Текст книги "Нормальная физиология"
Автор книги: Николай Агаджанян
Жанры:
Прочая справочная литература
,сообщить о нарушении
Текущая страница: 37 (всего у книги 41 страниц)
Вестибулярный анализатор наряду со зрительным и соматосенсорным играет ведущую роль в ориентации человека в пространстве, является органом равновесия. Он воспринимает информацию о положении, линейных и угловых перемещениях тела и головы.
Периферический отдел (вестибулярный аппарат) находится в костном лабиринте пирамиды височной кости и состоит из трех полукружных каналов и преддверия. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях: верхний – во фронтальной, задний – в сагиттальной и наружный – в горизонтальной. На одном конце каждого канала имеется колбообразное расширение – ампула.
Преддверие состоит из двух отделов: мешочка (саккулус) и маточки (утрикулус). Утрикулус, саккулус и полукружные каналы состоят из тонких перепонок, образующих замкнутые трубки, – это перепончатый лабиринт, внутри которого находится эндолимфа, связанная с эндолимфой улитки. Между перепончатым и костным лабиринтом, в который заключены улитка и вестибулярный аппарат, находится перилимфа.
В каждом мешочке имеются небольшие возвышения – макулы (пятна), в которых находится отолитовый аппарат – скопление рецепторных клеток, которые покрыты желеобразной массой, состоящей из мукополисахаридов. Благодаря наличию в ней кристаллов кальция она получила название отолитовой мембраны. В полукружных каналах желеобразная масса не содержит отолиты и называется купулой.
Все вестибулорецепторы относятся к вторичночувствующим и делятся на два типа: клетки первого типа имеют колбообразную форму, второго типа – цилиндрическую. На своей свободной поверхности клетки имеют волоски, из них тонкие (60–80 на каждой клетке) называются стереоцилиями, а один толстый и длинный находится на периферии пучка и называется киноцилием. При изменении положения головы и тела в пространстве происходит перемещение желеобразной массы, которая отклоняет реснички, погруженные в нее. Их перемещение служит адекватным стимулом для возбуждения рецепторов. Смещение волосков в сторону киноцилия вызывает возбуждающий эффект, в противоположную – тормозный.
Отолитовый аппарат предверия воспринимает прямолинейное движение, ускорение или замедление, наклоны головы и тела в сторону, а также тряску и качку.
Раздражителем рецепторного аппарата полукружных каналов являются вращательные движения вокруг своей оси, их угловое ускорение или замедление.
На рецепторных клетках берут начало и заканчиваются афферентные и эфферентные нервные волокна. Первый нейрон проводникового отдела – это биполярные клетки, расположенные в вестибулярном ганглии. Периферические отростки этих клеток контактируют с рецепторными клетками, а центральные в составе вестибулярного нерва (VIII пара черепно-мозговых нервов) направляются в вестибулярные ядра продолговатого мозга (второй нейрон). Отсюда импульсы поступают к таламическим ядрам (третий нейрон), мозжечку, ядрам глазодвигательных мышц, к вестибулярным ядрам противоположной стороны, к мотонейронам шейного отдела спинного мозга, через вестибулоспинальный тракт – к мотонейронам мышц-разгибателей, к ретикулярной формации, гипоталамусу. За счет вышеперечисленных связей осуществляется автоматический контроль равновесия тела (без участия сознания). За сознательный анализ положения тела в пространстве отвечают таламокортикальные проекции, которые заканчиваются в задней постцентральной извилине коры больших полушарий центрального отдела вестибулярного анализатора. Через вестибуло-мозжечково-таламический тракт в моторную кору кпереди от центральной извилины поступает информация о поддержании тонических реакций, связанных с оценкой позы тела.
Она неодинакова для различных видов движений. При прямолинейном движении порог различения ускорения равен 2 – 20 см/с, для углового ускорения порог различения вращения равен 2 – 3 градусам/с. Порог различения наклона головы в сторону составляет около 1 градуса, вперед-назад – около 1,5 -2 градусов. При вибрации, качке, тряске происходит снижение чувствительности вестибулярного аппарата. Сильные и длительные нагрузки на вестибулярный аппарат вызывают у некоторых людей патологический симптомокомплекс, названный «болезнью движения, или морской болезнью». При этом возникают вестибуловегетативпые реакции: изменения сердечного ритма, тонуса сосудов, усиление моторики желудочно-кишечного тракта, саливация, тошнота, рвота. Проявления морской болезни могут быть уменьшены применением некоторых лекарственных препаратов.
