355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Агаджанян » Нормальная физиология » Текст книги (страница 11)
Нормальная физиология
  • Текст добавлен: 26 сентября 2016, 19:47

Текст книги "Нормальная физиология"


Автор книги: Николай Агаджанян



сообщить о нарушении

Текущая страница: 11 (всего у книги 41 страниц)

Вегетативные (автономные) рефлексы

Процессы в вегетативной и соматической нервных системах тесно связаны.

Различают висцеро-висцеральные, висцеросоматические, вьсцеросенсорные рефлексы. Классическим примером висцеро-висцерального рефлекса является рефлекс Гольца, показывающий, что механическое раздражение брыжейки вызывает замедление частоты сердечных сокращений. Разновидностью висцеро-висцерального рефлекса является аксон-рефлекс, например, возникновение сосудистой реакции при раздражении кожных болевых рецепторов.

К висцеросоматическим рефлексам относятся торможение общей двигательной активности организма при раздражении хемо– и механорецепторов каротидной зоны, а также сокращение мышц брюшного пресса или подергивание конечностей при раздражении рецепторов пищеварительного тракта.

При висцеросенсорных рефлексах в ответ на раздражение вегетативных чувствительных волокон возникают не только реакции во внутренних органах, но и изменяется соматическая чувствительность. Для их вызова необходимо продолжительное и сильное воздействие. Зона повышенного восприятия обычно ограничивается участком кожи, иннервируемым сегментом, к которому поступают импульсы от раздражаемого висцерального органа. В клинике имеют определенное значение висцеродермальные рефлексы. Вследствие сегментарной организации вегетативной и соматической иннервации при заболеваниях внутренних органов на ограниченных участках кожи возникает повышение тактильной и болевой чувствительности. Эти боли называются отраженными, а области, в которых они появляются, – зонами Захарьина-Геда.

При раздражении некоторых областей поверхности тела возникают сосудистые реакции и изменения функций определенных висцеральных органов. Это дермовисцеральный рефлекс, который является разновидностью соматовисцерального рефлекса. На этом основана рефлексотерапия.

Центры регуляции вегетативных функций

Центры регуляции вегетативных функций разделяются на спинальные, стволовые (бульбарные, мезэнцефалические), гипоталамические, мозжечковые, центры ретикулярной формации, лимбической системы, корковые. В основе их взаимодействия лежит принцип иерархии. Каждый более высокий уровень регуляции обеспечивает и более высокую степень интеграции вегетативных функций.


Спинальные центры.

На уровне спинного мозга происходит регуляция просвета зрачка, величины глазной щели, сосудистого тонуса, потоотделения. Стимуляция этих центров приводит к усилению и учащению сердечной деятельности, расширению бронхов. Здесь расположены также центры дефекации, мочеиспускания, половых рефлексов (эрекции и эякуляции).


Стволовые центры.

Эти центры находятся в продолговатом мозге, мосту, среднем мозге.

За счет ядер блуждающих нервов происходит торможение деятельности сердца, возбуждение слезоотделения, усиление секреции слюнных, желудочных желез, поджелудочной железы, желчевыделения, усиление сокращений желудка и тонкой кишки.

Сосудодвигательный центр отвечает за рефлекторное сужение и расширение сосудов и регуляцию кровяного давления.

Дыхательный центр регулирует смену вдоха и выдоха.

В продолговатом мозге находятся центры, с помощью которых осуществляются такие сложные рефлексы, как сосание, жевание, глотание, чихание, кашель, рвота.

В передних буграх четверохолмия в среднем мозге располагаются центры, регулирующие зрачковый рефлекс и аккомодацию глаза.


Гипоталамические центры.

Гипоталамус является главным подкорковым центром интеграции висцеральных процессов, что обеспечивается вегетативными, соматическими и эндокринными механизмами.

