Текст книги "Нормальная физиология"
Автор книги: Николай Агаджанян
Жанры:
Прочая справочная литература
,сообщить о нарушении
Текущая страница: 17 (всего у книги 41 страниц)
Фармакологическая коррекция нарушений гемопоэза и гемостаза
Средства, влияющие на гемопоэзПри лейкопениях, вызванных рентгено– и радиотерапией, химиотерапией злокачественных новообразований, а также при лейкопениях, сопровождающих различные заболевания, применяют средства для стимуляции лейкопоэза. С этой целью используют колониестимулирующие факторы гранулоцитов человека. Например, фармакологический препарат граноцит (активное вещество – ленограстим) является рекомбинантным человеческим гранулоцитарным колониестимулирующим фактором. Он оказывает стимулирующее действие на клетки костного мозга и вызывает значительное нарастание в периферической крови лейкоцитов, главным образом нейтрофилов. Препарат лейкомас (активное вещество – молграмостим) является рекомбинантным человеческим гранулоцитарно-макрофагальным колониестимулирующим фактором. Он образуется штаммом Escherichia coli, несущим полученную с помощью генной инженерии плазмиду, содержащую ген гранулоцитарно-макрофагального колониестимулирующего фактора человека. Лейкомас обладает поливалентным действием на различные ростки кроветворения: активирует зрелые миелоидные клетки, стимулирует пролиферацию и дифференцировку клеток-предшественников кроветворной системы, что приводит к образованию гранулоцитов, моноцитов и Т-лимфоцитов.
Стимуляторами лейкопоэза являются также такие фармакологические препараты, как пентоксил, лейкоген.
Для стимуляции эритропоэза при анемиях применяют рекомбинантный эритропоэтин человека – эпрекс. Он синтезируется в клетках млекопитающих, в которые встроен ген, кодирующий эритропоэтин человека. По биологическим и иммунологическим свойствам он идентичен эритропоэтину человека, выделяемому из мочи. Этот препарат оказывает выраженный эффект при анемии, обусловленной хроническими заболеваниями почек.
Для лечения анемий, в зависимости от их этиологии, применяют различные антианемические препараты, влияющие на эритропоэз. Так, например, для лечения железодефицитных анемий используют препараты железа (железа глюконат, сульфат, фурамат, феррум лек для парентерального введения), а также аскорбиновую кислоту, улучшающую всасывание железа, препараты, содержащие кобальт (коамид), последний способствует усвоению организмом железа. Для лечения В12-дефицитной анемии применяют витамин В12 (цианокобаламин), для лечения анемии, вызванной дефицитом фолиевой кислоты, – фолиевую кислоту.
Средства, влияющие на гемостазВ разных областях медицины применяют лекарственные средства, понижающие (противосвертывающие) или повышающие (антигеморрагические) свертываемость крови.
Противосвертывающие и антитромботические средства.
Для профилактики тромбообразования и развития тромбоэмболии, часто возникающих после оперативных вмешательств, инфаркта миокарда, а также других заболеваниях применяют вещества, ингибирующие свертывание крови. К противосвертывающим веществам относятся антикоагулянты, фибринолитические средства и антиагрегантные препараты.
Антикоагулянты в основном препятствуют образованию нитей фибрина, тромбообразованию, способствуют прекращению роста уже возникших тромбов. Они делятся на 2 группы: антикоагулянты прямого и непрямого действия. К антикоагулянтам прямого действия относятся различные препараты естественных противосвертывающих факторов – гепарина и антитромбина III. Они действуют быстро и кратковременно. К антикоагулянтам непрямого действия относятся синкумар, фенилин, пелентан. Они являются антагонистами витамина К, необходимого для образования в печени протромбина. Эти вещества действуют только в организме и длительно.