Важным показателем состояния вестибулярной системы является вестибулоглазодвигательный рефлекс (глазной нистагм), который проявляется в ритмическом медленном движении глаз в сторону, противоположную вращению, и быстром, скачкообразном движении глаз в обратном направлении. Нистагм появляется после вращения, он дает возможность обзора пространства в условиях перемещения тела.
Обонятельный анализаторС помощью обонятельного анализатора осуществляется восприятие и анализ пахучих веществ, химических раздражителей внешней среды, а также принимаемой пищи. Благодаря функциям обонятельного анализатора человек ориентируется в окружающем пространстве, апробирует пищу на съедобность, уходит от опасности, отвергает вредные для него вещества, животные обеспечивают половую ориентацию.
Периферический отдел обонятельного анализатора расположен в задней части верхнего носового хода и представлен обонятельным эпителием, в состав которого входят обонятельные рецепторные клетки, количество которых у человека достигает 10 млн (у собаки – овчарки – около 200 млн), опорные и базальные клетки. Обонятельный эпителий покрыт сверху слоем слизи. Обонятельные рецепторные клетки – первичночувствующие. От верхней части клетки отходит дендрит, снабженный ресничками, погруженными в слой слизи. Движения ресничек обеспечивают процесс захвата молекулы пахучего вещества и контакта с ним (стереохимия пахучих веществ). Механизм обонятельной рецепции заключается в том, что молекула пахучего вещества взаимодействует со специализированными белками, встроенными в мембрану рецептора. Если форма молекулы воспринимаемого вещества соответствует форме рецепторного белка в мембране (как ключ к замку), тогда возможен контакт с этим веществом. Затем изменяется конфигурация молекулы белка, открываются натриевые каналы и возникает деполяризация мембраны рецепторной клетки. В результате генерируется рецепторный потенциал микроворсипок, а затем потенциал действия нервного волокна.
Аксоны рецепторных клеток, объединившись в пучок, идут к обонятельной луковице, где находятся вторые нейроны. Волокна клеток обонятельной луковицы образуют обонятельный тракт, имеющий треугольное расширение и состоящий из нескольких пучков. Обонятельная луковица генерирует ритмические импульсы, частота которых изменяется при вдувании в нос различных пахучих веществ. Пучки обонятельного тракта проходят в различные структуры мозга: миндалину, гипоталамус (отвечает за эмоциональный компонент обонятельных ощущений), ретикулярную формацию, орбито-фронтальную кору, препериформную кору и периформную долю, в обонятельную луковицу противоположной стороны. Центральный отдел обонятельного анализатора находится в передней части грушевидной доли в области извилины морского коня (гиппокампа). Пахучие вещества воспринимаются также свободными окончаниями волокон тройничного нерва (V пара черепно-мозговых нервов), расположенными в слизистой носа. Так, вещества с резким запахом (аммиак) воспринимаются окончаниями тройничного нерва и могут вызвать остановку дыхания или защитные рефлексы (чихание). Эти рефлексы замыкаются на уровне продолговатого мозга.
Человек способен различать многообразие запахов. Существует классификация (Ж. Эймур, 1962) запахов, служащая практическим целям.
Она выделяет семь основных, или первичных, запахов:
1. камфароподобный
2. цветочный
3. мускусный
4. мятный
5. эфирный
6. гнилостный
7. острый.
Ко второй группе относятся смешанные вещества, которые раздражают не только обонятельные клетки, но и окончания тройничного нерва. Это запах камфары, эфира, хлороформа и др.
Адаптация к действию пахучего вещества происходит довольно медленно в течение 10 секунд или минут и зависит от продолжительности действия вещества, его концентрации и скорости потока воздуха (принюхивание).