Стимуляция ядер задней группы гипоталамуса сопровождается реакциями, аналогичными раздражению симпатической нервной системы: расширение зрачков и глазных щелей, учащение сердечных сокращений, сужение сосудов и повышение АД, торможение моторной активности желудка и кишечника, увеличение содержания в крови адреналина и норадреналина, концентрации глюкозы. Задняя область гипоталамуса отвечает за регуляцию теплопродукции и оказывает тормозящее влияние на половое развитие.

Стимуляция передних ядер гипоталамуса приводит к эффектам, подобным раздражению парасимпатической нервной системы: сужение зрачков и глазных щелей, замедление частоты сердечных сокращений, снижение артериального давления, усиление моторной активности желудка и кишечника, увеличение секреции желудочных желез, стимуляция секреции инсулина и снижение уровня глюкозы в крови. Передние ядра регулируют теплоотдачу и оказывают стимулирующее влияние на половое развитие.

Средняя группа ядер гипоталамуса обеспечивает регуляцию метаболизма и водного баланса. Вентромедиальные ядра отвечают за насыщение, латеральные ядра – за голод (центры голода и насыщения). Паравентрикулярное ядро – центр жажды.

Гипоталамус отвечает за эмоциональное поведение, формирование половых и агрессивно-оборонительных реакций.

С помощью нейротропных средств можно избирательно воздействовать на гипоталамические структуры и регулировать состояние голода, жажды, аппетита, страха, половые реакции.


Центры лимбической системы.

Эти центры отвечают за формирование вегетативного компонента эмоциональных реакций, пищевое, сексуальное, оборонительное поведение, регуляцию систем, обеспечивающих сон и бодрствование, внимание.


Мозжечковые центры.

Благодаря наличию активирующего и тормозного механизмов мозжечок может оказывать стабилизирующее влияние на деятельность висцеральных органов посредством корригирования висцеральных рефлексов.


Центры ретикулярной формации.

Ретикулярная формация осуществляет тонизирование и повышение активности других вегетативных нервных центров.


Центры коры больших полушарий.

Кора больших полушарий осуществляет высший интегративный контроль вегетативных функций посредством нисходящих тормозных и активирующих влияний на ретикулярную формацию и другие подкорковые вегетативные центры. Координирует вегетативные и соматические функции в системе поведенческого акта.

Средства, влияющие на синаптическую передачу

Понимание тонких физиологических механизмов синаптической передачи в вегетативной нервной системе позволило создать новые лекарственные средства, применяемые в клинической и экспериментальной медицине для воздействия на функции различных внутренних органов и висцеральных систем.

В настоящее время большинство эндогенных медиаторов выделено из организма в чистом виде, установлена их химическая структура и осуществлен синтез. Получен также целый ряд современных синтетических лекарственных препаратов, имеющих структурное сходство с эндогенными нейромедиаторами. Одни из них, связываясь с соответствующими рецепторами, оказывают эффекты, подобные эндогенным медиаторам, т. е. действуют как агонисты. Другие, блокируя рецепторы, препятствуют действию эндогенных медиаторов, т. е. являются их антагонистами. Открытие субпопуляций рецепторов (α1, α2, β1, β2-адренорецепторы; М1, М2, М3-холинорецепторы и др.) привело к созданию новых лекарственных средств, действующих преимущественно на различные подгруппы рецепторов, что позволяет избирательно регулировать различные процессы в определенных органах и тканях и получать специфические эффекты.

Так, существуют фармакологические препараты, которые могут вызывать такой же эффект, как и ацетилхолин. Такие вещества называются холиномиметиками. Одни из них, как и сам медиатор, прямо воздействуют на рецепторы, имитируя действие ацетилхолина (карбахолин). Другие, ингибируя фермент ацетилхолинэстеразу, инактивирующую ацетилхолин, продлевают и усиливают действие эндогенного ацетилхолина (прозерин). Синтезированы и избирательные холиномиметики, воздействующие только на определенные виды холинорецепторов. Например, к веществам, избирательно стимулирующим Н-холинорецепторы, относятся дыхательные аналептики лобелин и цитизин. К М-холиномиметикам относится алкалоид пилокарпин, который преимущественно возбуждает М3-холинорецепторы экзокринных желез (используется в офтальмологической практике для понижения внутриглазного давления при глаукоме).

