Текст книги "Нормальная физиология"
Автор книги: Николай Агаджанян
Жанры:
Прочая справочная литература
,сообщить о нарушении
Текущая страница: 36 (всего у книги 41 страниц)
Первый нейрон зрительного анализатора – это биполярная клетка, второй нейрон – ганглиозная. Зрительный нерв состоит из аксонов ганглиозных клеток. В области основания черепа часть волокон зрительного нерва переходит на противоположную сторону. Остальные волокна вместе с перекрещенными аксонами второго зрительного нерва образуют зрительный тракт, волокна которого идут в подкорковые центры: латеральные коленчатые тела, верхние бугры четверохолмия, подушку зрительного бугра, супрахиазматическое ядро гипоталамуса и ядра глазодвигательного нерва. В этих подкорковых структурах находятся остальные нейроны зрительных путей. Аксоны клеток латерального коленчатого тела в составе зрительной радиации направляются в затылочную долю, к центральной части зрительного анализатора, локализованной в клетках первичной зрительной зоны (поле 17), которая связана с вторичными зрительными зонами (поля 18 и 19) коры больших полушарий.
Уже на уровне сетчатки, благодаря сложной организации и специализации нейронов происходит определение таких сложных качеств светового сигнала, как освещенность, цвет, форма, движение сигнала.
В подкорковых структурах анализатора зрительная информация подвергается дальнейшей, более сложной переработке, вычленению и выявлению новых качеств стимула за счет наличия более сложных рецептивных полей, колонок – вертикальных скоплений нейронов, предназначенных для расчленения информации на отдельные составляющие. На этом уровне уже начинается взаимодействие обоих глаз.
Благодаря нейронам зрительной коры происходит основной анализ зрительной информации с обязательным участием колонок; здесь имеются возбуждающие и тормозные зоны. Бинокулярное зрение обеспечивается за счет деятельности коркового конца зрительного анализатора, в одной точке представлены симметричные поля зрения справа и слева.
Цветовое зрение – это способность зрительного анализатора реагировать на изменения светового диапазона между коротковолновым – фиолетовым цветом (длина волны от 400 нм) и длинноволновым – красным цветом (длина волны 700 нм) с формированием ощущения цвета. Все остальные цвета: синий, желтый, зеленый, оранжевый имеют промежуточные значения длины волны. Если смешать лучи всех цветов, то получим белый цвет.
Существуют две теории цветового зрения. Первая – трехкомпонентная теория цветоощущения Г. Гельмгольца пользуется наибольшим признанием. Согласно этой теории в сетчатке имеются три вида колбочек, отдельно воспринимающих красный, зеленый и сине-фиолетовый цвета. Различные сочетания возбуждения колбочек приводят к ощущению промежуточных цветов. Равномерное возбуждение всех трех видов колбочек дает ощущение белого цвета. Черный цвет ощущается в том случае, если колбочки не возбуждаются.
Согласно второй контрастной теории Э. Геринга, основанной на существовании в колбочках трех светочувствительных веществ (бело-черное, красно-зеленое, желто-синее), под влиянием одних световых лучей происходит распад этих веществ и возникает ощущение белого, красного, желтого цветов. Другие световые лучи синтезируют эти вещества и в результате получается ощущение черного, зеленого и синего цветов.
Впервые частичная цветовая слепота была описана Д. Дальтоном, который сам ею страдал (дальтонизм). В основном дальтонизмом страдают мужчины (8%) и только 0,5% – женщины. Ее возникновение связано с отсутствием определенных генов в половой непарной у мужчин х-хромосоме.
Различают три типа нарушений цветового зрения:
1. Протанопия, или дальтонизм – слепота на красный и зеленый цвета, оттенки красного и зеленого цвета не различаются, сине-голубые лучи кажутся бесцветными.
2. Дейтеранопия – слепота на красный и зеленый цвета. Нет отличий зеленого цвета от темно-красного и голубого.
3. Тританопия – редко встречающаяся аномалия, не различаются синий и фиолетовый цвета.
