Текст книги "Нормальная физиология"
Автор книги: Николай Агаджанян
Жанры:
Прочая справочная литература
,сообщить о нарушении
Текущая страница: 20 (всего у книги 41 страниц)
Гуморальная регуляция просвета сосудов осуществляется за счет химических, растворенных в крови веществ, к которым относятся гормоны общего действия, местные гормоны, медиаторы и продукты метаболизма. Их можно разделить на две группы: сосудосуживающие и сосудорасширяющие вещества.
К сосудосуживающим веществам относятся: гормоны мозгового слоя надпочечников – адреналин и норадреналин. Адреналин в малых дозах (1 х 10–7 г/мл) повышает АД, суживая сосуды всех органов, кроме сосудов сердца, мозга, поперечно-полосатой мускулатуры, в которых находятся бета-адренорецепторы. Норадреналин – сильный вазоконстриктор, взаимодействующий с альфа-адренорецепторами.
Разнонаправленный характер влияния катехоламинов (адреналина и норадреналина) на гладкие мышцы сосудов объясняется наличием разных типов адренорецепторов – альфа и бета. Возбуждение альфа-адренорецепторов приводит к сокращению мускулатуры сосудов, а возбуждение бета-адренорецепторов – к ее расслаблению. Норадреалин контактирует в основном с альфаадренорецепторами, а адреналин – и с альфа и с бета. Если в сосудах преобладают альфа-адренорецепторы, то адреналин их суживает, а если преобладают бета-адренорецепторы, то он их расширяет. Кроме того, порог возбуждения бета-адренорецепторов ниже, чем альфа-рецепторов, поэтому в низких концентрациях адреналин в первую очередь контактирует с бета-адренорецепторами и вызывает расширение сосудов, а в высоких – их сужение.
Вазопрессин, или антидиуретический гормон – гормон задней доли гипофиза, суживающий мелкие сосуды и, в частности, артериолы, особенно при значительном падении артериального давления.
Альдостерон – минералокортикоид – гормон коры надпочечников, повышает чувствительность гладких мышц сосудов к вазоконстрикторным агентам, усиливает прессорное действие ангиотензина II.
Серотонин – образуется в слизистой кишечника и в некоторых отделах головного мозга, содержится в тромбоцитах, суживает поврежденный сосуд и препятствует кровотечению. Он оказывает мощное сосудосуживающее влияние на артерии мягкой мозговой оболочки и может играть роль в возникновении их спазмов (приступы мигрени).
Ренин – образуется в юкстагломерулярном комплексе почки, особенно много при ее ишемии.Он расщепляет альфа-2 – глобулин плазмы – ангиотензиноген и превращает его в малоактивный декапептид – ангиотензин I, который под влиянием фермента дипептидкарбоксипептидазы превращается в очень активное сосудосуживающее вещество – ангиотензин II, повышающее АД (почечная гипертония). Ангиотензин II – мощный стимулятор выработки альдостерона, повышающего содержание в организме Na+ и внеклеточной жидкости. В таких случаях говорят о работе ренин-ангиотензин-альдостероновой системы или механизма. Последний имеет большое значение для нормализации уровня кровяного давления при кровопотере.
Эндотелии – вырабатывается эндотелием сосудов, оказывает сосудосуживающий эффект при снижении АД.
Ионы Са2+ суживают сосуды.
К сосудорасширяющим веществам относятся: медиатор ацетилхолин, а также так называемые местные гормоны. Один из них – гистамин – образуется в слизистой оболочке желудка и кишечника, в коже, скелетной мускулатуре (во время работы) и в других органах. Содержится в базофилах и тучных клетках поврежденных тканей и выделяется при реакциях антиген-антитело. Расширяет артериолы и венулы, увеличивает проницаемость капилляров.
Брадикинин выделен из экстрактов поджелудочной железы, легких. Он расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез, увеличивает проницаемость капилляров.
Простагландины, простациклины и тромбоксан образуются во многих органах и тканях. Они синтезируются из полиненасыщенных жирных кислот арахидоновой и линолевой. Простагландины (PG) – это гормоноподобные вещества. Разные группы и подгруппы этих веществ оказывают различный эффект на сосуды. Так, PGA, и PGA2 вызывают расширение артерий чревной области. Медуллин (PGA2), выделенный из мозгового вещества почек, снижает АД, увеличивает почечный кровоток, выделение почками воды, Na+ и К +. Простагландины PGE расширяют сосуды при внутриартериальном введении и тормозят выделение норадреналина из окончаний симпатических нервов. PGF суживают сосуды и повышают АД. Тромбоксан оказывает сосудосуживающий эффект.
