355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Левшин » Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков » Текст книги (страница 26)
Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков
  • Текст добавлен: 8 октября 2016, 23:59

Текст книги "Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков"


Автор книги: Владимир Левшин


Соавторы: Эмилия Александрова
сообщить о нарушении

Текущая страница: 26 (всего у книги 27 страниц)

ВЕЧЕР ЧАЙНОГО ДНЯ

– Открываем наше вечернее заседание, – объявляет Фило, когда все они снова сидят за столом и Асмодей кулачком протирает заспанные глаза. – Что у нас на повестке… пардон, на чашке дня?

Бес молча указывает на рисунок, где три блистательных кавалера и одна изысканная дама играют в карты.

– Эпизод под названием «В великосветском салоне», – определяет Фило.

Все еще позевывая, Асмодей заглавие одобряет, считает, однако, необходимым добавить, что к этому эпизоду примыкает еще один: «Встреча на улице Сен-Мишель», связанный с ним общей темой «Теория вероятностей». Кроме того, прежде чем перейти к обсуждению, не мешает установить дату…

Мате уверенно объявляет, что разговор за карточным столом мог быть только зимой 1654 года.

– Почем вы знаете? – любопытствует Фило.

– Да потому что речь, если помните, шла о переезде Паскаля и герцога Роанне в Пор-Рояль. Отсюда следует, что интересующий нас эпизод происходил уже после обращения Паскаля, которое, как я выяснил, относится к 23 ноября 1654 года. И судя по тому, что маркиза об этом узнать не успела, разговор ее с де Мере отстоит не слишком далеко от указанной даты. Он мог состояться в конце ноября или в начале декабря.

– Мог-то мог, но вот состоялся ли? – неосторожно прорывается у Фило.

– Пф! – Асмодей возмущенно фыркает и просыпается окончательно. – Не все ли равно! Важно другое: убедительно или неубедительно? Вероятно или невероятно?

– Вероятно, вероятно! – дружно успокаивают его филоматики.

– Вот и перейдем к задачам о вероятностях, о которых так красноречиво рассказывал шевалье де Мере, – ловко поворачивает разговор черт. – Начнем, как полагается, с начала, то есть с первой задачи. Суть ее такова: двое играют в кости, бросая по два кубика сразу. Первый ставит на то, что хотя бы один раз выпадут две шестерки одновременно. Другой – на то, что две шестерки одновременно не выпадут ни разу. Спрашивается, сколько надо сделать бросков, чтобы шансы на выигрыш первого игрока превысили шансы второго.

– Ясно, что здесь возможны 36 комбинаций, – говорит Мате.

– Это почему же? – сейчас же придирается Фило.

– Да потому, что каждая из шести граней первой кости варьируется с шестью гранями второй. Следовательно, число возможных вариантов есть 6 х 6, что всегда равно 36. И только один из этих 36 вариантов дает выигрыш первому игроку. Стало быть, вероятность выпадения двух шестерок очень мала: 1/36 около 0,028. А вероятность невыпадения, наоборот, очень велика: 1–1/36 = 35/36 около 0,972. При вторичном броске вероятность невыпадения сохраняется (35/36), так как она не зависит от результата первого броска. Значит, согласно теореме умножения, вероятность невыпадения с учетом обоих бросков будет уже равна произведению вероятностей каждого броска в отдельности, то есть (35/36)2. Тогда вероятность выпадения при двух бросках равна: 1 – (35/36)2, что больше вероятности при одном броске почти вдвое: 1 – (35/36)2 около 1–0,95 = 0,05. Остается выяснить, каково должно быть минимальное число бросков, чтобы вероятность выпадения превысила вероятность невыпадения, то есть стала бы больше половины. Обозначим неизвестное нам число бросков через х. Тогда вероятность невыпадения (35/36)х, вероятность выпадения р = 1 – (35/36)x. Вот и всё!

– Позвольте! – шебаршится Фило. – Как же все, если икс так и остался ненайденным? И каким способом вы думаете его найти?

