355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Агаджанян » Нормальная физиология » Текст книги (страница 8)
Нормальная физиология
  • Текст добавлен: 26 сентября 2016, 19:47

Текст книги "Нормальная физиология"


Автор книги: Николай Агаджанян



сообщить о нарушении

Текущая страница: 8 (всего у книги 41 страниц)

Базальные ганглии

Базальные ганглии, или подкорковые ядра, относятся к структурам переднего мозга и включают в себя полосатое тело, или неостриатум (хвостатое ядро и скорлупа), палеостриатум (бледный шар) и ограду.

Эта структура мозга играет главную роль в процессе перехода от замысла (фазы подготовки) движения к выбранной программе действия (фазе выполнения движения).

Базальные ганглии образуют многочисленные связи как между структурами, входящими в их состав, так и другими отделами мозга. Эти связи представлены в виде параллельных функциональных петель, связывающих кору больших полушарий (двигательную, соматосенсорную и лобную) с таламусом. Информация поступает из вышеперечисленных зон коры, проходит через базальные ядра (хвостатое ядро и скорлупу) и черное вещество в двигательные ядра таламуса, оттуда снова возвращается в эти же зоны коры – это скелетомоторная петля. Одна из таких петель управляет движениями лица и рта, контролирует такие параметры движения, как сила, амплитуда и направление.

Другая петля – глазодвигательная (окуломоторная) специализируется на регуляции движения глаз. Предполагается, что медиатором, возбуждающим кортикостриарные нейроны, является аминокислота – глутамат, а между базальными ганглиями и таламусом существуют в основном тормозные пути и их медиатором является ГАМК. Так, между хвостатым ядром и бледным шаром имеются тормозные взаимовлияния.

Хвостатое ядро и скорлупа связаны также со структурами, не входящими в эти петли: черной субстанцией, красным ядром, мозжечком, мотонейронами спинного мозга. Некоторые из этих структур, например черная субстанция, оказывают модулирующее влияние на функцию хвостатого ядра. В черной субстанции продуцируется дофамин, который транспортируется к нейронам хвостатого ядра и там накапливается. Высвобождаясь в хвостатом ядре, дофамин модулирует глютаматергическую кортикостриарную передачу информации, вызывая или ее облегчение, или торможение.

Полосатое тело (хвостатое ядро и скорлупа) принимают участие в организации и регуляции движений и обеспечении перехода одного вида движения в другое. Раздражение хвостатого ядра, с одной стороны, тормозит активность коры, подкорки, безусловные рефлексы (пищевой, оборонительный и др.) и выработку условных рефлексов. При поражении полосатого тела наблюдается ретроантероградная амнезия – выпадение памяти на события, предшествующие травме. Стимуляция хвостатого ядра тормозит восприятие зрительной, слуховой и других видов сенсорной информации. С другой стороны, хвостатое ядро оказывает возбуждающее действие. Так, при его поражении наблюдается ригидность мышц (повышение мышечного тонуса). Двустороннее повреждение полосатого тела побуждает к стремлению движения вперед, одностороннее – приводит к манежным движениям.

Скорлупа выполняет специфическую функцию: она отвечает за организацию пищевого поведения. При ее поражении наблюдаются трофические нарушения кожи, а ее раздражение вызывает слюноотделение и изменение дыхания.

Функции бледного шара заключаются в провоцировании ориентировочной реакции, движения конечностей, пищевого поведения (жевание, глотание).

После разрушения бледного шара возникают гипомимия (маскообразное лицо), гиподинамия, эмоциональная тупость, тремор головы, конечностей при движении, монотонная речь. При повреждениях бледного шара могут появиться подергивания отдельных мышц лица и туловища, нарушается синергизм движения конечностей при ходьбе.

Функции ограды мало изучены. Она имеет двусторонние связи с лобной, затылочной, височной корой, обонятельной луковицей, таламусом и другими базальными ядрами. Ограда оказывает облегчающее влияние на зрительные, слуховые и соматические раздражения. Атрофия ограды приводит к полной потере способности больного говорить, а ее раздражение вызывает моторные реакции со стороны пищеварительного тракта (жевание, глотание, рвотные движения), ориентировочную реакцию.

Таким образом, симптомы, связанные с нарушением двигательных функций при поражении базальных ганглиев, можно разделить на гипофункциональные, или недостаточность, и гиперфункциональные, или избыточность.