Острота обоняния определяется порогом обонятельной чувствительности – это минимальное количество пахучего вещества, которое ощущается как соответствующий запах. Определение порогов обонятельной чувствительности проводится с помощью ольфактометрии.
На остроту обоняния влияют влажность и температура воздуха, состояние периферического отдела анализатора. Набухлость слизистой носа при насморке вызывает понижение остроты обоняния – гипоосмию или полную потерю обонятельной чувствительности – аносмию, которая наблюдается или при атрофии рецепторного аппарата, или при нарушении коркового отдела анализатора, с которым может быть связана и гиперосмия – повышение чувства обоняния, а также паросмия – неправильное восприятие запахов, обонятельные галлюцинации при отсутствии пахучих веществ – обонятельная агнозия. С возрастом отмечено снижение обонятельной чувствительности.
Вкусовой анализаторВкус относится к контактным видам чувствительности и является мультимодальным ощущением, так как химические раздражители воспринимаются в комплексе с термическими, механическими и обонятельными.
Различают четыре «первичных» вкусовых ощущения: сладкое, кислое, соленое, горькое. Кончик языка воспринимает в основном сладкий вкус, корень – горький, средняя часть – кислый, боковые части языка – соленый и кислый. Самые низкие пороги вкусовой чувствительности – для горького вкуса и определяются по концентрации действующих на рецепторы веществ. Длительное действие какого-либо вещества на вкусовые рецепторы приводит к адаптации к данному виду вкуса. Так, если человек часто употребляет кислую и соленую пищу (острую), то пороги на эти виды вкуса увеличиваются. Адаптация к сладкому и соленому развивается быстрее, чем к горькому и кислому.
Рецепторы вкуса – вкусовые клетки расположены во вкусовых почках или луковицах. Последние локализуются во вкусовых сосочках языка и в виде отдельных включений – на задней стенке глотки, мягком небе, миндалинах, гортани, надгортаннике.
Они делятся на три типа:
1. грибовидные (на всей поверхности языка)
2. желобоватые – поперек стенки языка, у его корня
3. листовидные – вдоль задних краев языка.
У человека насчитывают 2000 вкусовых почек, каждая из которых содержит 40 – 60 рецепторных клеток.
Механизм вкусовой рецепции заключается в следующем. Вкусовое вещество, расщепленное слюной до молекул, попадает в поры вкусовых луковиц, вступает во взаимодействие с гликокаликсом и адсорбируется на клеточной мембране микроворсинки, вступая в контакт с рецепторным белком. Предполагается, что в области микроворсинки имеются стереоспецифические участки рецептора, воспринимающие только свои молекулы вещества. В результате происходит деполяризация мембраны и генерация рецепторного потенциала. Образовавшийся в рецепторной клетке медиатор (ацетилхолин, серотонин и др.) в рецепторно-афферентном синапсе приводит к возникновению ВПСП, а затем ПД, который передается по волокнам барабанной струны – веточки лицевого (VII пара), языкоглоточного (IX пара) и верхнегортанного (X пара) черепно-мозговых нервов в продолговатый мозг, в ядро солитарного нерва в виде паттерной нервной активности, определяющей разные вкусовые ощущения. Из продолговатого мозга нервные волокна в составе медиальной петли направляются к вентральным ядрам зрительного бугра и далее в кору больших полушарий – латеральную часть постцентральной извилины и гиппокамп.
Вкусовая чувствительность может изменяться в зависимости от состояния организма (при голодании, беременности). Алкоголь и никотин увеличивают пороги вкусовой чувствительности. Полная потеря вкусового восприятия называется агевзией, пониженная – гипогевзией, повышение вкусовой чувствительности – гипергевзия, извращение вкуса – парагевзия.
Соматовисцеральная сенсорная системаВ соматовисцеральную систему входят: кожный анализатор, объединяющий тактильную, температурную и болевую чувствительность, проприоцептивный анализатор, или мышечное чувство, следящее за изменением положения и движения суставов и мышц, а также висцеральный анализатор, позволяющий получить информацию о состоянии внутренних органов.
С помощью кожного анализатора осуществляется связь организма с внешним миром.