Лекарственные препараты, устраняющие или ослабляющие влияние ацетилхолина, носят название холинолитиков. Вещества, блокирующие М-холинорецепторы исполнительных органов и устраняющие мускариноподобный эффект ацетилхолина, называются М-холинолитиками. К ним относится атропин. Избирательным антагонистом М-холинорецепторов является гастроцепин (применяется для лечения язвенной болезни желудка и 12-перстной кишки). Холинолитики, устраняющие никотиноподобное действие ацетилхолина путем блокады Н-холинорецепторов на постганглионарных нейронах вегетативных ганглиев, мозгового слоя надпочечников и каротидного синуса (Нн-холинорецепторы), называют ганглиоблокаторами (бензогексоний, пирилен). С помощью ганглиоблокаторов можно выключить синаптическую передачу только в вегетативных ганглиях, не изменяя тонуса скелетных мышц.

Лекарственные вещества, оказывающие действие, аналогичное возбуждению постганглионарных симпатических волокон, получили название адреномиметиков. Некоторые из них преимущественно возбуждают α-адренорецепторы (мезатон), другие вещества действуют на p-адренорецепторы (изадрин). Получены и фармакологические препараты, избирательно стимулирующие отдельные подгруппы адренорецепторов. Так, широкое применение в медицине в качестве бронхорасширяющих средств нашли препараты, оказывающие сильное избирательное действие на β2-адренорецепторы (алупент, беротек). Эффекты, аналогичные действию медиатора, можно получить, подавив активность ферментов, инактивирующих норадреналин и адреналин: МАО (ниаламид) или КОМТ (пирогалол). Такой же эффект может быть получен в результате угнетения обратного захвата медиатора пресинаптическими окончаниями (имизин). Известны вещества, действующие на пресинаптические адренергические окончания и способствующие выделению норадреналина – симпатомиметики непрямого действия (например, эфедрин).

В экспериментальной физиологии и медицине широко используются вещества, блокирующие адренорецепторы и препятствующие их взаимодействию с медиатором. Фармакологические препараты, блокирующие α-адренорецепторы, называются α-адреноблокаторами (фентоламин, дигидроэрготоксин); блокирующие β-адренорецепторы – β-адреноблокаторами (анаприлин). Синтезированы и избирательные адреноблокаторы, например избирательно блокирующие β1-адренорецепторы сердца (атенолол). Если нарушить передачу адренергического возбуждения на пресинаптическом уровне, можно вызвать эффекты, аналогичные снижению тонуса симпатической нервной системы. Так действуют лекарственные средства группы симпатолитиков. Можно вызвать истощение запасов норадреналина в пресинаптической мембране (октадин) или блокировать выделение норадреналина из пресинаптической мембраны (орнид).

Длительное введение агонистов или антагонистов адренорецепторов вызывает соответственно понижение или повышение чувствительности адренорецепторов, что необходимо помнить при применении этих фармакологических препаратов.

Синтезировано также большое количество лекарственных веществ, являющихся агонистами и антагонистами и других эндогенных медиаторов. Так, широкое применение в медицине нашли блокаторы Н1-гистаминовых рецепторов (димедрол, тавегил), используемые главным образом для лечения и предупреждения аллергических заболеваний. Блокаторы Н2-гистаминовых рецепторов (циметидин) используются для лечения язвенной болезни желудка и 12-перстной кишки. Антагонист Б2-серотониновых рецепторов кетансерин является антигипертензивным препаратом.

