундаментальному принципу, лежащему в основании общей теории относительности, как к следствию калибровочной инвариантности. Так как мы строим теорию гравитации снизу вверх эта калибровочная инвариантность входит в теорию казалось бы безобидным образом.

Свободный гравитон является безмассовым и движется со скоростью света, так что мы никогда не сможем найти систему отсчёта, в которой бы он находился в покое. Следовательно, существует инвариантное понятие проектирования его спина на направление движения и направление, противоположное движению. Безмассовый гравитон должен появиться с двумя поляризациями или с двумя спиральностями и не более. В общем случае, поле симметричного тензора будет иметь более двух динамических степеней свободы. Следовательно, поле ранга 2 только с двумя степенями свободы не есть тензорное поле, и у нас появляется опасность потери Лоренц-инвариантности. Эта ситуация аналогична той, которая имеет место в электродинамике. Выход из этой дилеммы состоит в том, чтобы включить в теорию калибровочную инвариантность. Отсюда следует, что когда мы строим действие в пространстве Минковского для того, чтобы описать безмассовые гравитоны со спином 2, то мы будем должны ввести калибровочную симметрию для того, чтобы уменьшить число динамических степеней свободы до 2. Если мы не делаем этого, то квантовая теория не будет Лоренц-инвариантной. Действие, которое содержит необходимую калибровочную симметрию и в котором имеются до второй производной поля, есть действие Фирца – Паули [FiPa 39]. Этого оказывается достаточным для того, чтобы начать и продолжить построение общей теории относительности (см. краткое резюме во Введении). В конце концов, мы получаем Принцип Эквивалентности как результат калибровочной инвариантности. Калибровочная симметрия возникает с самого начала для того, чтобы квантовая теория свободного безмассового гравитона со спином 2 была лоренцевым инвариантом.

Сражение с бесконечностями

Не являлось секретом то, что объединение гравитации и квантовой механики должно быть сопряжено с огромными усилиями. Когда поле квантуется, каждая мода поля обладает энергией нулевой точки. Так как поле формируется бесконечным числом мод, вакуумная энергия квантового поля является бесконечной. От этой бесконечности легко отделаться нормальным упорядочиванием полевых операторов. Оправдание этому в том, что мы просто переопределяем нулевую точку масштаба энергии, который прежде всего является произвольным. Тем не менее, так как гравитация взаимодействует со всей энергией, то когда мы добавляем гравитацию, то мы не можем больше уйти от этого. Вакуумные флуктуации квантованных полей действительно порождают физические эффекты, так что даже если мы обрезаем некоторое количество мод, плотность энергии вакуума от энергии нулевых точек оставшихся мод может быть очень большой. Такая плотность вакуумной энергии будет появляться в теории гравитации как космологическая постоянная. Так как космологическая постоянная очень мала, то это составляет большую проблему [Wein 89].

Далее, константа гравитационного взаимодействия в единицах, где ℏ=𝑐=1, имеет размерность (энергия)-2. Теории, где константа взаимодействия имеет положительное значение, часто оказываются конечными, в то время как те теории, в которых константа является неопределённой величины, являются кандидатами на то, чтобы быть перенормируемыми. Теории с отрицательными значениями этих констант обычно имеют расходимости по всем местам, где требуется бесконечное число параметров для того, чтобы устранить все расходимости, и, следовательно, эти теории являются неперенормируемыми. Квантовая общая теория относительности попадает в эту последнюю категорию.

В процессе перенормировки, контрчлены порождаются для того, что сократить высокоэнергетические или ультрарелятивистские расходимости, которые встречаются в отдельных членах теории возмущений. Когда процесс перенормировки является успешным, контрчлены приводят к построению конечного эффективного действия, что может мыслиться как классическая полевая теория, которая содержит все квантовые эффекты (см., например, [Hatf 92]). Возможные контрчлены согласуются с симметриями исходного ”обнажённого” действия. Другими словами, внутренние симметрии сильно ограничивают типы контрчленов, которые могут порождаться и, следовательно, число соответствующих расходимостей. Таким образом, теории с большей симметрией, как правило, обладают лучшей сходимостью.

Имеется чрезвычайно много возможных контрчленов, которые согласуются с известными симметриями для пертурбативной квантовой гравитации, например, члены пропорциональные 𝑅², 𝑅μν𝑅μν, 𝑅³ и т.д. Лишь только была обнаружена необходимость введения ковариантных духов и стали известны ковариантные правила для вычисления членов теории возмущений до произвольного порядка ([DeWi 67а, DeWi 67b], [FaPo 67]), стало очевидным, что в полной мере будет иметь место закон Мёрфи для квантовой теории поля (если нет симметрии для того, чтобы ”убить” контрчлен, тогда будет иметь место расходимость), и теория наиболее вероятно будет неперенормируема. Проблеск надежды на таком пути появился, когда было показано, что чистая квантовая гравитация в однопетлевом приближении (первая квантовая поправка) является конечной [tHVe 74], [Kore 74]. Контрчлены для плотности лагранжиана есть