К первым относят акинезию (отсутствие движений), ко вторым – ригидность (повышение мышечного тонуса), баллизм (крупноразмашистый гиперкинез конечностей), атетоз («червеобразные»движения), хорею (быстрые подергивания), тремор (дрожание).

Поражение базальных ганглиев приводит к возникновению болезни Паркинсона, имеющей целый ряд симптомов, из которых главными являются ригидность, тремор и акинезия. Усилены тонические рефлексы растяжения, наблюдается восковая ригидность, сильное дрожание пальцев, губ и других частей тела. Больному трудно начать и закончить движения, лицо его маскообразно, нарушена координация движений верхних и нижних конечностей во время ходьбы, он идет мелкими шажками, согнувшись вперед. При болезни Паркинсона нарушается планирование движений. Это заболевание связано с дегенерацией дофаминергических нейронов черного вещества, в результате в стриатуме резко падает содержание дофамина и происходит растормаживание холинергических нейронов. Поэтому лечение этого заболевания оказалось эффективным благодаря введению предшественника дофамина – L-дофа, так как сам дофамин не проходит через гематоэнцефалический барьер.

Хорея – наследственное дегенеративное заболевание базальных ганглиев, сопровождающееся уменьшением количества нейронов стриатума и прежде всего синтезирующих ГАМК – стриопаллидарных и стрионигральных нейронов, а также холинергических клеток базальных ганглиев. Отсутствие стрионигрального торможения приводит к гиперактивности дофаминергических клеток и возникновению характерных для хореи непроизвольных судорожных подергиваний.

Ретикулярная формация

Термин «ретикулярная формация» (англ. ret – сеть) был введен впервые Дейтерсом более 100 лет назад. Ретикулярная формация (РФ) располагается в центральной части мозгового ствола, заходя ростральным концом в таламус, а каудальным – в спинной мозг. Благодаря наличию сетевых связей почти со всеми структурами центральной нервной системы она получила название ретикулярной, или сетевой, формации.

Различные по форме и величине нейроны РФ имеют длинные дендриты и короткий аксон, хотя встречаются гигантские нейроны с длинными аксонами, образующими, например, руброспинальный и ретикулоспинальный тракты. На одной нервной клетке может заканчиваться до 40 000 синапсов, что указывает на широкие межнейрональные связи в пределах РФ. В ней был выделен целый ряд ядер и ядерных групп, отличающихся как в структурном отношении, так и выполняемыми ими функциями.

Ретикулярная формация образует многочисленные как афферентные пути: спиноретикулярный, церебеллоретикулярный, корково-подкорково-ретикулярный (от коры, базальных ганглиев, гипоталамуса), от структур каждого уровня ствола мозга (от среднего мозга, варолиева моста, продолговатого мозга), так и эфферентные: нисходящие ретикулоспинальные, ретикулокорково-подкорковые, ретикуломозжечковые, а также пути к другим структурам ствола мозга.

Ретикулярная формация оказывает генерализованное, тонизирующее, активирующее влияние на передние отделы головного мозга и кору больших полушарий (восходящая активирующая система РФ) и нисходящее, контролирующее деятельность спинного.мозга (нисходящая ретикулоспинальная система), которое может быть как облегчающим на многие функции организма, так и тормозным. Одним из видов тормозного влияния РФ на рефлекторную деятельность спинного мозга является сеченовское торможение, заключающееся в угнетении спинальных рефлексов при раздражении таламической ретикулярной формации кристалликом соли.

Г. Мэгун показал, что локальное электрическое раздражение гигантоклеточного ядра РФ продолговатого мозга вызывает торможение сгибательного и разгибательного рефлексов спинного мозга, а на мотонейроне возникает длительный ТПСП и постсинаптическое торможение по типу гиперполяризации.

Тормозные влияния на сгибательные рефлексы оказывает преимущественно медиальная ретикулярная формация продолговатого мозга, а облегчающие – латеральные зоны РФ моста.

Ретикулярная формация принимает участие в реализации многих функций организма. Так, РФ контролирует двигательную активность, постуральный тонус и фазные движения.