Глава 5. Железы внутренней секреции

Интеграция клеток, тканей и органов в единый человеческий организм, приспособление его к различным изменениям внешней среды или потребностям самого организма осуществляется за счет нервной и гуморальной регуляции. Система нейрогуморальной регуляции представляет собой единый, тесно связанный механизм. Связь нервной и гуморальной систем регуляции хорошо видна на следующих примерах. Во-первых, природа биоэлектрических процессов является физико-химической, т. е. заключается в трансмембранных перемещениях ионов. Во-вторых, передача возбуждения с одной нервной клетки на другую или исполнительный орган происходит посредством медиатора. И наконец, наиболее тесная связь между этими механизмами прослеживается на уровне гипоталамо-гипофизарной системы. Гуморальная регуляция в филогенезе возникла раньше. В дальнейшем в процессе эволюции она дополнилась высокоспециализированной нервной системой. Нервная система осуществляет свои регуляторные влияния на органы и ткани с помощью нервных проводников, передающих нервные импульсы. Для передачи нервного сигнала требуются доли секунды. Поэтому нервная система осуществляет запуск быстрых приспособительных реакций при изменениях внешней или внутренней среды. Гуморальная регуляция – это регуляция процессов жизнедеятельности с помощью веществ, по-ступающих во внутреннюю среду организма (кровь, лимфу, ликвор). Гуморальная регуляция обеспечивает более длительные адаптивные реакции. К факторам гуморальной регуляции относятся гормоны, электролиты, медиаторы, кинины, простагландины, различные метаболиты и т. д.

Общая физиология желез внутренней секреции

Высшей формой гуморальной регуляции является гормональная. Термин «гормон» был впервые применен в 1902 г. Стерлингом и Бейлиссом в отношении открытого ими вещества, продуцирующегося в двенадцатиперстной кишке, – секретина. Термин «гормон» в переводе с греческого означает «побуждающий к действию», хотя не все гормоны обладают стимулирующим эффектом.

Гормоны – это биологически высокоактивные вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами, или железами внутренней секреции, и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма. Эндокринная железа – это анатомическое образование, лишенное выводных протоков, единственной или основной функцией которого является внутренняя секреция гормонов. К эндокринным железам относятся гипофиз, эпифиз, щитовидная железа, надпочечники (мозговое и корковое вещество), паращитовидные железы. В отличие от внутренней секреции, внешняя секреция осуществляется экзокринными железами через выводные протоки во внешнюю среду. В некоторых органах одновременно присутствуют оба типа секреции. Инкреторная функция осуществляется эндокринной тканью, т. е. скоплением клеток с инкреторной функцией в органе, обладающем функциями, не связанными с продукцией гормонов. К органам со смешанным типом секреции относятся поджелудочная железа и половые железы. Одна и та же железа внутренней секреции может продуцировать неодинаковые по своему действию гормоны. Так, например, щитовидная железа продуцирует тироксин и тирокальцитонин. В то же время продукция одних и тех же гормонов может осуществляться разными эндокринными железами. Например, половые гормоны продуцируются и половыми железами, и надпочечниками.

Продукция биологически активных веществ – это функция не только желез внутренней секреции, но и других традиционно неэндокринных органов: почек, желудочно-кишечного тракта, сердца. Не все вещества, образующиеся специфическими клетками этих органов, удовлетворяют классическим критериям понятия «гормоны». Поэтому наряду с термином «гормон» в последнее время используются также понятия гормоноподобные и биологически активные вещества (БАВ), гормоны местного действия. Так, например, некоторые из них синтезируются так близко к своим органам-мишеням, что могут достигать их диффузией, не попадая в кровоток. Клетки, вырабатывающие такие вещества, называют паракринными. Трудность точного определения термина «гормон» особенно хорошо видна на примере катехоламинов – адреналина и норадреналина. Когда рассматривается их выработка в мозговом веществе надпочечников, их обычно называют гормонами, если речь идет об их образовании и выделении симпатическими окончаниями, их называют медиаторами.