4. Ахромазия – полная цветовая слепота при поражении колбочкового аппарата сетчатки. Все цвета воспринимаются как оттенки серого.
Острота зрения – это наименьшее расстояние между двумя точками, которые глаз способен видеть раздельно. Нормальный глаз способен различать две светящиеся точки под углом зрения в 1', острота зрения такого глаза, или визус, (visus) равна 1,0. Острота зрения определяется с помощью буквенных или различного рода фигурных стандартных таблиц.
При фиксированном на каком-либо предмете взгляде он воспринимается центральным зрением. Предметы, изображения которых попадают не на центральную ямку, а на остальные участки сетчатки, воспринимаются периферическим зрением. Пространство, которое человек может видеть фиксированным взглядом, называется полем зрения. Оно определяется с помощью прибора периметра (метод периметрии). Различают отдельно поле зрения для левого и правого глаза и общее поле зрения для двух глаз. Оно неодинаково в различных меридианах, книзу и кнаружи оно больше, чем кнутри и кверху. Самое большое поле зрения для белого цвета, самое узкое – для зеленого, желтого, больше – для синего и красного.
Ощущение глубины пространства обеспечивается бинокулярным зрением. У человека с нормальным зрением при рассматривании предмета двумя глазами изображение попадает на симметричные (идентичные) точки сетчатки, а корковый отдел анализатора объединяет его в единое целое, давая одно изображение. Если изображение попадает на неидентичные, или диспаратные, точки двух сетчаток, то изображение раздваивается. При надавливании на глаз сбоку начинает двоиться в глазах, так как нарушилось соответствие сетчаток.
Слуховой анализаторСлуховой анализатор воспринимает звуковые сигналы, представляющие собой колебания воздуха с разной частотой и силой, трансформирует механическую энергию этих колебаний в нервное возбуждение, которое субъективно воспринимается как звуковое ощущение.
Периферическая часть слухового анализатора или орган слуха состоит из трех основных отделов:
1. Звукоулавливающий аппарат (наружное ухо).
2. Звукопередающий аппарат (среднее ухо).
3. Звуковоспринимающий аппарат (внутреннее ухо).
Наружное ухо состоит из ушной раковины, наружного слухового прохода и барабанной перепонки. Ушная раковина, подобно локатору, улавливает звуковые колебания, концентрирует их и направляет в наружный слуховой проход. Эта функция особенно хорошо развита у некоторых видов животных (собак, кошек, летучих мышей), у которых благодаря рефлекторному управлению ушной раковиной происходит определение местонахождения источника звука.
Наружный слуховой проход проводит звуковые колебания к барабанной перепонке и играет роль резонатора, собственная частота колебаний которого составляет 3000 Гц. При действии на ухо звуковых колебаний, близких по своим значениям к 3000 Гц, давление на барабанную перепонку увеличивается. Наружное ухо выполняет защитную функцию, охраняя отдельные структуры уха от механических и температурных воздействий, обеспечивает постоянную температуру и влажность, необходимую для сохранения упругих свойств барабанной перепонки.
На границе между наружным и средним ухом находится барабанная перепонка – это малоподвижная и слаборастяжимая мембрана, площадь которой составляет 66 – 69,5 мм2. Она имеет форму конуса с вершиной, направленной в полость среднего уха. Основная функция барабанной перепонки – передача звуковых колебаний в среднее ухо.
Колебания барабанной перепонки передаются в среднее ухо, в котором содержится цепь соединенных между собой косточек: молоточка, наковальни и стремечка. Рукоятка молоточка прикреплена к барабанной перепонке, основание стремечка – к овальному окну. Благодаря передаточной функции слуховых косточек давление звука в области круглого окна улитки увеличивается в 20 раз.