В 1944 г. в США во время эпидемии полиомиелита – заболевания, нарушающего двигательную активность, основные структурные изменения были обнаружены в ретикулярной формации. Это навело американского ученого Г. Мэгуна на мысль об участии РФ в моторной активности. Основными ее структурами, отвечающими за этот вид деятельности, являются ядро Дейтерса продолговатого мозга и красное ядро среднего мозга. Ядро Дейтерса поддерживает тонус альфа– и гамма-мотонейронов спинного мозга, иннервирующих мышцы-разгибатели, и тормозит альфа– и гамма-мотонейроны мышц-сгибателей. Красное ядро, напротив, тонизирует альфа– и гамма-мотонейроны мышц-сгибателей и тормозит альфа– и гаммамотонейроны мышц-разгибателей. Красное ядро оказывает тормозное влияние на ядро Дейтерса, поддерживая равномерный тонус мышц-разгибателей. Повреждения или перерезка мозга между средним и продолговатым приводит к снятию тормозных влияний со стороны красного ядра на ядро Дейтерса, а значит, и на тонус мышц-разгибателей, который начинает преобладать над тонусом мышц-сгибателей и возникает децеребрационная ригидность или повышенный тонус мышц, проявляющийся в сильном сопротивлении растяжению. Такое животное имеет характерную позу тела: запрокинута голова, вытянуты передние и задние конечности. Поставленное на ноги, оно при малейшем толчке падает, так как отсутствует тонкая регуляция позы тела.

Раздражение ретикулярной формации вызывает тремор, спастический тонус.

РФ среднего мозга играет роль в координации сокращений глазных мышц. Получив информацию от верхних бугров четверохолмия, мозжечка, вестибулярных ядер, зрительных областей коры головного мозга, РФ ее интегрирует, что приводит к рефлекторным изменениям работы глазодвигательного аппарата, особенно при внезапном появлении движущихся объектов, изменении положения головы и глаз.

Ретикулярная формация регулирует вегетативные функции, в реализации которых принимают участие так называемые стартовые нейроны РФ, запускающие процесс возбуждения внутри определенной группы нейронов, отвечающих за дыхательные и сосудодвигательные функции. В РФ продолговатого мозга расположены два ядра, одно из них отвечает за вдох, другое – за выдох. Их деятельность контролируется пневмотаксическим центром РФ варолиева моста. Раздражением этих участков РФ можно воспроизвести различные дыхательные акты.

Сосудодвигательный центр расположен в ромбовидной ямке дна четвертого желудочка, входящего в состав РФ. При электрораздражении определенных точек варолиева моста и продолговатого мозга возникают сосудодвигательные реакции.

Ретикулярная формация связана со всеми отделами коры мозга с помощью диффузной неспецифической проекционной афферентной системы, которая, в отличие от специфической, проводит возникшее на периферии возбуждение к коре больших полушарий медленно через последовательно связанные многонейронные системы. РФ оказывает активирующее восходящее влияние на кору больших полушарий. Раздражение РФ вызывает «реакцию пробуждения», а на электроэнцефалограмме – десинхронизацию альфа-ритма и ориентировочный рефлекс.

Перерезка головного мозга ниже РФ вызывает картину бодрствования, выше – сна. РФ регулирует цикл «сон-бодрствование».

Ретикулярная формация оказывает влияние на сенсорные системы мозга: на остроту слуха, зрения, обонятельные ощущения. Так, повреждение РФ и барбитуровый наркоз приводят к усилению сенсорных импульсов, которые в норме находятся под тормозным, регулирующим влиянием РФ. Восприятие различных ощущений при сосредоточении внимания на каком-либо другом ощущении, привыкание к повторяющимся раздражителям также объясняется ретикулярными влияниями.

В ретикулярной формации продолговатого, среднего мозга и таламуса имеются нейроны, реагирующие на болевые раздражения от мышц и внутренних органов, при этом создается ощущение тупой боли.

Кора больших полушарий

Кора больших полушарий – наиболее молодой в филогенетическом отношении отдел мозга, по своим структурным и функциональным особенностям отличается от других частей центральной нервной системы. Являясь ее высшим отделом на основе безусловных и условных рефлексов, кора отвечает за совершенную организацию поведения животного и человека.

Она представляет собой слой серого вещества толщиной 1,3 – 4,5 мм. Благодаря складкам, образующим извилины и борозды мозга, поверхность коры составляет 2200 см2. В ее состав входит более 10 млрд нейронов и еще больше глиальных клеток.