Регуляторные гипоталамические гормоны – группа нейропептидов, включая недавно открытые энкефалины и эндорфины, действуют не только как гормоны, но и выполняют своеобразную медиаторную функцию. Некоторые из регуляторных гипоталамических пептидов обнаружены не только в нейронах головного мозга, но и в особых клетках других органов, например кишечника: это вещество Р, нейротензин, соматостатин, холецистокинин и др. Клетки, вырабатывающие эти пептиды, образуют согласно современным представлениям диффузную нейроэндокринную систему, состоящую из разбросанных по разным органам и тканям клеток. Клетки этой системы характеризуются высоким содержанием аминов, способностью к захвату предшественников аминов и наличием декарбоксилазы аминов. Отсюда название системы по первым буквам английских слов Amine Precursors Uptake arid Decarboxylating system – APUD-система – система захвата предшественников аминов и их декарбоксилирования. Поэтому правомерно говорить не только об эндокринных железах, но и об эндокринной системе, которая объединяет все железы, ткани и клетки организма, выделяющие во внутреннюю среду специфические регуляторные вещества.

Химическая природа гормонов и биологически активных веществ различна. От сложности строения гормона зависит продолжительность его биологического действия, например, от долей секунды у медиаторов и пептидов до часов и сугок у стероидных гормонов и йодтиронипов. Анализ химической структуры и физико-химических свойств гормонов помогает понять механизмы их действия, разрабатывать методы их определения в биологических жидкостях и осуществлять их синтез.

Классификация гормонов и БАВ по химической структуре:

1. Производные аминокислот:

• производные тирозина: тироксин, трийодтиронин, дофамин, адреналин, норадреналин;

• производные триптофана: мелатонин, серотонин;

• производные гистидина: гистамин.

2. Белково-пептидные гормоны:

• полипептиды: глюкагон, кортикотропин, меланотропин, вазопрессин, окситоцин, пептидные гормоны желудка и кишечника;

• простые белки (протеины): инсулин, соматотропин, пролактин, паратгормон, кальцитонин;

• сложные белки (гликопротеиды): тиреотропин, фоллитропин, лютропин.

3. Стероидные гормоны:

• кортикостероиды (альдостерон, кортизол, кортикостерон);

• половые гормоны: андрогены (тестостерон), эстрогены и прогестерон.

4. Производные жирных кислот:

• арахидоновая кислота и ее производные: простагландинм: простациклины, тромбоксаны, лейкотриены.

Несмотря на то, что гормоны имеют разное химическое строение, для них характерны некоторые общие биологические свойства.

Общие свойства гормонов:

1. Строгая специфичность (тропность) физиологического действия.

2. Высокая биологическая активность: гормоны оказывают свое физиологическое действие в чрезвычайно малых дозах.

3. Дистантный характер действия: клетки-мишени располагаются обычно далеко от места образования гормона.

4. Многие гормоны (стероидные и производные аминокислот) не имеют видовой специфичности.

5. Генерализованность действия.

6. Пролонгированность действия.

Установлены четыре основных типа физиологического действия на организм: кинетическое, или пусковое, вызывающее определенную деятельность исполнительных органов; метаболическое (изменения обмена веществ); морфогенетическое (дифференциация тканей и органов, действие на рост, стимуляция формообразовательного процесса); корригирующее (изменение интенсивности функций органов и тканей).

Гормональный эффект опосредован следующими основными этапами: синтезом и поступлением в кровь, формами транспорта, клеточными механизмами действия гормонов. От места секреции гормоны доставляются к органам-мишеням циркулирующими жидкостями: кровью, лимфой.

В крови гормоны циркулируют в нескольких формах:

1. в свободном состоянии;

2. в комплексе со специфическими белками плазмы крови;

3. в форме неспецифического комплекса с плазменными белками;

4. в адсорбированном состоянии на форменных элементах крови.

В состоянии покоя 80% приходится на комплекс со специфическими белками. Биологическая активность определяется содержанием свободных форм гормонов. Связанные формы гормонов являются как бы депо, физиологическим резервом, из которого гормоны переходят в активную свободную форму по мере необходимости.

Обязательным условием для проявления эффектов гормона является его взаимодействие с рецепторами.

Гормональные рецепторы представляют собой особые белки клетки, для которых характерны:

1. высокое сродство к гормону;

2. высокая избирательность;

3. ограниченная связывающая емкость;

4. специфичность локализации рецепторов в тканях.