Продукты метаболизма – молочная и пировиноградная кислоты оказывают местный вазодилататорный эффект.
СО2 расширяет сосуды мозга, кишечника, скелетной мускулатуры.
Аденозин расширяет коронарные сосуды.
NO (оксид азота) расширяет коронарные сосуды.
Ионы К+ и Na+ расширяют сосуды.
Центры кровообращения
Образования, имеющие отношение к центрам кровообращения, располагаются на разных уровнях центральной нервной системы.
Спинальный уровень
Спинальный уровень регуляции сердечной деятельности находится в боковых рогах (Т1-Т5) спинного мозга – это симпатические преганглионарные нейроны. В звездчатом симпатическом ганглии локализованы постганглионарные симпатические нейроны, аксоны которых иннервируют сердечную мышцу. Раздражение вышеперечисленных структур стимулирует сердечную деятельность.
Сосудистый тонус регулируется центрами, расположенными в боковых рогах спинного мозга, – это симпатические пре-ганглионарные нейроны, пара– и превертебральные ганглии – постганглионарные нейроны.
Если перерезать у животного спинной мозг между последним шейным и первым грудным сегментами, то в первый момент про-изойдет резкое падение АД, но через неделю кровяное давление восстанавливается за счет деятельности симпатических центров боковых рогов спинного мозга, приобретающих при гипоксии, вызванной кровопогерей, самостоятельное значение.
Бульварный уровень.
В продолговатом мозге находится главный центр регуляции сердечной деятельности (ингибирующий центр), состоящий из группы нейронов, относящихся к ядру блуждающего нерва и оказывающих на сердце тормозное влияние, а также группы нейронов, связанных со спинальными (стимулирующими) центрами. Кроме того, в продолговатом мозге располагается главный сосудодвигательный центр. Прессорные нейроны локализованы преимущественно в латеральных областях продолговатого мозга, депрессорные – в медиальных.
Гипоталамический уровень.
Раздражение передней группы ядер вызывает торможение сердечной деятельности и вазодилататорный эффект, раздражение задней группы – стимуляцию работы сердца и вазокопстрикторный эффект.
Корковый уровень обеспечивает регуляцию сердечной деятельности и сосудистых реакций (условных и безусловных) в ответ на внешние раздражения. Стимуляция некоторых отделов коры больших полушарий вызывает различные реакции со стороны сердечно-сосудистой системы. При раздражении моторной и премоторной зон коры возникают преимущественно прессорные реакции и ускорение ритма сердечных сокращений. Стимуляция поясной извилины приводит к депрессорному эффекту, а раздражение некоторых точек около орбитальных областей островка височной коры вызывает как прессорные, так и депрессорные реакции.
Рефлекторная регуляция деятельности сердца и сосудистого тонуса
Рефлекторные влияния на деятельность сердца и тонус сосудов могут возникать при раздражении различных рецепторов, расположенных как в самом сердце и сосудистой системе, так и в различных органах.
Условно все сердечно-сосудистые рефлексы можно разделить на собственные и сопряженные.
1. Собственные рефлексы берут свое начало в самом сердце или в кровеносных сосудах и заканчиваются на сердце и сосудах.
2. Сопряженные рефлексы начинаются в других органах и заканчиваются на сердце и сосудах.
Собственные рефлексы можно разделить:
1. на рефлексы с сердца на сердце
2. рефлексы с сосудов на сердце и сосуды.
Так, при повышении давления в правом предсердии и устье полых вен происходит возбуждение барорецепторов этих зон, затем стимуляция симпатических центров спинного мозга и рефлекторная тахикардия, при этом сердце выбрасывает больше крови, в результате давление в правом предсердии снижается (рефлекс Бейнбриджа).