(1)

=

𝑔

1

120

𝑅²

+

7

20

𝑅

μν

𝑅

μν

,

(K.4)

На классическом уровне эти контрчлены обращаются в нуль для чистой гравитации, так как тогда мы имеем 𝑅=0 и 𝑅μν=0. Тем не менее, нет основания для того, чтобы чистая однопетлевая квантовая гравитация являлась бы конечной. Основание для того, чтобы теория являлась бы конечной, состоит в том, что ℒ(1) может исчезать в однопетлевом приближении при переопределении метрики, отсюда следует, что её эффекты не являются физически наблюдаемыми. Напомним, что для чистой гравитации вариационный принцип

δℒ(0)

δ𝑔μν

=

𝑅

μν

1

2

𝑅𝑔

μν

,

(К.5)

который, используя Принцип Наименьшего Действия, порождает классические полевые уравнения для чистой гравитации. Если мы переопределим метрику следующим образом:

𝑔

'

μν

=

𝑔

μν

+

εδ𝑔

μν

,

δ𝑔

μν

7

20

𝑅

μν

11

60

𝑅𝑔

μν

,

(К.6)

тогда

(0)

(𝑔)

+

(1)

(𝑔)

=

(0)

(𝑔')

+

𝒪(ε²)

,

(К.7)

где 𝒪(ε²) – двупетлевые процессы, отсюда следует, что однопетлевая теория является конечной. Когда материальные поля взаимодействуют с гравитацией, однопетлевая теория не является более конечной, даже на классическом уровне.

Надежда состояла в том, что имелся некоторый вид скрытой симметрии, что делало результат в однопетлевом приближении конечным, и что эта симметрия сможет представить чисто гравитационный сектор конечной теории. Тем не менее, компьютерное вычисление двупетлевых поправок дало расходящийся результат [GoSa 86], разрушающий эту надежду. Недавние обзоры по ультрафиолетовым расходимостям можно найти в работах [Wein 79] и [Alva 89].

Единственный способ получить улучшенное поведение теории в ультрафиолетовой области состоит в том, чтобы иметь больше симметрии, встроенной в теорию. Таким образом, обобщения или модификации общей теории относительности для того, чтобы улучшить квантовое поведение теории, основываются главным образом на дополнительных симметриях. Один из популярных подходов называется ”супергравитацией” (см., например, [vanN 81]). Этот подход основан на симметрии между бозонными и фермионными полями и называется ”суперсимметрией”. Когда суперсимметричная теория калибруется таким образом, что эта суперсимметрия становится локальной (различные преобразования суперсимметрии разрешаются в каждой точке пространства-времени), калибровочная инвариантность с необходимостью включает в себя Принцип Общей Ковариантности и, следовательно, гравитацию. По существу, каждое бозонное поле имеет суперсимметричного фермионного партнёра и обратно. Ультрафиолетовое поведение теории улучшается, поскольку часто обычный расходящийся бозонный (фермионный) вклад от петель сокращается фермионным (бозонным) вкладом суперпартнера. Другими словами, суперсимметрия строго ограничивает типы контрчленов, которые могут быть порождены. К сожалению, когда размерность пространства-времени равна 4, имеются ещё потенциальные контрчлены (начиная с семи петель в наилучшем случае). В то же самое время никто не знает наверняка какого-либо рода дополнительную или скрытую симметрию или какое-либо волшебство, возникающее для того, чтобы сделать теорию конечной.

В настоящее время наиболее многообещающим кандидатом теории квантовой гравитации является струнная теория. Струнная теория есть квантовая теория, в которой составной частью являются одномерные протяжённые объекты (как противопоставление точечным частицам в обычной квантовой теории поля), см., например, [GSW 87], [Hatf 92]). Если струнная теория используется для того, чтобы унифицировать все фундаментальный силы (т.е. это ”теория всего”), тогда основная идея состоит в том, что вещество делается из очень маленьких струн, чей размер порядка длины Планка. На обычных энергетических масштабах такие струны будут неразрешимы и неотличимы от точек. Унификация достигается в том, что все частицы, которые мы находим, являются только возбуждениями одной и той же струны. Одна мода осцилляций струны является безмассовой со спином, равным 2, и может идентифицироваться как гравитон, отсюда следует, что струнная теория с необходимостью содержит квантовую гравитацию. Такое возбуждение в струнной теории проистекает из открытия того, что существуют пертурбативные решения, которые математически самосогласованы или свободны от аномалий, и оказываются конечными порядок за порядком в рядах теории возмущений.