Фибринолитические средства вызывают разрушение образовавшихся нитей фибрина; они способствуют в основном рассасыванию свежих тромбов. Фибринолитические средства также делят на вещества прямого и непрямого действия. Представителем препаратов прямого действия является фибринолизин. В качестве препаратов второй группы применяют активаторы фибринолиза – препараты стрептокиназы (белка из р-гемолитического стрептококка А) и протеолитический фермент урокиназу.
Антиагреганты ингибируют агрегацию тромбоцитов и эритроцитов, уменьшают их способность к склеиванию и прилипанию (адгезии) к эндотелию кровеносных сосудов. Антиагреганты способны не только предупреждать агрегацию, но и вызывать дезагрегацию уже агрегированных кровяных пластинок. Выраженное антиагрегационное действие оказывают нестероидные противовоспалительные препараты, из которых широкое применение в целях профилактики тромбообразования имеет ацетилсалициловая кислота. Ацетилсалициловая кислота снижает ферментативную активность циклооксигеназы и тем самым тормозит синтез тромбоксанов, повышающих агрегационную активность тромбоцитов.
Антигеморрагичесие и гемостатические средства. В качестве антигеморрагических и гемостатических средств используют вещества различного механизма действия. При кровотечениях, связанных с повышением фибринолитической активности крови, применяют ингибиторы фибринолиза. К этой группе веществ относят как ингибиторы перехода плазминогена в плазмин за счет блокады активаторов плазминогена (аминокапроновая кислота), так и ингибиторы протеиназ плазмы, в частности плазмина (трасилол, контрикал: действующее вещество апротинин).
При геморрагическом синдроме с гипопротромбинемией, вызванном, например, нарушением функции печени, используют препараты витамина К (викасол, фитоменадион). Из плазмы крови доноров получают естественный компонент свертывающей системы крови фибриноген.
Активатором образования тромбопластина является лекарственное средство этамзилат.
При недостатке факторов свертывания крови (например, при гемофилии) применяют гемате II (фактор свертывания VIII и фактор Виллебранда) при гемофилии А и фактор свертывания IX человеческий – при гемофилии В.
В составе комбинированой гемостатической терапии применяют кальция хлорид. В качестве местных средств для остановки кровотечения используют пленку и губку фибринные изогенные, желпластан и др.
Глава 7. Крово– и лимфообращение
Доставка кислорода и питательных веществ к тканям и клеткам млекопитающих животных и человека, а также выведение продуктов их жизнедеятельности обеспечиваются кровью, циркулирующей по замкнутой сердечно-сосудистой системе, состоящей из сердца и двух кругов кровообращения: большого и малого. Большой круг кровообращения начинается от левого желудочка сердца, из которого артериальная кровь поступает в аорту. Пройдя по артериям, артериолам, капиллярам всех органов, кроме легких, она отдает им кислород и питательные вещества, а забирает углекислоту и продукты метаболизма. Затем кровь собирается в венулы и вены и через верхнюю и нижнюю полые вены поступает в правое предсердие.
Малый круг кровообращения начинается с правого желудочка сердца, откуда венозная кровь направляется в легочную артерию. Пройдя через легочные капилляры, кровь освобождается от углекислоты, оксигенируется и уже в качестве артериальной поступает через легочные вены в левое предсердие.
Физиология сердца
Свойства сердечной мышцыСердечная мышца обладает следующими свойствами:
1. автоматией – способностью сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом;
2. возбудимостью – способностью сердца приходить в состояние возбуждения под действием раздражителя;
3. проводимостью – способностью сердечной мышцы проводить возбуждение;
4. сократимостью – способностью изменять свою форму и величину под действием раздражителя, а также растягивающей силы или крови.
Субстратом автоматии в сердце является специфическая мышечная ткань, или проводящая система сердца, которая состоит из синусно-предсердного (синоатриального) (СА) узла, расположенного в стенке правого предсердия у места впадения в него верхней полой вены, предсердно-желудочкового (атриовентрикулярного^ узла, расположенного в межпредсердной перегородке на границе предсердий и желудочков. От атриовентрикулярного узла начинается пучок Гиса. Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, заканчивающиеся конечными разветвлениями – волокнами Пуркинье. Верхушка сердца не обладает автоматией, а лишь сократимостью, так как в ней отсутствуют элементы проводящей системы сердца.
