Текст книги "Нормальная физиология"
Автор книги: Николай Агаджанян
Жанры:
Прочая справочная литература
,сообщить о нарушении
Текущая страница: 30 (всего у книги 41 страниц)
Липиды являются сложными эфирами глицерина и высших жирных кислот. Жирные кислоты бывают насыщенными и ненасыщенными (содержащими одну и более двойных связей). Липиды играют в организме энергетическую и пластическую роль. За счет окисления жиров обеспечивается около 50% потребности в энергии взрослого организма. Жиры служат резервом питания организма, их запасы у человека в среднем составляют 10 – 20% от массы тела. Из них около половины находятся в подкожной жировой клетчатке, значительное количество откладывается в большом сальнике, околопочечной клетчатке и между мышцами. В состоянии голода, при действии на организм холода, при физической или психоэмоциональной нагрузке происходит интенсивное расщепление запасенных жиров. В условиях покоя после приема пищи происходит ресинтез и отложение липидов в депо. Главную энергетическую роль играют нейтральные жиры – триглицериды, а пластическую осуществляют фосфолипиды, холестерин и жирные кислоты, которые выполняют функции структурных компонентов клеточных мембран, входят в состав липопротеидов, являются предшественниками стероидных гормонов, желчных кислот и простагландинов.
Липидные молекулы, всосавшиеся из кишечника, упаковываются в эпителиоцитах в транспортные частицы (хиломикроны), которые через лимфатические сосуды поступают в кровоток. Под действием липопротеидлипазы эндотелия капилляров главный компонент хиломикронов – нейтральные триглицериды – расщепляются до глицерина и свободных жирных кислот. Часть жирных кислот может связываться с альбумином, а глицерин и свободные жирные кислоты поступают в жировые клетки и превращаются в триглицериды. Остатки хиломикронов крови захватываются гепатоцитами, подвергаются эндоцитозу и разрушаются в лизосомах. В печени формируются липопротеиды для транспорта синтезированных в ней липидных молекул. Это липопротеиды очень низкой и липопротеиды низкой плотности, которые транспортируют из печени к другим тканям триглицериды, холестерин. Липопротеиды низкой плотности захватываются из крови клетками тканей с помощью липопротеидных рецепторов, эндоцитируются, высвобождают для нужд клеток холестерин и разрушаются в лизосомах. В случае избыточного накопления в крови липопротеидов низкой плотности, они захватываются макрофагами и другими лейкоцитами. Эти клетки, накапливая метаболически низкоактивные эфиры холестерина, становятся одними из компонентов атеросклеротических бляшек сосудов.
Липопротеиды высокой плотности транспортируют избыточный холестерин и его эфиры из тканей в печень, где они превращаются в желчные кислоты, которые выводятся из организма. Кроме того, липопротеиды высокой плотности используются для синтеза стероидных гормонов в надпочечниках.
Как простые, так и сложные липидные молекулы могут синтезироваться в организме, за исключением ненасыщенных линолевой, линоленовой и арахидоновой жирных кислот, которые должны поступать с пищей. Эти незаменимые кислоты входят в состав молекул фосфолипидов. Из арахидоновой кислоты образуются простагландины, простациклины, тромбоксаны, лейкотриены. Отсутствие или недостаточное поступление в организм незаменимых жирных кислот приводит к задержке роста, нарушению функции почек, заболеваниям кожи, бесплодию. Биологическая ценность пищевых липидов определяется наличием в них незаменимых жирных кислот и их усвояемостью. Сливочное масло и свиной жир усваиваются на 93 – 98%, говяжий – на 80 – 94%, подсолнечное масло – на 86 -90%, маргарин – на 94 -98%.