В группе рефлексов с сосудов на сердце и сосуды выделяют два главных рефлекса: аортальный и синокаротидный. Повышение артериального давления приводит к возбуждению барорецепторов дуги аорты. Далее возбуждение по депрессорному, или аортальному, нерву, открытому И. Ф. Ционом и К. Людвигом (1866 г.), достигает продолговатого мозга, где находятся центры сердечной деятельности (центр блуждающего нерва) и сосудодвигательный центр. Импульсы по центробежным эфферентным волокнам блуждающего нерва поступают к сердцу и тормозят его работу. Одновременно происходит расширение сосудов, получивших импульсацию по вазодилататорам из сосудодвигательного центра продолговатого мозга. Брадикардия и расширение сосудов приводят к падению давления. При снижении артериального давления в аортальной зоне частота импульсов, идущих в продолговатый мозг по депрессорному нерву, уменьшается. Это тормозит центр блуждающего нерва, увеличивает тонус симпатических нервов и рефлекторно повышает артериальное давление.
Вторая сосудистая рефлексогенная зона была описана Г. Герингом (1923 г.). Раздражение барорецепторов каротидного синуса в области бифуркации сонной артерии на наружную и внутреннюю при повышении артериального давления приводит к возбуждению синокаротидного нерва, идущего в составе языкоглоточного нерва. Далее импульсы достигают центра блуждающего нерва и сосудодвигательного центра в продолговатом мозге, затем происходят те же изменения деятельности сердца и просвета сосудов, что и при аортальном рефлексе.
К сопряженным рефлексам (с органов на сердце) относится рефлекс Гольца – это рефлекторная брадикардия вплоть до полной остановки сердца в результате стимуляции механорецепторов брюшины и органов брюшной полости при ударе в эпигастральную область. Центростремительные пути этого рефлекса проходят в составе чревного нерва в спинной и продолговатый мозг, где они достигают ядер блуждающего нерва и по его эфферентным волокнам – сердца.
Урежение частоты сердечных сокращений на 10–20 в 1 минуту можно получить при надавливании на глазные яблоки – это также вагальный рефлекс Даньини-Ашнера.
Рефлекторные изменения работы сердца и повышение артериального давления наблюдаются при болевых раздражениях кожи (экстерорецепторов), внутренних органов (интерорецепторов), при эмоциях, мышечной работе.
Методы исследования сердечно-сосудистой системы
Фонокардиография – метод регистрации тонов (1,2,3,4), а в патологии – шумов сердца посредством преобразования с помощью микрофона звуковых колебаний в электрические.
Баллистокардиография – метод регистрации движений тела человека, обусловленных сокращением сердца и выбросом крови в крупные сосуды.
Динамокардиография – метод регистрации смещений центра тяжести грудной клетки, отражающих движения сердца в грудной клетке и перемещение массы крови из полостей сердца в сосуды.
Векторкардиография – регистрация изменений направления электрической оси сердца, обладающей свойствами векторной величины с помощью электронно-лучевой трубки.
Эхокардиография – регистрация ультразвуковых колебаний, отраженных от различных поверхностей сердца. Позволяет судить о расстоянии между различными структурами, находящимися в радиусе ультразвукового луча, об изменениях размеров сердца, движении клапанов.
Реография – запись изменений сопротивления тканей проходящему через них электрическому току. Вследствие увеличения кровенаполнения тканей (при систоле) происходит повышение их электропроводности и уменьшение электрического сопротивления. Уменьшение кровенаполнения (при диастоле) приводит к обратным явлениям. По форме реограмма напоминает кривую объемного пульса. Реография используется для определения изменений регионарного сосудистого тонуса, скорости кровотока и скорости распространения пульсовой волны.
Плетизмография – регистрация изменений объема органа, связанных с колебаниями его кровенаполнения. Во время систолы приток крови к органу увеличивается, происходит и увеличение его объема. Во время диастолы наблюдаются обратные явления. Плетизмография используется для оценки тонуса периферических сосудов, изменений систолического объема крови, определения скорости распространения пульсовой волны. С помощью метода окклюзионной плетизмографии можно измерить объемную скорость кровотока.
Коронарное кровообращение
Коронарный кровоток составляет 250 мл/мин, или 4–5% от МОК. При максимальной физической нагрузке он может возрастать в 4–5 раз. Обе коронарные артерии отходят от аорты. Правая коронарная артерия снабжает кровью большую часть правого желудочка, заднюю стенку левого желудочка и некоторые отделы межжелудочковой перегородки. Левая коронарная артерия питает остальные отделы сердца. Отток венозной крови от левого желудочка осуществляется преимущественно в венозный синус, открывающийся в правое предсердие (75% всей крови). От правого желудочка кровь оттекает по передним сердечным венам и венам Тебезия непосредственно в правое предсердие. При ослаблении сердечной деятельности или сократительной способности миокарда возможен обратный кровоток из полостей сердца в коронарные сосуды с помощью сосудов Вьессана и вен Тебезия.