В нормальных условиях водителем ритма, или пейсмекером, является синоатриальный узел. Частота разрядов синоатриального узла в покое составляет 70 в 1 минуту. Атриовентрикулярный узел – это водитель ритма второго порядка с частотой 40 -50 в 1 минуту. Он берет на себя роль водителя ритма, если по каким-либо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводящей системы желудочков. Если поражены все основные водители ритма, то очень редкие импульсы (20 имп/с) могут возникать в волокнах Пуркинье – это водитель ритма 3-го порядка.
Следовательно, существует градиент автоматии сердца, согласно которому степень автоматии тем выше, чем ближе расположен данный участок проводящей системы к синусному узлу.
Потенциал действия кардиомиоцитов начинается с быстрой риверсии мембранного потенциала, составляющего -90 мВ и создаваемого за счет К+-потенциала, до пика ПД (+ 30 мВ) (рис.11). Это фаза быстрой деполяризации, обусловленная коротким значительным повышением проницаемости для Na+, который лавинообразно устремляется в клетку. Фаза быстрой деполяризации очень короткая и составляет всего 1 -2 мс. Начальный вход Na+ быстро инактивируется, однако деполяризация мембраны продолжается за счет активации медленных натрий-кальциевых каналов, а вход Са2+ приводит к развитию плато ПД – это специфическая особенность клеток миокарда. В этот период быстрые натриевые каналы инактивируются и клетка становится абсолютно невозбудима. Это фаза абсолютной рефрактерности. Одновременно происходит активация калиевых каналов, а выходящие из клетки ионы К+ создают фазу быстрой реполяризации мембраны.
Ускорение процесса реполяризации происходит за счет закрытия кальциевых каналов. В конце периода реполяризации постепенно закрываются калиевые каналы и реактивируются натриевые. Это приводит к восстановлению возбудимости кардиомиоцита и возникновению относительной рефрактерной фазы. Длительность ПД кардиомиоцита составляет 200–400 мс.
Калий-натриевый насос, создающий потенциал покоя или мембранный потенциал миокардиоцита, может быть инактивирован под действием сердечных гликозидов (препараты наперстянки, строфантина), которые приводят также к повышению внутриклеточной концентрации Na+, снижению интенсивности обмена внутриклеточного Са2+ на внеклеточный Na+, накоплению Са2+ в клетке. В результате сократимость миокарда становится больше. Ее можно увеличить и за счет повышения внеклеточной концентрации Са2+ и с помощью веществ (адреналин, норадреналин), ускоряющих вход Са2+ во время ПД. Если удалить Са2+ из внешней среды или заблокировать вход Са2+ во время ПД с помощью таких веществ – антагонистов кальция, как верапамил, нифедипин и др., то сократимость сердца уменьшается.
Клетки проводящей системы сердца и, в частности, клетки пейсмекера, обладающие автоматией, в отличие от клеток рабочего миокарда-кардиомиоцитов могут спонтанно деполяризоваться до критического уровня. В таких клетках за фазой реполяризации следует фаза медленной диастолической деполяризации (МДД), которая приводит к снижению МП до порогового уровня и возникновению ПД. МДД – это местное, нераспространяющееся возбуждение, в отличие от ПД, который является распространяющимся возбуждением.
Таким образом, пейсмекерные клетки отличаются от кардиомиоцитов:
1. низким уровнем МП – около 50 – 70 мВ
2. наличием МДД
3. близкой к пикообразному потенциалу формой ПД,
4. низкой амплитудой ПД – 30 – 50 мВ без явления риверсии (овершута).