При раздражении тактильных рецепторов кожи возникает чувство прикосновения, щекотания, давления, вибрации.
Рецепторы, воспринимающие прикосновение, – это тельца Мейснера, расположенные в глубоком сосочковом слое кожи, а также свободные окончания нервных волокон, локализованных вдоль мелких сосудов, и тонкие нервные волокна, оплетающие волосяную сумку (на участках кожи с волосяным покровом). Тельца Мейснера относятся к быстроадаптирующимся рецепторам. Самое большое количество таких рецепторов располагается на открытых участках тела, принимающих участие в познании внешнего мира: кончики пальцев рук, ладонные поверхности кисти, кончик языка, подошвы ног, кайма нижней губы.
За чувство давления отвечают диски Меркеля – рецепторные образования, расположенные небольшими группами в глубоких слоях кожи и слизистой. Они реагируют на прогибание эпидермиса под действием механического стимула и медленно адаптируются при длительном действии раздражителя.
Рецепторами, реагирующими на вибрацию, являются тельца Фатера-Пачини. Они находятся на участках кожи, не покрытой волосами: в слизистой оболочке, в жировой ткани подкожных слоев, в суставных сумках и сухожилиях и относятся к очень быстро адаптирующимся рецепторам. Тельца Фатера-Пачини – это детекторы коротких механических воздействий. Ощущение вибрации возникает при многократном раздражении капсулы тельца Фатера-Пачини. Последняя деформируется и действует на нервное окончание, расположенное в сердцевине тельца Фатера-Пачини. При этом в нервном окончании возникает генераторный потенциал. Тельце Фатера-Пачини реагирует на довольно высокочастотное раздражение – 40– 1000 Гц с максимальной чувствительностью 300 Гц. Выше 500 Гц ощущение давления или уменьшается, или полностью исчезает.
Для появления ощущения вибрации необходимо вовлечение в процесс нескольких телец Фатера-Пачини. В этом случае потенциалы действия нервных волокон этих рецепторов дадут ощущение вибрации.
За чувство щекотания отвечают свободные неинкапсулированные нервные окончания, расположенные в поверхностных слоях кожи. Они информируют как о наличии стимула, так и о его передвижениях по коже.
Большинство механорецепторов кожи посылают импульсы в спинной мозг по волокнам типа А, а рецепторы щекотки – по Сволокнам. Пройдя через задние корешки в задние столбы, импульсы переключаются на интернейроны спинного мозга (второй нейрон, первый находится в спинальном ганглии) той же стороны. Далее по восходящим путям в составе задних столбов они достигают ядер Голля и Бурдаха, находящихся в продолговатом мозге (третий нейрон). Затем через медиальную петлю импульсы поступают в вентробазальные ядра (специфические) зрительного бугра (четвертый нейрон) и далее в первую и вторую соматосенсорные зоны коры противоположного полушария (задняя центральная извилина).
Тактильное ощущение можно получить в наиболее чувствительных тактильных точках, расположенных на кончиках пальцев, губах, кончике носа. Порог тактильного ощущения – это минимальная сила тактильного раздражения, при которой возникает первое тактильное ощущение. Для его определения используют специальный набор волосков (прибор Фрея). С помощью эстезиометрии определяют пространственный порог различения – это минимальное расстояние между двумя точками (рецепторами), на котором два одновременно приложенных раздражителя воспринимаются как раздельные. Так, на кончике пальцев, языка и губе он равен 1 – 3 мм, что свидетельствует о высокой чувствительности этих областей тела. На менее чувствительных поверхностях кожи – на спине, плечах, бедрах пространственное различение составляет 50– 100 мм.
Различают два вида кожных рецепторов: холодовые и тепловые. К Холодовым рецепторам относят колбы Краузе, тепловым – тельца Руффини. Холодовые рецепторы располагаются под эпидермисом на глубине 0,17 мм от поверхности кожи, всего их около 250 тыс. Тепловые рецепторы залегают глубже – на расстоянии 0,3 мм от поверхности кожи в верхнем и нижнем слоях собственно кожи и слизистой. Их меньше, чем холодовых – около 30 тыс.