Интуитивно улучшенное ультрафиолетовое поведение струнной теории возникает потому, что струнная теория включает в себя гигантскую симметрию (модулярную инвариантность). Теория струн модифицирует гравитацию точечной частицы на малом расстоянии путём обмена состояниями массивной струны, что подобно тому, как теория электрослабого взаимодействия улучшает ультрарелятивистское поведение старой 4-фермионной теории слабого взаимодействия путём замены 4 – фермионной вершины с заменой массивных калибровочных бозонов 𝑊± и 𝑍⁰. Константа связи в старой теории Ферми обладает отрицательной величиной массы, и эта теория неперенормируема. Калибровочная теория электрослабого взаимодействия заменяет эту связь безразмерными константами связи, связанными с обменом бозоном, и теория становится перенормируемой. Струнная теория также вводит новую константу связи, натяжение струны 𝑇, которое в обычных единицах эквивалентно обратному квадрату длины 𝐿=√𝑐ℏ/π𝑇. Напомним, что единственный масштаб длины, который может быть построен с помощью гравитационной постоянной 𝐺, ℏ и скоростью света 𝑐, это планковский масштаб 𝐿𝑃=√𝐺ℏ/𝑐³. Естественный выбор единиц для струны делает скорость света и натяжение струны безразмерными, 𝑐=1 и 𝑇=1/π. В этих единицах (исключая ℏ из приведённых выше выражений для 𝐿 и 𝐿(𝑃), гравитационная константа будет безразмерной, 𝐺=(𝐿(𝑃)/𝐿)².

Одним любопытным свойством теории струн, которое сильно отличает её от теории точечных частиц, состоит в том, что размерность пространства-времени не является внутреннем свойством самой теории. На самом деле, размерность пространства-времени есть свойство частного решения. Свободные от аномалий решения при 𝑁=1 мировом листе суперсимметрии могут быть найдены при размерности пространства-времени 𝐷 меньшей или равной, чем так называемая критическая размерность 𝐷𝑐, которая равна быть может 10.

К сожалению, в то время как отдельные члены в рядах теории возмущений являются конечными, сумма ряда расходится [GrPe 88]. И в то время, как теория струн является вероятно единственной в своём роде, решения этой теории определённо не являются такими. Не существует пертурбативного механизма для того, чтобы выбрать частное решение или выбрать правильный вакуум. В этом смысле, пертурбативная формулировка теории струн теряет свою предсказательную силу. Подобно этому, мир не является суперсимметричным при обычных значениях энергии. Нет такого пертурбативного механизма, чтобы выбрать решения, которые бы допускали несуперсимметричные низкоэнергетичные спектры.

Непертурбативная гравитация

В настоящее время оказывается, что нет согласованной и конечной пертурбативной формулировки квантовой гравитации. При определении пертурбативного разложения в общем случае мы должны сделать выбор, какая фоновая метрика на пространственно-временном многообразии будет выбираться для того, чтобы, используя эту метрику, начать развивать теорию возмущений. При непертурбативной формулировке квантовой гравитации все аспекты пространства-времени должны были бы определяться из решений этой теории. Например, предполагается, что в теории струн движение струн через пространство-время определяет то, какова есть метрика пространства-времени. Отсюда следует, что можно было бы предпочесть, чтобы метрика пространства-времени не появлялась бы при формулировке теории. На этом основании и для того, чтобы обойти проблемы, упомянутые выше, в настоящее время проводятся поиски непертурбативной формулировки теории струн.

При отсутствии надежд, связанных с пертурбативной квантовой гравитацией, вновь возник интерес к определению того, имеет ли смысл непертурбативная квантовая гравитация, основанная на общей теории относительности. Возможно несогласованности вводятся пертурбативной формулировкой. Канонический подход к квантовой обшей теории относительности с использованием уравнение Уилера-Де Витта и канонических переменных зашёл в тупик, что обусловлено сложностью уравнений, которые должны быть решены. Недавно, однако, переформулировка общей теории относительности на языке новых переменных [Asht 86, Asht 87] привела к новому петлевому представлению квантовой общей теории относительности [JaSm 88], [RoSm 88], где уравнения много проще для решения, и некоторое продвижение вперёд было достигнуто. Эти новые переменные имеют прямую родственную связь между общей теорией относительности и теорией Янга – Миллса, что возможно может быть использовано.

Последнее замечание: Фейнман и индексы

Фейнман однажды говорил мне, что постановка знаков минус, множителей 𝑖, 2 и π правильным образом является чем-то таким, о чем стоит беспокоиться только тогда, когда настаёт время опубликования результата. Видимо, правила для индексов и общепринятые стандартные соглашения также попадают в эту категорию. От начала до конца в первых шести лекциях, фактически каждый индекс опускается (см. также [Feyn 63b]). Тем самым производятся необычные обозначения такие, что 𝑥μ=(𝑡,𝑧,𝑦,𝑥) и 𝑥μ=(𝑡,-𝑧,-𝑦,-𝑥). Игнорирование правила индексов не будет допустимо, когда пространство-время не является более плоским. Я отрегулировал использование индексов таким образом, чтобы стандартные правила индексов выполнялись, и использовал практически стандартный символ ημν для метрики Минковского (Фейнман использовал δμν).


    Ваша оценка произведения:

Популярные книги за неделю