Особенности электрической активности пейсмекерных клеток обусловлены целым рядом процессов, происходящих на их мембране. Во-первых, эти клетки даже в условиях «покоя» имеют повышенную проницаемость для ионов Na+, что приводит к снижению МП. Во-вторых, в период реполяризации на мембране открываются только медленные натрий-кальциевые каналы, так как быстрые натриевые каналы из-за низкого МП уже инактивированы. В клетках синоатриального узла в период реполяризации быстро инактивируются открытые калиевые каналы, но повышается натриевая проницаемость, на фоне которой и возникает МДД, а затем и ПД. Потенциал действия синоатриального узла распространяется на все остальные отделы проводящей системы сердца.
Таким образом, синоатриальный узел навязывает всем «ведомым» отделам проводящей системы свой ритм. Если возбуждение но поступает от главного пейсмекера, то «латентные» водители ритма, т. е. клетки сердца, обладающие автоматией, берут на себя функцию нового пейсмекера, в них также зарождается МДД и ПД, а сердце продолжает свою работу.
Во время развития фаз ПД и сокращения сердечной мышцы меняется уровень ее возбудимости. Периоду быстрой реполяризации и плато, а также всему периоду сокращения сердечной мышцы соответствует фаза абсолютной рефрактерности (см. рис. 11), когда мышца абсолютно невозбудима и не отвечает даже па сверхпороговые раздражители. Ее длительность – 0,27 с. Концу периода реполяризации и фазе расслабления соответствует фаза относительной рефрактерности, когда возбудимость начинает восстанавливаться, но еще не достигла исходных значений. В этот период лишь сверхпороговые стимулы могут вызвать сокращение мышцы сердца. Длительность относительной рефрактерной фазы – 0,03 с. В период восстановления МП и в конце расслабления сердечная мышца находится в состоянии повышенной, или супернормальной, возбудимости. Эту фазу называют еще периодом экзальтации, когда сердечная мышца отвечает даже на подпороговые стимулы.
Рефрактерность обусловлена инактивацией быстрых натриевых каналов и соответствует развитию ПД, поэтому продолжительность рефрактерного периода, как правило, связана с длительностью ПД.
Местные анестетики, подавляя быстрые натриевые каналы и замедляя восстановление проницаемости после инактивации, вызывают удлинение рефрактерного периода, но не влияют на продолжительность ПД. Поскольку очередное сокращение возможно только по окончании периода абсолютной рефрактерности предшествующего ПД, сердечная мышца, в отличие от скелетной, не отвечает на повторные раздражения, т. е. она не способна к тетанусу.
Таким образом, длительная абсолютная рефрактерная фаза и короткая фаза супернормальной возбудимости сердечной мышцы исключают для нее состояние тетануса, которое бы мешало нагнетательной функции сердца, поэтому сердечная мышца работает в одиночном режиме.
Однако если повторное сверхпороговое раздражение нанести в фазу расслабления очередного сокращения, которое совпадает с периодом относительной рефрактерности, возникает внеочередное сокращение, или экстрасистола. В зависимости от того, где возникает новый, или «эктопический», очаг возбуждения, различают синусовую, предсердную и желудочковую экстрасистолы. Желудочковая экстрасистола отличается следующей за ней более продолжительной, чем обычно, компенсаторной паузой. Она появляется в результате выпадения очередного нормального сокращения. При этом импульсы, возникшие в синоатриальном узле, поступают к миокарду желудочков, когда они еще находятся в состоянии абсолютной рефрактерной фазы экстрасистолы. При синусовых и предсердных экстрасистолах компенсаторная пауза отсутствует.
Экстрасистолию могут вызвать также изменения ионного состава крови и внеклеточной жидкости. Так, снижение внеклеточной концентрации К+ (ниже 4 ммоль/л) повышает активность пейсмекера и приводит к активации гетерогенных очагов возбуждения и как следствие – к нарушению ритма. Большие дозы алкоголя, курение табака могут спровоцировать экстрасистолию. Гипоксия (недостаток кислорода в тканях) значительно изменяет метаболизм в кардиомиоцитах и может привести к появлению экстрасистол. В период полового созревания, у спортсменов в результате перетренировок также могут возникать единичные экстрасистолы. Экстрасистолию могут вызвать изменения со стороны вегетативной нервной системы и коры больших полушарий.