В среднем ухе находятся две мышцы: мышца, натягивающая барабанную перепонку и прикрепленная к ручке молоточка, и стапедиальная, прикрепленная к стремечку. За счет сокращения этих мышц происходит уменьшение амплитуды колебаний барабанной перепонки и снижение коэффициента передачи уровня звукового давления на область внутреннего уха. Эти мышцы выполняют защитную функцию при действии звуковых колебаний больше 90 дБ и действующих длительное время. При резких внезапных звуках (удар в колокол) этот механизм не срабатывает.
Сокращения стапедиальной мышцы происходят при жевании, глотании, зевании, во время речи и пения, при этом низкочастотные звуки подавляются, а высокочастотные проходят к внутреннему уху. В полости среднего уха давление приближается к атмосферному, это необходимо для нормальных колебаний барабанной перепонки. Уравновешиванию давления (при глотании) способствует специальное образование – евстахиева труба, которая соединяет носоглотку с полостью среднего уха.
Внутреннее ухо соединено со средним с помощью овального окна, в котором неподвижно укреплено основание стремечка. Внутреннее ухо состоит из костного и лежащего в нем перепончатого лабиринтов, в котором находятся вестибулярный (преддверие и полукружные каналы) и слуховой аппараты. К последнему относится улитка.
Улитка имеет длину 3,5 мм, что составляет 2,5 завитка. Она разделена двумя мембранами: основной и мембраной Рейснера на три хода или лестницы: барабанную, среднюю и вестибулярную (рис.32). Вестибулярная и барабанная лестницы у верхушки улитки соединены между собой через геликотрему. Обе эти лестницы заполнены перилимфой, сходной по химическому составу со спинномозговой жидкостью и содержащей много ионов натрия (около 140 ммоль/л).
Средняя лестница изолирована и заполнена эндолимфой, богатой ионами К+ (около 155 ммоль/л) и напоминающей по своему составу внутриклеточную жидкость. Это обусловливает положительный заряд эндолимфы по отношению к перилимфе.
Основание барабанной лестницы сообщается со средним ухом с помощью еще одного отверстия – круглого окна, закрытого тонкой мембраной.
На основной мембране средней лестницы расположен кортиев орган – собственно звуковоспринимающий аппарат, содержащий рецепторы – внутренние и наружные волосковые клетки, несущие только стереоцилии. Внутренних волосковых клеток у человека около 3500, они располагаются в один ряд, и имеются три ряда наружных волосковых клеток, их приблизительно 12 000. Слуховые рецепторы – вторичночувствующие.
Над кортиевым органом находится текториальная (покровная) мембрана – желеобразная масса, соединенная с кортиевым органом и с внутренней стенкой улитки. Стереоцилии наружных и, вероятно, внутренних волосковых клеток контактируют с текториальной мембраной. При движении основной мембраны покровная мембрана сгибает волоски рецепторных клеток, воздействуя в большей степени на наружные волосковые клетки, чем на внутренние. В результате деформации волосков возникает возбуждение волосковых клеток.
На наружной стороне средней лестницы располагается сосудистая полоска – область с высокой метаболической активностью и хорошим кровоснабжением. Ее функция состоит в обеспечении улитки энергией и регуляции состава эндолимфы. Калиевый насос принимает активное участие в поддержании ионного состава эндолимфы и ее положительного потенциала. Некоторые диуретики блокируют не только ионные насосы почечных канальцев, но и влияют на ионные насосы сосудистой полоски, оказывая ототоксическое побочное действие, и могут приводить к глухоте.
Основная мембрана состоит из эластических волокон. Вблизи овального окна у основания улитки она составляет всего 0,04 мм, по направлению к вершине она расширяется и у геликотремы равна уже 0,5 мм. Основная мембрана слабо натянута, что создает условия для колебательных движений в зависимости от воздействия на нее звуковых волн различной частоты. Волокна, расположенные у основания улитки, реагируют как струны-резонаторы на звуки высокой частоты, а у вершины – на низкие частоты.