Обмен углеводовУглеводы являются основным источником энергии, а также выполняют в организме пластические функции, в ходе окисления глюкозы образуются промежуточные продукты – пентозы, которые входят в состав нуклеотидов и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот, синтеза и окисления липидов, полисахаридов. Организм человека получает углеводы главным образом в виде растительного полисахарида крахмала и в небольшом количестве в виде животного полисахарида гликогена. В желудочно-кишечном тракте осуществляется их расщепление до уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы). Моносахариды, основным из которых является глюкоза, всасываются в кровь и через воротную вену поступают в печень. Здесь фруктоза и галактоза превращаются в глюкозу. Внутриклеточная концентрация глюкозы в гепатоцитах близка к ее концентрации в крови. При избыточном поступлении в печень глюкозы она фосфорилируется и превращается в резервную форму ее хранения – гликоген. Количество гликогена может составлять у взрослого человека 150 – 200 г. В случае ограничения потребления пищи, при снижении уровня глюкозы в крови происходит расщепление гликогена и поступление глюкозы в кровь. В течение первых 12 часов и более после приема пищи поддержа-ние концентрации глюкозы крови обеспечивается за счет распада гликогена в печени. После истощения запасов гликогена усиливается синтез ферментов, обеспечивающих реакции глюконеогенеза – синтеза глюкозы из лактата или аминокислот. В среднем за сутки человек потребляет 400 – 500 г углеводов, из которых обычно 350 – 400 г составляет крахмал, а 50– 100 г – моно– и дисахариды. Избыток углеводов депонируется в виде жира.
Обмен воды и минеральных веществСодержание воды в организме взрослого человека составляет в среднем 73,2±3% от массы тела. Водный баланс в организме поддерживается за счет равенства объемов потерь воды и ее поступления в организм. Суточная потребность в воде колеблется от 21 до 43 мл/кг (в среднем 2400 мл) и удовлетворяется за счет поступления воды при питье («1200 мл), с пищей («900 мл) и воды, образующейся в организме в ходе обменных процессов (эндогенной воды («300 мл). Такое же количество воды выводится в составе мочи («1400 мл), кала («100 мл), посредством испарения с поверхности кожи и дыхательных путей («900 мл).
Потребность организма в воде зависит от характера питания. При питании преимущественно углеводной и жирной пищей и при небольшом поступлении NaCl потребности в воде меньше. Пища, богатая белками, а также повышенный прием соли обусловливают большую потребность в воде, которая необходима для экскреции осмотически активных веществ (мочевины и минеральных ионов). Недостаточное поступление в организм воды или ее избыточная потеря приводят к дегидратации, что сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики. Недостаток в организме воды в объеме 20% от массы тела ведет к летальному исходу. Избыточное поступление воды в организм или снижение ее объемов, выводимых из организма, приводит к водной интоксикации. В результате повышенной чувствительности нервных клеток и нервных центров к уменьшению осмолярности водная интоксикация может сопровождаться мышечными судорогами.
Обмен воды и минеральных ионов в организме тесно взаимосвязаны, что обусловлено необходимостью поддержания осмотического давления на относительно постоянном уровне во внеклеточной среде и в клетках. Осуществление ряда физиологических процессов (возбуждения, синоптической передачи, сокращения мышцы) невозможно без поддержания в клетке и во внеклеточной среде определенной концентрации Na+, К+, Са2+ и других минеральных ионов. Все они должны поступать в организм с пищей.
Питание
Исходным материалом для создания живой ткани и ее постоянного обновления, а также единственным источником энергии для человека и животных является пища. Поэтому рациональное питание является важнейшим фактором, обеспечивающим здоровье человека. Питание – это процесс поступления, переваривания, всасывания и усвоения в организме пищевых веществ (нутриентов). Для поддержания процессов жизнедеятельности питание должно обеспечивать все пластические и энергетические потребности организма. С пищей организм получает вещества, необходимые для биосинтеза, обновления биологических структур. Энергия поступающих в организм питательных веществ преобразуется и используется для синтеза компонентов клеточных мембран и органелл клетки, для выполнения механической, химической, осмотической и электрической работы. Биологическая и энергетическая ценность пищевых продуктов определяется содержанием в них питательных веществ: белков, жиров, углеводов, витаминов, минеральных солей, органических кислот, воды, ароматических и вкусовых веществ. Важное значение имеют такие свойства питательных веществ, как их перевариваемость и усвояемость.
Потребность организма в пластических веществах может быть удовлетворена тем минимальным уровнем их потребления с пищей, который будет уравновешивать потери структурных белков, липидов и углеводов при поддержании энергетического баланса. Эти потребности индивидуальны и зависят от таких факторов, как возраст человека, состояние здоровья, интенсивность и вид труда.