Если в норме частота сердечных сокращений колеблется от 60 до 80 в 1 мин, то ее урежение до 40 – 50 в 1 мин называется брадикардией, а учащение свыше 90– 100 – тахикардией. Брадикардия отмечается во время сна и у спортсменов в состоянии покоя, а тахикардия – при интенсивной мышечной деятельности и эмоциональном напряжении.
У некоторых молодых людей в норме наблюдаются изменения сердечного ритма, связанные с актом дыхания, – дыхательная аритмия, которая заключается в том, что частота сокращений сердца на вдохе увеличивается, а на выдохе и во время дыхательной паузы уменьшается.
При нарушении проводимости и возбудимости сердца происходят изменения ритма работы предсердий и желудочков, названные трепетанием и мерцанием (фибрилляция). При этом предсердия и желудочки сокращаются асинхронно с частотой от 300 до 600 в 1 минуту, возбуждение возникает в различных участках сердечной мышцы. Подобное нарушение ритма наблюдается при инфаркте миокарда, а также при отравлении фармакологическими препаратами (наперстянка, хлороформ, барий). У человека фибрилляция, как правило, приводит к смерти, если не принять срочные меры. Фибрилляцию можно прекратить непосредственным воздействием на сердце мощного электрического разряда (напряжением в несколько киловольт), после чего синхронность сокращений предсердий и желудочков восстанавливается.
Между клетками проводящей системы и рабочим миокардом имеются тесные контакты в виде нексусов, поэтому возбуждение, возникшее в одном участке сердца, проводится без затухания (без декремента) в другой. Скорость распространения возбуждения от предсердий к желудочкам составляет 0,8–1,0 м/с. Проходя атриовентрикулярный узел, возбуждение задерживается на 0,04 с. Далее, распространившись по пучку Гиса и волокнам Пуркинье, возбуждение охватывает мускулатуру желудочков со скоростью 0,75–4,0 м/с.
Таким образом, мышечная ткань сердца ведет себя как функциональный синцитий. Благодаря этой особенности сердце, в отличие от скелетной мышцы, подчиняется закону «все или ничего». Это означает, что на раздражение возрастающей силы, начиная от порогового, мышца сердца отвечает сразу возбуждением всех волокон, т. е. амплитуда сокращений одинакова. Если раздражитель подпороговый, то она совсем не реагирует. Однако если раздражать сердечную мышцу током возрастающей частоты, оставив его силу постоянной, то каждое увеличение частоты раздражителя вызовет возрастающее сокращение сердечной мышцы – феномен «treppe» – лестницы. Это явление можно объяснить попаданием каждого последующего импульса в фазу повышенной возбудимости и накоплением ионов Са2+ в области миофибрилл, что и дает усиление ответной реакции.
Сокращение сердца, как и у скелетных мышц, запускается ПД. Однако если у скелетной мышцы ПД составляет всего несколько миллисекунд и предшествует сокращению, то у сердечной ПД и фазы сокращения перекрывают друг друга. ПД заканчивается только после начала фазы расслабления. Это одна из особенностей электромеханического сопряжения сердечной мышцы. Другая особенность состоит в том, что существует взаимосвязь между внутриклеточным депо Са2+ и Са2+ внеклеточной среды. Как упоминалось выше, во время ПД Са2+ входит в клетку из внеклеточной среды и увеличивает длительность ПД, а значит, и рефрактерного периода, тем самым создаются условия для пополнения внутриклеточных запасов кальция, участвующего в последующих сокращениях сердца.
Сократительная деятельность сердца связана с работой клапанов и давлением в его полостях. Эти изменения носят фазный характер и составляют основу сердечного цикла, длительность которого равна 0,8 с, но может меняться в зависимости от частоты сердечных сокращений. Чем больше частота сердечных сокращений, тем короче сердечный цикл и наоборот.