На одной и той же мембране клетки могут располагаться десятки разных типов рецепторов. Количество функционально активных рецепторов может изменяться при различных состояниях и в патологии. Так, например, при беременности в миометрии исчезают М-холинорецепторы, но возрастает количество окситоциновых рецепторов. При некоторых формах сахарного диабета имеет место функциональная недостаточность инсулярного аппарата, т. е. уровень инсулина в крови высокий, но часть инсулиновых рецепторов оккупирована аутоантителами к этим рецепторам. В 50% случаев рецепторы локализуются на мембранах клетки-мишени; 50% – внутри клетки.

Механизмы действия гормонов.

Существуют два основных механизма действия гормонов на уровне клетки: реализация эффекта с наружной поверхности клеточной мембраны и реализация эффекта после проникновения гормона внутрь клетки.

В первом случае рецепторы расположены на мембране клетки. В результате взаимодействия гормона с рецептором активируется мембранный фермент – аденилатциклаза. Этот фермент способствует образованию из аденозинтрифосфорной кислоты (АТФ) важнейшего внутриклеточного посредника реализации гормональных эффектов – циклического 3,5-аденозинмонофосфата (цАМФ). цАМФ активирует клеточный фермент протеинкиназу, реализующую действие гормона. Установлено, что гормонозависимая аденилатциклаза – это общий фермент, на который действуют различные гормоны, в то время как рецепторы гормонов множественны и специфичны для каждого гормона. Вторичными посредниками кроме цАМФ могут быть циклический 3,5-гуанозинмонофосфат (цГМФ), ионы кальция, инозитол-трифосфат. Так действуют пептидные, белковые гормоны, производные тирозина – катехоламины. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков.

Во втором случае рецепторы для гормона находятся в цитоплазме клетки. Гормоны этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клеткимишени и связываются в ее цитоплазме специфическими белка-ми-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и гормон взаимодействует с определенными участками ядерной ДНК, следствием чего является образование особой матричной РНК. Матричная РНК выходит из ядра и способствует синтезу на рибосомах белка или белка-фермента. Так действуют стероидные гормоны и производные тирозина – гормоны щитовидной железы. Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.

Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотой либо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом.

Гормоны выполняют в организме следующие важные функции:

1. Регуляция роста, развития и дифференцировки тканей и органов, что определяет физическое, половое и умственное развитие.

2. Обеспечение адаптации организма к меняющимся условиям существования.

3. Обеспечение поддержания гомеостаза.

Функциональная классификация гормонов:

1. Эффекторные гормоны – гормоны, которые оказывают влияние непосредственно на орган-мишень.

2. Тропные гормоны – гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Выделяются аденогипофизом.

3. Рилизинг-гормоны – гормоны, регулирующие синтез и вы-деление гормонов аденогипофиза, преимущественно тропных. Выделяются нервными клетками гипоталамуса.

Виды взаимодействия гормонов. Каждый гормон не работает в одиночку. Поэтому необходимо учитывать возможные результаты их взаимодействия.

Синергизм – однонаправленное действие двух или нескольких гормонов. Например, адреналин и глюкагон активируют распад гликогена печени до глюкозы и вызывают увеличение уровня сахара в крови.

Антагонизм всегда относителен. Например, инсулин и адреналин оказывают противоположные действия на уровень глюкозы в крови. Инсулин вызывает гипогликемию, адреналин – гипергликемию. Биологическое же значение этих эффектов сводится к одному – улучшению углеводного питания тканей.

Пермиссивное действие гормонов заключается в том, что гормон, сам не вызывая физиологического эффекта, создает условия для ответной реакции клетки или органа на действие другого гормона. Например, глюкокортикоиды, не влияя на тонус мускулатуры сосудов и распад гликогена печени, создают условия, при которых даже небольшие концентрации адреналина увеличивают артериальное давление и вызывают гипергликемию в результате гликогенолиза в печени.


    Ваша оценка произведения:

Популярные книги за неделю