Теоретические основы питанияКаждому человеку необходим собственный набор компонентов рациона, отвечающий индивидуальным особенностям его обмена веществ.
Согласно теории сбалансированного питания (А. А. Покровский) – полноценное питание характеризуется оптимальным соответствием количества и соотношений всех компонентов пищи физиологическим потребностям организма. Принимаемая пища должна с учетом ее усвояемости восполнять энергетические затраты человека, которые определяются как сумма основного обмена, специфического динамического действия пищи и расхода энергии на выполняемую работу. При регулярном превышении суточной калорийности пищи над затратами энергии происходит увеличение количества депонированного жира. Например, ежедневное употребление сверх нормы одной сдобной булочки (300 ккал) в течение года может привести к отложению 5,4– 10,8 кг жира. В рационе должны быть сбалансированы белки, жиры и углеводы. Среднее соотношение их энергетической ценности должно составлять – 15:30:55%, что обеспечивает энергетические и пластические потребности организма. Должны быть сбалансированы белки с незаменимыми и заменимыми аминокислотами, жиры с разной насыщенностью жирных кислот, углеводы с разным числом мономеров и наличием балластных веществ (целлюлоза, пектин и др.).
Согласно теории адекватного питания (А. М. Уголев), важно соответствие набора пищевых веществ ферментному составу пищеварительной системы. В ней подчеркивается трехэтапность пищеварения и необходимость индивидуальной адекватности питания этим этапам. Например, при недостаточности лактазы молоко является неадекватным видом пищи. В этой теории считается, что первичный поток нутриентов формируется в результате переваривания и всасывания пищи, но кроме него есть поток вторичных пищевых веществ, который образуется в результате деятельности микроорганизмов кишечника. Из компонентов пищи с участием микроорганизмов образуются вещества, которые обладают не только энергетической и пластической ценностью, но и способностью влиять на многие физиологические процессы (иммунные, защитные, поведенческие).
Принципы составления пищевых рационовПитание должно точно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма.
При составлении пищевого рациона (т. е. количества и состава продуктов питания, необходимых человеку в сутки) следует соблюдать ряд принципов.
1. Калорийность пищевого рациона должна соответствовать энергетическим затратам организма, которые определяются видом трудовой деятельности.
2. Учитывается калорическая ценность питательных веществ, для этого используются специальные таблицы, в которых указано процентное содержание в продуктах белков, жиров и углеводов и калорийность 100 г продукта.
3. Используется закон изодинамии питательных веществ, т. е. взаимозаменяемость белков, жиров и углеводов, исходя из их энергетической ценности. Например, 1 г жира (9,3 ккал) можно заменить 2,3 г белка или углеводов. Однако такая замена возможна только на короткое время, так как питательные вещества выполняют не только энергетическую, но и пластическую функцию.
4. В пищевом рационе должно содержаться оптимальное для данной группы работников количество белков, жиров и углеводов, например, для работников 1-й группы в суточном рационе должно быть 80 120 г белка, 80-100 г жира, 400-600 г углеводов.
5. Соотношение в пищевом рационе количества белков, жиров и углеводов должно быть 1:1,2:4.
6. Пищевой рацион должен полностью удовлетворять потребность организма в витаминах, минеральных солях и воде, а также содержать все незаменимые аминокислоты (полноценные белки).
7. Не менее одной трети суточной нормы белков и жиров должно поступать в организм в виде продуктов животного происхождения.
8. Необходимо учитывать правильное распределение калорийности рациона по отдельным приемам пищи. Первый завтрак должен содержать примерно 25 – 30% всего суточного рациона, второй завтрак – 10 -15%, обед 40 -45% и ужин – 15 – 20%.