Внутренний слой стенки коронарных сосудов продуцирует эластин, способствующий образованию атеросклеротических бляшек. Средний слой вырабатывает кейлоны, тормозящие продукцию эластина. Нарушение выработки кейлонов приводит к образованию атеросклеротических бляшек.
Коронарный кровоток зависит от фаз сердечного цикла. Во время систолы интенсивность коронарного кровотока (особенно в миокарде левого желудочка) снижается, а во время диастолы возрастает. Это связано с периодическим сжатием мускулатурой сердца коронарных сосудов во время систолы и расслаблением во время диастолы. Для миокарда характерны высокая объемная скорость кровотока и большая растяжимость коронарных сосудов.
Коронарный кровоток зависит от давления в аорте. При повышении давления в аорте коронарный кровоток увеличивается, при снижении – уменьшается.
Повышение артериального давления в правой половине сердца препятствует венозному оттоку крови из коронарных сосудов и уменьшению кровотока по ним – «легочное сердце» (при воспалении легких, туберкулезе легких).
Регуляция коронарного кровотокаГипоксия – один из важнейших факторов, регулирующих коронарный кровоток. Сердечная мышца экстрагирует из притекающей крови О2 (60–70%). Потребление кислорода миокардом составляет 4–10 мл на 100 г его массы в 1 минуту, при повышении нагрузки на сердце оно возрастает, но не за счет увеличения экстракции О2 , а за счет увеличения коронарного кровотока. Снижение О2 на 5% приводит к расширению коронарных сосудов. При аноксии (прекращении доставки О2 к сердцу) его сокращения постепенно ослабевают, полости сердца расширяются и через 6–10 минут наступает остановка сердца, которая вначале сопровождается биохимическими изменениями: падением содержания АТФ и креатинфосфата, накоплением лактата, который не расщепляется до СО2 и воды. После 30-минутной аноксии наступают структурные необратимые нарушения в мышце сердца: 30 минут – это предел реанимации. При удушье предел реанимации короче (8–10 мин), так как возникают необратимые изменения головного мозга.
Увеличение МОК приводит к улучшению коронарного кровотока.
Несильное раздражение симпатических нервов улучшает метаболизм сердечной мышцы и коронарный кровоток, сильное раздражение вызывает констрикторный эффект на сосудах сердца и боли в сердце.
Стимуляция парасимпатических нервов (блуждающего нерва) приводит к слабому расширению коронарных сосудов и одновременно к отрицательному инотропному эффекту, ухудшению коронарного кровотока и к смерти, особенно ночью, когда превалирует тонус блуждающего нерва.
Положительный хронотропный эффект (тахикардия) уменьшает коронарный кровоток, положительный инотропный эффект улучшает коронарный кровоток.
Адреналин и норадреналин увеличивают коронарный кровоток, ацетилхолин – уменьшает, брадикинин, простагландины – расширяют коронарные сосуды и улучшают в них кровоток. Аналогичное положительное влияние оказывает аденозин, молочная кислота, СО2, Н+ ионы, Са2+, NO (окись азота). Передозировка ионов К+ ухудшает коронарный кровоток и приводит к остановке сердца.
Лимфатическая система
Лимфатические сосуды – это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло. Лимфатическая система человека начинается с замкнутых, в отличие от кровеносных, лимфатических капилляров, пронизывающих все ткани, за исключением эпидермиса кожи, центральной нервной системы, паренхимы селезенки, хрящей, плаценты, хрусталика и оболочек глазного яблока.
Диаметр лимфатического капилляра – 20–40 мкм, его стенка состоит из одного слоя эндотелия и связана с помощью коллагеновых волокон с окружающей соединительной тканью, что препятствует спадению стенок лимфатического капилляра при изменении внутритканевого давления. Через стенку лимфатического капилляра хорошо проходят электролиты, углеводы, жиры и белки.
Далее капилляры переходят во внутриорганные мелкие лимфатические сосуды. Выйдя из органа, последние пронизывают один или два лимфатических узла – «фильтры», задерживающие наиболее крупные частицы, находящиеся в лимфе.