Звуковые колебания, воздействуя на систему слуховых косточек среднего уха, приводят к колебательным движениям мембраны овального окна, которая, прогибаясь, вызывает волнообразные перемещения перилимфы в вестибулярной и через геликотрему – в барабанной лестницах. Колебания перилимфы доходят до круглого окна и приводят к смещению его мембраны по направлению к среднему уху. Движения перилимфы верхней и нижней лестниц (каналов) передаются на вестибулярную мембрану, а затем на полость среднего канала, приводя в движение эндолимфу и базилярную мембрану (рис. 33).
Если на ухо действуют низкочастотные звуки (до 1000 Гц), то, по мнению Г. Бекеши, происходит смещение базилярной мембраны на всем ее протяжении, от основания до верхушки улитки, так как собственная частота совпадает с низкой частотой звукового стимула. При действии высокочастотных колебаний происходит перемещение укороченного по длине колеблющегося столба жидкости ближе к овальному окну и наиболее жесткому и упругому участку базилярной мембраны. Вследствие смещений последней волоски рецептивных клеток контактируют с текториальной мембраной. При этом реснички волосковых клеток деформируются. В результате энергия звуковых колебаний трансформируется в электрический разряд (нервный импульс) волосковых клеток.
Помимо воздушной проводимости существует и костная (костями черепа). Ощущение звука возникает и тогда, когда вибрирующий предмет, например камертон, прикладывают к сосцевидному отростку височной кости, тогда звуковые колебания распространяются непосредственно через череп. Определение костной проводимости звука позволяет выявить патологию внутреннего уха.
Проводящие пути и центры слухового анализатора Нервный импульс возникает в волосковых клетках, передается биполярным нервным клеткам, расположенным в спиральном ганглии улитки (первый нейрон). Центральные отростки клеток спирального ганглия образуют слуховой, или кохлеарный, нерв (VIII пара черепно-мозговых нервов). Кохлеарный нерв проходит в продолговатый мозг и заканчивается на клетках кохлеарных ядер (второй нейрон). Нервные волокна от кохлеарных ядер в составе боковой петли доходят до верхней оливы (третий нейрон). Одна часть волокон латеральной петли достигает среднего мозга – ядер нижних бугров четверохолмия, другая – медиального коленчатого тела зрительных бугров, где происходит переключение и находится четвертый нейрон. Далее волокна в составе слуховой радиации заканчиваются в коре верхней части височной доли большого мозга (поля 41 и 42 по Бродману), т. е. в центральной части слухового анализатора.
Функция отдельных частей проводящей системы слухового анализатора состоит в следующем. В спиральном ганглии методом разрушения и перерезок было показано пространственно раздельное представительство низких и высоких частот. Так, частичная перерезка волокон слухового нерва приводит к потере слуха на высоких частотах. При полной перерезке слухового нерва происходит потеря слуха на низких частотах.
Нижние бугры четверохолмия отвечают за ориентировочный рефлекс (поворот головы в сторону источника звука). Слуховая кора принимает участие в переработке звуковой информации в процессе дифференцировки звуков, она отвечает за бинауральный слух.
При отведении электрических потенциалов от разных частей улитки различают пять электрических феноменов:
1. Мембранный потенциал волосковых клеток, равный -80 мв. Регистрируется при введении в нее микроэлектрода.
2. Эндокохлеарный потенциал – регистрируется при прохождении микроэлектрода через каналы улитки. Эндолимфа, содержащая много ионов калия, имеет положительный заряд по отношению к перилимфе верхнего и нижнего каналов, он ранен +80 мв. Эндокохлеарный потенциал создается за счет функционирования сосудистой полоски и обусловлен определенным уровнем окислительно-восстановительных реакций. Он является источником энергии для процесса преобразования воздействующего раздражителя в нервный импульс. Разрушение сосудистой полоски и гипоксия приводят к исчезновению эндокохлеарного потенциала.
3. Микрофонный потенциал, или эффект, возникает в улитке при действии звука, является физическим явлением и полностью отражает форму звуковых волн. Он регистрируется при помещении электродов в барабанной лестнице вблизи от кортиева органа или на круглом окне. Этот потенциал аналогичен выходному напряжению микрофона, и если его подать на усилитель и пропустить через громкоговоритель, то получим воспроизведение речи. Происхождение микрофонного эффекта не совсем ясно, его связывают с механохимическими преобразованиями в волосковых клетках кортиева органа, повреждение которого приводит к исчезновению микрофонного эффекта.