Фармакологические средства, влияющие на процессы обмена веществ
К числу препаратов, влияющих на обмен веществ относятся прежде всего гормоны, их аналоги и антигормональные препараты. Гормоны гипофиза: кортикотропин (влияет на белковый и углеводный обмен), тиротропин (стимулирует функцию щитовидной железы), соматотропин (оказывает анаболическое действие), адипозин (активирует липолитические ферменты, гонадотропины). Препараты, стимулирующие и тормозящие функцию щитовидной железы, небольшие дозы тироксина оказывают анаболический эффект, большие – приводят к усиленному распаду белка. Мерказолил – синтетическое антитиреоидное вещество, вызывает уменьшение синтеза тироксина, понижает основной обмен. Тестостерон и его аналоги, помимо специфического действия, оказывают стимулирующее действие на белковый анаболизм. Использованию этих соединений в качестве лечебных анаболических веществ препятствует их выраженное андрогенное действие. Анаболические стероиды (метандростенолон, феноболин, силаболин), синтетические препараты, близкие по химическому строению к тестостерону, но обладающие более избирательным анаболическим действием (андрогенные свойства у них менее выражены), оказывают положительное влияние на азотистый обмен, способствуют фиксации кальция в костях, увеличивают массу мышц.
Существенную роль в обмене веществ играют витамины и их аналоги (витамин А, витамин В1). При патологических процессах, требующих улучшения углеводного обмена, применяется кокарбоксилаза, которая является простетической группой (коферментом) ферментов, участвующих в процессах углеводного обмена. Углеводный обмен улучшает никотиновая кислота (витамин РР), которая является простетической группой ферментов, осуществляющих окислительно-восстановительные процессы. Пиридоксин (витамин В6) входит в состав ферментов, осуществляющих декарбоксилирование и переаминирование аминокислот, участвует в обмене триптофана, метионина, цистеина, глутаминовой и других аминокислот. Цианокобаламин (витамин В12) является фактором роста, необходимым для нормального кроветворения и созревания эритроцитов, участвует в образовании холина, метионина, креатина, нуклеиновых кислот. Этот витамин в организме животных не образуется, его синтез в природе осуществляется микроорганизмами, живущими в кишечнике. Липоевая кислота является коферментом, участвующим в окислительном декарбоксилировании пировиноградной кислоты и а-кетокислот, и играет важную роль в энергетическом обмене. В регуляции окислительно-восстановительных процесов, углеводного обмена, в регенерации тканей и в образовании стероидных гормонов участвует аскорбиновая кислота (витамин С). Эргокальциферол (витамин D2) регулирует обмен фосфора и кальция, содействует всасыванию этих веществ кишечником и отложению их в растущих костях. Витамин Е и соединения, близкие к нему по химической природе и биологическому действию (токоферолы), участвуют в биосинтезе гема и белков, применяются при мышечных дистрофиях. Для парентерального питания используют ряд препаратов, являющихся растворами аминокислот и простейших пептидов (гидролизин, аминокровин, фибриносол и др.). Метаболические процессы стимулируют производные пиримидина и тиазолина. Оротовая кислота является одним из предшественников пиримидиновых нуклеотидов, входящих в состав нуклеиновых кислот, которые участвуют в синтезе белковых молекул, применяется как общий стимулятор обменных процессов.
Глава 11. Терморегуляция
Температура окружающей среды оказывает большое влияние на физиологическую активность живых организмов. В разных регионах Земли температура колеблется от -50" во время арктической зимы до +60°С летом в некоторых пустынях. Температурный диапазон, в котором способны функционировать живые клетки, составляет около 50°. Живые клетки замерзают при нескольких градусах ниже 0°С. Кристаллы льда, которые образуются при замерзании тканей, разрушают клеточные структуры. Однако некоторые животные способны восстанавливать свою жизнедеятельность после размораживания. При температурах выше 45°С происходит денатурация белков, т. е. в этих условиях функционирование организма невозможно. Температура способна влиять на метаболизм живой ткани, так как скорость биохимических реакций зависит от температуры. Зависимость скорости химической реакции от температуры описывается уравнением Аррениуса.
При изучении влияния температуры на скорость реакции можно путем сравнения этой скорости при двух разных температурах определить температурный коэффициент. Разница температур, равная 10°С, стала стандартным диапазоном, по которому определяют температурную чувствительность биологических систем. В этом случае температурный коэффициент, обозначаемый О10. рассчитывают из уравнения Вант-Гоффа. Согласно правилу Вант-Гоффа скорость химических реакций возрастает при повышении температуры на 10°С примерно в 2–3 раза.