Филогенетически кору больших полушарий делят на древнюю (архикортекс), старую (палеокортекс) и новую (неокортекс). К архикортексу относят обонятельные луковицы, обонятельные тракты, расположенные на нижней поверхности лобной доли, обонятельные бугорки с обонятельными центрами. Палеокортекс включает поясную извилину, гиппокамп и миндалину. Все остальные области относят к неокортексу, который особенно хорошо развит у млекопитающих и человека.

В коре различают три основных типа нейронов: пирамидные, звездчатые, веретенообразные. Пирамидные клетки, имеющие длинные аксоны, заходящие в другие отделы мозга и дендриты, покрытые большим количеством шипиков – синаптических структур, благодаря которым нервная клетка контактирует с другими нервными элементами. Шипики крайне чувствительны к различным факторам: гипоксии, асфиксии, влиянию токсических веществ, под действием которых они атрофируются, и при этом нарушаются функциональные связи.

Звездчатые клетки имеют короткие дендриты и аксон, их функция сводится к обеспечению связей между нейронами самой коры.

Веретенообразные клетки образуют вертикальные или горизонтальные связи нейронов разных слоев коры.

Неокортекс имеет шестислойное строение. Первый слой – молекулярный, ИЛИ плексиформный, содержит мало клеток, а в основном нервные волокна, образованные восходящими дендритами пирамидных нейронов и волокнами неспецифических ядер зрительного бугра, регулирующих уровень возбудимости коры больших полушарий.

Второй слой – наружный зернистый, ИЛИ наружный гранулярный, состоит из звездчатых клеток, ответственных за циркуляцию возбуждения в коре, т. е. кратковременную память.

Третий слой – наружный пирамидный состоит из малых пирамидных клеток и совместно со вторым слоем обеспечивает «меж-корковую» передачу информации.

Четвертый слой – внутренний зернистый содержит звездчатые клетки, на которых заканчиваются специфические таламокортикальные афферентные пути от анализаторов.

Пятый слой – внутренний слой крупных пирамидных клеток, аксоны которых спускаются в продолговатый и спинной мозг. В моторной коре в этом слое находятся гигантские пирамидные клетки Беца, апикальные дендриты которых достигают поверхностных слоев, а самые длинные аксоны образуют пирамидный тракт, достигающий спинного мозга.

Шестой слой – полиморфные клетки веретенообразной и треугольной формы, образующие кортикоталамические пути.

Распределение нейронов различается в определенных областях коры. Это позволило Бродману выделить 53 цитоархитектонических поля. Кроме того, по функциональным признакам нейроны коры объединяются в специальные модули, «колонки», расположенные вертикально. Каждая колонка отвечает за определенный вид информации. Она связана с соседними колонками реципрокными отношениями – возбуждение одной приводит к торможению соседних. Так, например, каждая колонка связана с определенным суставом и от нее идет команда к мышцам.

Возбуждающим медиатором пирамидных клеток может быть или глутамат или аспартат, тормозным – ГАМК. Часть нейронов выделяет моноамины: норадреналин и дофамин, другая – ацетилхолин.

Локализация функций в коре больших полушарий

В настоящее время принято делить кору на сенсорные, двигательные, или моторные, и ассоциативные зоны. Такое деление было получено благодаря экспериментам на животных с удалениями различных участков коры, наблюдениями за больными, имеющими патологический очаг в мозге, а также с помощью прямого электрического раздражения коры и периферических структур с регистрацией электрической активности в коре.

В сенсорных зонах представлены корковые концы всех анализаторов. Для зрительного он располагается в затылочной доле мозга (поля 17, 18, 19). В поле 17 заканчивается центральный зрительный путь, информирующий о наличии и интенсивности зрительного сигнала. Поля 18 и 19 анализируют цвет, форму, размеры и качество предмета. При поражении поля 18 больной видит, но не узнает предмета и не различает его цвета (зрительная агнозия).

Корковый конец слухового анализатора локализуется в височной доле коры (извилина Гешля), поля 41,42,22. Они участвуют в восприятии и анализе слуховых раздражений, организации слухового контроля речи. Больной, имеющий повреждение поля 22, теряет способность понимать значение произносимых слов.

В височной доле располагается также корковый конец вестибулярного анализатора.

Кожный анализатор, а также болевая и температурная чувствительность проецируются на заднюю центральную извилину, в верхней части которой представлены нижние конечности, в средней – туловище, в нижней – руки и голова.

В коре теменной доли заканчиваются пути соматической чувствительности, относящиеся к речевой функции, связанной с оценкой воздействия на рецепторы кожи, веса и свойств поверхности, формы и размера предмета.