На 1 см2 тыльной поверхности кисти руки у жителей, живущих в средней полосе России, приходится 11 – 13 холодовых и 1 – 2 тепловых рецептора. У холодовых рецепторов постоянная импульсация наблюдается в диапазоне от 41 до 10°С, а оптимальная чувствительность – в пределах от 15 до 30°С. Тепловые рецепторы реагируют постоянной частотой ПД в диапазоне от 20 до 50°С с оптимальной чувствительностью в пределах 34 – 42°С. Это статическая реакция рецепторов. Изменения температуры на 0,2°С вызывают изменения импульсации рецепторов в сторону ее уменьшения или увеличения. Такая реакция терморецепторов называется динамической.
В диапазоне от 30 до 36°С происходит полное исчезновение ощущений холода или тепла – это зона комфорта, или нейтральная зона. Если повысить или понизить температуру выше или ниже этой зоны, то появляется ощущение тепла или холода.
При небольших отклонениях температуры и длительном действии температурного фактора определенной величины развивается медленная частичная адаптация. Большие отклонения температуры внешней среды замедляют развитие адаптации.
Импульсы от холодовых рецепторов поступают в спинной мозг по миелинизированным волокнам типа А-дельта, а от тепловых – по немиелинизированным волокнам типа С. Там находятся вторые нейроны, от которых начинается спиноталамический тракт, перекрещивающийся в каждом сегменте спинного мозга и заканчивающийся в вентробазальных ядрах зрительного бугра. Часть температурной информации поступает в сенсомоторную зону коры больших полушарий, а часть – в гипоталамические центры терморегуляции.
В коре и лимбической системе формируется ощущение тепла, холода или температурного комфорта. Ощущение температурного комфорта можно получить, если в условиях высокой температуры окружающей среды поместить тело в прохладную воду, например при летнем купании. Можно получить парадоксальное ощущение холода, если «молчащие» при температуре 40°С холодовые рецепторы быстро нагревать до температуры выше 45°С.
Висцеральная чувствительность, или интероцепция, отвечает за восприятие раздражений внутренней среды организма и обеспечивает рефлекторную регуляцию и координацию работы внутренних органов. Рецепторы интероцептивного анализатора по функциональному назначению делят на механорецепторы, хеморецепторы, осморецепторы и терморецепторы.
К механорецепторам относятся рецепторы, реагирующие на механические раздражения – растяжение и деформацию стенок внутренних органов (мочевого пузыря, желудка, сердца), барорецепторы кровеносных сосудов, принимающие участие в регуляции уровня кровяного давления.
Хеморецепторы – это все тканевые рецепторы, воспринимающие различные химические раздражители; рецепторы аортальной и синокаротидной рефлексогенных зон, ответственные за изменения химического состава омывающей их крови, слизистых оболочек пищеварительного тракта и органов дыхания; рецепторы серозных оболочек, гипоталамуса, продолговатого мозга.
Для осморецепторов адекватным стимулом являются изменения осмотического давления внутренней среды и концентрации осмотически активных веществ в крови и внеклеточной жидкости. Осморецепторы располагаются в интерстициальной ткани вблизи капилляров, их много в гипоталамусе. Так, недостаточное потребление пищи или воды вызывает раздражение глюкозных рецепторов или осморецепторов. В результате возникает ощущение голода или жажды.
Терморецепторы воспринимают изменения температуры внутренней среды организма и локализованы в основном в верхних отделах пищеварительного тракта, органах дыхания, гипоталамусе.
Интероцепторы представлены в организме свободными нервными окончаниями и специализированными инкапсулированными рецепторами, например тельцами Фатера -Пачини.
Афференты от висцеральных рецепторов проходят в общих стволах с волокнами вегетативной нервной системы, в составе языкоглоточного, блуждающего, чревного и тазового нервов. Первые нейроны расположены в чувствительных ганглиях, вторые – в спинном и продолговатом мозге, третьи – в заднемедиальном ядре зрительного бугра.
Корковый отдел висцерального анализатора находится в С, и С2 соматосенсорной и орбитальной областях коры больших полушарий.