В животном мире существует несколько основных способов реагирования на внешнюю температуру. У пойкилотермных (холоднокровных) животных, к которым относятся большинство беспозвоночных и низших позвоночных, температура тела зависит от температуры окружающей среды. Интенсивность энергетических процессов и уровень активности пойкилотермных организмов определяются температурой внешней среды (рис. 27).
У пойкилотермиых животных температура тела близка к температуре воздуха. Гомойотермные сохраняют температуру тела на сравнительно постоянном уровне в широком диапазоне температур воздуха
В процессе эволюции у млекопитающих и птиц выработалась способность сохранять одинаковую температуру внутренних частей тела, несмотря на ее изменения в окружающей среде (терморегуляция), что обеспечивает относительное постоянство метаболических процессов и делает организм менее зависимым от внешних изменений. Такие организмы называются гомойотермными (теплокровными), их отличают от пойкилотермиых организмов, близких по массе, значительно более высокий уровень энергетического обмена и относительно независимый от температуры окружающей среды уровень активности. Интенсивность обмена энергии на единицу массы тела у гомойотермных животных даже после разрушения центров терморегуляции как минимум в 3 раза превышает интенсивность обмена у пойкилотермиых (при одинаковой температуре).
Поскольку гомойотермные организмы могут поддерживать постоянную температуру, а следовательно, постоянный уровень активности независимо от окружающей температуры, они имеют превосходство над пойкилотермными животными. Вместе с тем, пойкилотермия дает преимущество в том случае, когда пищевые ресурсы ограничены или подвержены сезонным изменениям.
Есть животные, которые обладают способностью переходить на некоторое время из гомойотермного состояния в пойкилотермное и наоборот. Такой переход наблюдается у животных, впадающих в зимнюю спячку (сурки, суслики, сони и др.), отчего они получили название гетеротермных. Гетеротермия – это особое состояние, при котором гомойотермные животные на время выключают терморегуляцию и температура их тела снижается до пределов, отличных приблизительно на ГС от окружающей среды. Гетеротермия является свойством, приобретенным в процессе эволюции позже, чем гомойотермия, и имеет важное значение для приспособления организма к неблагоприятным условиям (например, к недостатку пищи, воды).
Животных можно также классифицировать по тем источникам тепла, которые они используют для поддержания температуры тела. Эктотермные, например рептилии, используют для этого наружное тепло; эндотермные, и в частности человек, используют тепло метаболического происхождения.
Температура тела и тепловой баланс
Возможность процессов жизнедеятельности ограничена узким пределом температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25° и ее увеличение выше 43°, как правило, смертельно, особенно чувствительны к изменениям температуры нервные клетки.
Температура тела зависит от двух факторов: интенсивности образования тепла (теплопродукции) и величины потерь тепла (теплоотдачи). Главным условием поддержания постоянной тем-пературы тела гомойотермных животных, в том числе и человека, является достижение устойчивого баланса теплопродукции и теп-лоотдачи. Такой баланс описывается уравнением M±EH±Et±EK-EK±S=О, где М – метаболическая теплопродукция; Ея – излучение; ЕТ – теплопроведение; Ек – конвекция; Ет – испарение; S – накопление тепла; плюс означает приток, минус – теплоотдачу.
Тепло может быть получено или отдано путем излучения, теплопроведения и конвекции в зависимости от условий внешней среды. Тепло всегда образуется в качестве побочного продукта биохимических реакций, протекающих в организме, поэтому метаболизм всегда имеет положительный знак, а испарение – отрицательный. Противоположная реакция – конденсация практически не влияет на тепловой баланс у человека.
Вся высвобождающаяся в организме при биологическом окислении питательных веществ энергия в конечном счете превращается в тепло. Чем интенсивнее протекание обменных процессов, тем больше теплообразование в организме. Скорость биологического окисления возрастает при увеличении температуры. Взаимозависимость обменных процессов и теплообразования не приводит к самоускорению величины обмена и температуры, так как прирост температуры тела сопровождается увеличением отдачи тепла. Оптимальное соотношение теплопродукции и теплоотдачи обеспечивается совокупностью физиологических процессов, называемых терморегуляцией. Различают химическую и физическую терморегуляцию.