Сердечный цикл состоит из 3 основных фаз: систолы предсердий, систолы желудочков и общей паузы или диастолы. Систола предсердий длится 0,1 с, при этом атриовентрикулярные клапаны открыты, а полулунные закрыты, давление в предсердиях равно 5–8 мм рт.ст. Систола предсердий заканчивается закрытием атриовентрикулярных клапанов и начинается систола желудочков, ее длительность – 0,33 с. Систола желудочков, в свою очередь, делится на период напряжения и период изгнания крови. Период напряжения – 0,08 с. Он также состоит из 2 фаз: асинхронного сокращения – промежутка времени от начала возбуждения и сокращения кардиомиоцитов до закрытия атриовентрикулярных клапанов, после чего давление в полостях желудочков быстро растет до 60 – 80 мм рт.ст. и начинается фаза изометрического сокращения.
С моментом закрытия атриовентрикулярных клапанов совпадает возникновение I систолического тона сердца. При закрытых полулунных и атриовентрикулярных клапанах длина волокон не изменяется, а увеличивается только напряжение в полостях желудочков, в результате давление в них резко возрастает, становясь выше, чем в аорте и легочной артерии, полулунные клапаны открываются, а атриовентрикулярные остаются закрытыми, и кровь устремляется в эти сосуды. Начинается период изгнания крови, его длительность – 0,25 с. Он состоит из фазы быстрого изгнания и фазы медленного изгнания крови. Давление в желудочках составляет: в левом – 120–130 мм рт.ст., в правом – до 25 – 30 мм рт.ст.
Диастола желудочков, длящаяся 0,47 с, начинается с протодиастолического периода (0,04 с) – это промежуток времени от начала падения давления внутри желудочков до момента закрытия полулунных клапанов, после которого давление в желудочках продолжает падать, а атриовентрикулярные клапаны еще не открыты – это период изометрического расслабления желудочков.
Моменту закрытия полулунных клапанов соответствует воз-никновение II диастолического тона сердца. Как только давление в желудочках снизится до 0, открываются атриовентрикулярные клапаны и кровь из предсердий поступает в желудочки. Это период наполнения желудочков кровью, который длится 0,25 с и делится на фазы быстрого (0,08 с) и медленного (0,17 с) наполнения. Периоду наполнения, сопровождающемуся колебаниями стенок желудочков, соответствует возникновение III тона сердца. В конце фазы медленного наполнения наступает систола предсердий, в результате за 0,1 с «выжимается» около 40 мл крови из предсердий в желудочки (пресистолический период), что ведет к появлению IV тона сердца, после чего начинается новый цикл сокращения желудочков.
Итак, в результате сократительной деятельности сердца и работы клапанов возникают 4 тона сердца. Из них I – систолический длительностью 0,11 с и II – диастолический длительностью 0,07 с. Эти тоны можно прослушать и зарегистрировать. III тон соответствует началу наполнения желудочков и вибрации их стенок при быстром притоке крови, хорошо прослушивается у детей, его можно зарегистрировать. IV тон обусловлен сокращением предсердий, он только регистрируется.
За одну систолу при ритме сокращений 70 – 75 в 1 мин сердце выбрасывает в аорту 60 – 70 мл крови – это систолический объем крови (СО). Умножив его на число сердечных сокращений (ЧСС) в 1 мин, получим минутный объем крови (МОК), равный 4,5 -5,0 л, т. е. количество крови, выбрасываемое сердцем за 1 мин.
МОК= СО•ЧСС.
В покое не вся кровь во время систолы изгоняется из желудочков, остается «резервный объем», который может быть использован для увеличения сердечного выброса. В настоящее время рассчитывают величину сердечного индекса – это отношение МОК в л/мин к поверхности тела в м2. Для «стандартного» мужчины он равен 3 л/мин-м2.