Корковый конец обонятельного и вкусового анализаторов расположен в гиппокампальной извилине. При раздражении этой области возникают обонятельные галлюцинации, а ее повреждение приводит к аносмии (потере способности ощущать запахи).

Моторные зоны находятся в лобных долях в области передней центральной извилины мозга, раздражение которой вызывает двигательную реакцию. Кора прецентральной извилины (поле 4) представляет первичную двигательную зону. В пятом слое этого поля находятся очень крупные пирамидные клетки (гигантские клетки Беца). Лицо проецируется на нижнюю треть прецентральной извилины, рука занимает ее среднюю треть, туловище и таз – верхнюю треть извилины. Двигательная зона коры для нижних конечностей находится на медиальной поверхности полушария в области передней части парацентральной дольки.

Премоторная область коры (поле 6) располагается кпереди от первичной двигательной зоны. Поле б называют вторичной моторной областью. Ее раздражение вызывает вращение туловища п глаз с подниманием контралатеральной руки. Аналогичные движения наблюдаются у больных во время приступа эпилепсии, если эпилептический очаг локализуется в этой области. Недавно доказана ведущая роль поля б в реализации двигательных функций. Поражение поля б у человека вызывает резкое ограничение двигательной активности, с трудом выполняются сложные комплексы движений, страдает спонтанная речь.

К полю б примыкает поле 8 (лобное глазодвигательное), раздражение которого сопровождается поворотом головы и глаз в сторону, противоположную раздражаемой. Стимуляция различных участков двигательной коры вызывает сокращение соответствующих мышц на противоположной стороне.

Передние отделы лобной коры связывают с «творческим» мышлением. С клинической и функциональной точек зрения интересной областью является нижняя лобная извилина (поле 44). В левом полушарии она связана с организацией двигательных механизмов речи. Раздражение этой области может вызвать вокализацию, но не членораздельную речь, а также прекращение речи, если человек говорил. Поражение этой области приводит к моторной афазии – больной понимает речь, но сам говорить не может.

К ассоциативной коре относят теменно-височно-затылочную, префронтальную и лимбическую области. Она занимает около 80% всей поверхности коры больших полушарий. Ее нейроны обладают мультисенсорными функциями. В ассоциативной коре происходит интеграция различной сенсорной информации и формируется программа целенаправленного поведения, ассоциативная кора окружает каждую проекционную зону, обеспечивая взаимосвязь, например, между сенсорными и моторными областями коры. Нейроны, расположенные в этих областях, обладают полисенсорностью, т. е. способностью отвечать как на сенсорную, так и моторную информацию.

Теменная ассоциативная область коры больших полушарий участвует в формировании субъективного представления об окружающем пространстве, о нашем теле.

Височная область коры участвует в речевой функции посредством слухового контроля речи. При поражении слухового центра речи больной может говорить, правильно излагать свои мысли, но не понимает чужой речи (сенсорная слуховая афазия). Эта область коры играет определенную роль в оценке пространства. Поражение зрительного центра речи приводит к потере способности читать и писать. С височной корой связывают функцию памяти и сновидений.

Лобные ассоциативные поля имеют прямое отношение к лимбическим отделам мозга, они принимают участие в формировании программы сложных поведенческих актов в ответ на воздействие внешней среды на основе сенсорных сигналов всех модальностей.

Особенностью ассоциативной коры является пластичность нейронов, способных к перестройкам в зависимости от поступающей информации. После операции удаления какой-либо области коры в раннем детстве утраченные функции этой области полностью восстанавливаются.

Кора больших полушарий способна, в отличие от нижележащих структур мозга, длительно, в течение всей жизни сохранять следы поступившей информации, т. е. участвовать в механизмах долговременной памяти.

Кора больших полушарий – регулятор вегетативных функций организма («кортиколизация функций»). В ней представлены все безусловные рефлексы, а также внутренние органы. Без коры невозможно выработать условные рефлексы на внутренние органы. При раздражении интерорецепторов методом вызванных потенциалов, электростимуляции и разрушения определенных участков коры доказано ее влияние на деятельность различных органов. Так, разрушение поясной извилины изменяет акт дыхания, функции сердечно-сосудистой системы, желудочно-кишечного тракта. Кора тормозит эмоции – «умейте властвовать собой».


    Ваша оценка произведения:

Популярные книги за неделю