4. Суммационный потенциал: при действии звуков большой силы и частоты происходит стойкое изменение нулевой линии на записи электрических колебаний или сдвиг исходной разности потенциалов – это суммационный потенциал, который, в отличие от микрофонного, воспроизводит не форму звуковой волны, а ее огибающую.
5. Потенциалы действия слухового нерва регистрируются при отведении от волокон слухового нерва. Их частота зависит от высоты действующего на ухо гона, но до определенных пределов. Если частота звуковых колебаний не превышает 1000 в секунду, то в слуховом нерве возникают импульсы такой же частоты. При действии на ухо высокочастотных колебаний частота импульсов в слуховом нерве ниже, чем частота звуковых колебаний. Потенциал действия слухового нерва является результатом синаптической передачи возбуждения в нервных элементах кортиева органа с участием медиатора (возможно, глутамата).
Существуют две теории восприятия звуков. Согласно резонансной теории слуха Г. Д. Гельмгольца (1885 г.), базилярная мембрана состоит из отдельных волокон (струн резонатора), настроенных на звуки определенной частоты. Так, звуки высокой частоты воспринимаются короткими волокнами базилярной мембраны, расположенными ближе к основанию улитки, низкой частоты – длинными волокнами вершины улитки. Теория места основана на различной способности волосковых клеток, расположенных в разных местах базилярной мембраны, воспринимать звуки различной частоты. Повреждение отдельных участков базилярной мембраны с волосковыми клетками приводит к повышению порога восприятия звуков определенной частоты.
Слуховая адаптация Понижение слуховой чувствительности, развивающееся в процессе длительного действия звука большой интенсивности или после его прекращения, называют слуховой адаптацией. Она обусловлена изменениями как в периферических, так и центральных отделах слухового анализатора. Ухо, адаптированное к тишине, обладает более низким порогом слуховой чувствительности. При длительном действии звуков большой интенсивности (громкая музыка, работа в шумных цехах) порог слуховой чувствительности повышается.
Пространственный слух Способность человека и животного локализовать источник звука в пространстве называется пространственным слухом. Слуховая ориентация осуществляется двумя путями: определением местоположения самого звучащего объекта (первичная локализация) и с помощью эхолокации, т. е. восприятием отраженных от различных объектов звуковых волн. Эхолокация помогает ориентироваться в пространстве некоторым животным (дельфинам, летучим мышам), а также людям, потерявшим зрение. Пространственное восприятие звука возможно при наличии бинаурального слуха, т. е. способности определить местонахождение источника звука одновременно правым и левым ухом.
Пределы слышимости, острота слуха Человеческое ухо различает звуки по высоте или частоте звуковых колебаний от 20 до 16 000 Гц, по громкости (силе звуковых колебаний, его амплитуде) и по тембру (окраске звука). Частоты выше 16 000 Гц называются ультразвуковыми, а ниже 20 Гц – инфразвуковыми. Для речи, хорошо воспринимаемой человеческим ухом, характерен диапазон от 200 до 3000 Гц – это речевая зона. С возрастом чувствительность к высоким частотам снижается (старческая тугоухость).
Частота звука определяет абсолютный порог слышимости или минимальную силу слышимого звука. В области 1000 -4000 Гц слух человека максимально чувствителен. Звуки выше 16 000 – 20 000 Гц вызывают неприятные ощущения давления и боли в ухе. Это верхний предел слышимости.
Единицей громкости звука является бел – это десятичный логарифм отношения действующей интенсивности звука I к его пороговой интенсивности Jg. В практике обычно используют в качестве единицы громкости децибел (дБ), т. е. 0,1 бела. Максимальный порог громкости, вызывающий болевые ощущения, равен 130–140 дБ. Определяется порог слышимости с помощью метода аудиометрии.