Затем лимфатические сосуды соединяются в более крупные стволы, образующие правый и грудной лимфатический протоки. Грудной проток собирает 3/4 лимфы всего тела, за исключением правой половины головы и шеи, правой руки и правой половины грудной клетки, которые питаются правым лимфатическим протоком. Оба протока впадают в подключичные вены. В лимфатических сосудах имеются клапаны. Участок лимфососуда между двумя клапанами называется лимфангионом. Это морфофункциональпая единица лимфатической системы, состоящая из мышечной «манжетки» и двух клапанов – дистального и проксимального. Лимфатические сосуды – это система коллекторов, представляющих собой цепочку лимфангионов.
Лимфатические сосуды могут спонтанно сокращаться с частотой от 10 до 20 в 1 мин. Эти сокращения представляют собой последовательные, ритмические сокращения лимфангионов, напоминающие сердечный цикл, в котором имеется систола и диастола. В результате происходит перемещение лимфы по сосудам.
Движению лимфы способствуют дыхательные движения, сокращения мышц, сердца, перистальтика кишечника.
Лимфатические сосуды находятся в состоянии тонуса, который поддерживается местными гуморальными и нервными механизмами.
Функции лимфатической системыЛимфатическая система выполняет следующие функции:
1. Возврат белков, электролитов и воды из интерстиция в кровь. За одни сутки в кровоток лимфа возвращает 100 г белка. При массивной кровопотере увеличивается поступление лимфы в кровь. При перевязке или закупорке лимфатического сосуда развивается лимфатический отек ткани (скопление жидкости в тканях).
2. Резорбтивная функция. Через поры в лимфатических капиллярах в лимфу проникают коллоидные вещества, крупномолекулярные соединения, лекарственные препараты, частицы погибших клеток. В последние годы при лечении тяжелых воспалительных процессов и раковых заболеваний используют эндолимфотерапию, т. е. введение лекарственных препаратов непосредственно в лимфатическую систему.
3. Барьерная функция осуществляется за счет лимфоузлов, задерживающих инородные частицы, микроорганизмы и опухолевые клетки (метастазирование в лимфоузлы).
4. Участие в энергетическом и пластическом обмене веществ. Лимфа приносит в кровь продукты метаболизма, витамины, электролиты и другие вещества.
5. Участие в жировом обмене. Жиры из кишечника после их всасывания поступают в лимфатические сосуды, затем в кровеносную систему и в жировые депо в виде хиломикронов.
6. Иммунобиологическая функция. В лимфоузлах образуются плазматические клетки, вырабатывающие антитела. Там же находятся Т– и В-лимфоциты, отвечающие за иммунитет.
7. Участие в обмене жирорастворимых витаминов (А, Е, К), которые сначала всасываются в лимфу, а затем в кровь.
ЛимфообразованиеЛимфа образуется в результате перехода (резорбции) интерстициальной жидкости с растворенными в ней веществами в лимфатические капилляры, которые вновь переходят в кровеносную систему. Транспорт жидкости с растворенными в ней веществами можно представить в виде следующей схемы: кровеносное русло-›интерстиций-›лимфатические сосуды-жровеносное русло.
Из 20 л жидкости, выходящей из кровеносного русла в интерстициальное пространство, 2–4 л в виде лимфы по лимфатическим сосудам возвращается в кровеносную систему.
К факторам, способствующим лимфообразованию, относятся:
1. Разность гидростатического давления в кровеносном сосуде, межтканевом пространстве и лимфатическом капилляре. Так, повышение артериального давления в капилляре способствует фильтрации жидкости из капилляра в ткань и лимфатический сосуд. Давление лимфы в области грудного протока составляет 11 – 12 мм вод.ст. При форсированном дыхании оно возрастает до 35 – 40 см вод.ст.
2. Разность онкотического и осмотического давления в кровеносном сосуде и межтканевом пространстве. Повышение онкотического давления плазмы снижает образование лимфы.
3. Состояние проницаемости эндотелия кровеносных и лимфатических капилляров. Очень проницаемы капилляры печени, поэтому большая часть лимфы образуется в печени, после чего она поступает в грудной проток. Макромолекулы и частицы диаметром 3 – 50 мкм проникают через эндотелий с помощью пиноцитоза (белки, хиломикроны).