– Очевидно, либо с помощью логарифмов, либо подбирая вместо икса числа, при которых вероятность выигрыша станет больше 0,5.

– Значит, именно так решали эту задачу в семнадцатом веке?

– Вот этого не скажу. К сожалению, лично мне способы Паскаля, Ферма и де Мере не известны.

– Зато известны результатыих решений, мсье, – напоминает бес. – У Паскаля и Ферма х = 25. А шевалье де Мере, как вы помните, получил два ответа 24 и 25. И теперь у нас есть полная возможность выяснить, какой же из них верен.

– Вот именно, – кивает Мате. – При x = 24: р= 1 – (35/36)24 ≈ 1–0,5094 = 0,4906. При х = 25: p = 1 – (35/36)25 ≈ 1–0,4955 = 0,5045. Так что правы-то все-таки Паскаль и Ферма: вероятность, превышающая половину – 0,5045, – получается именно при х = 25.

– Слава тебе Господи! – ублаготворенно вздыхает Фило. – Одна задача с плеч долой. Можно переходить ко второй…

Но в это самое время из знакомой уже нам книги Лесажа, на обложке которой Хромой бес возносит в ночное небо сеньора в испанском плаще и широкополой шляпе с перьями, вырывается чей-то отчаянный баритон в сопровождении дикого хора кошачьих воплей.

– Асмодей, Асмодей! Куда вы запропастились? Я жду вас целую вечность!

– Дон Клеофас Леандро-Перес Самбульо, – смешливым шепотом поясняет черт. – Постоянно этот студент влипает в какие-то истории!

Услыхав голоса своих сородичей, Пенелопа и Клеопатра приходят в страшное волнение и начинают носиться по квартире как угорелые. Буль, которому передается их беспокойство, рычит, задрав голову к потолку. Но виновник переполоха и ухом не ведет!

– Асмодей! – взывает Самбульо. – Есть у вас совесть? Бросили меня на крыше, а тут какой-то кошачий симпозиум. Вы что, хотите, чтобы я оглох от этой кошкофонии?

«Мя-а-а-у! Мя-а-а-у!» – завывают коты на крыше.

«Мяу! Мяу!» – вторят кошки в комнате.

И тут Асмодей не выдерживает (он бес не БЕСсердечный).

– Лечу, дорогой дон Леандро-Перес! – восклицает он, торопливо дожевывая кусок пирога. – Продержитесь еще немного! Сейчас все будет улажено.

Он вихрем взвивается к потолку и снова исчезает за картонной обложкой, откуда сразу же доносится жалобный визг разгоняемых симпозиатов вперемешку с чертыханием Самбульо. Потом все стихает, и Асмодей с расцарапанным носом, но зато в прекрасном настроении вновь занимает место у стола.

– Ну и переделка, мсье! По-моему, там собрались коты со всего Мадрида. Только на сей раз не пришлось им закончить своей КОТОвасии. Ко-ко-ко…

– Сходное положение. Совсем как во второй задаче де Мере, – острит Мате. – Игроки вносят деньги, но не успевают закончить игру. После чего им приходится выяснять, какая часть ставки причитается каждому.

– Добавьте, мсье, что в игре участвуют трое, бросающие трехгранные кости, и что каждый ставит на одну из граней.

– Разберемся по порядку, – начинает Мате, – Допустим, игроки условились бросать кости по очереди до тех пор, пока у одного из них задуманное число очков не выпадет, скажем, шесть раз. При этом первый, кому повезет, забирает все три ставки себе. Теперь рассмотрим такую картину. У одного игрока уже было пять удач. Значит, до выигрыша ему остается всего один счастливый бросок. У второго и третьего до выигрыша не хватает двух удачных выпадений, то есть у каждого из них задуманное число очков выпало по четыре раза. Но в это время игра прекращается, так как происходит что-то из ряда вон выходящее – пожар, землетрясение, всемирный потоп (ибо что же еще может заставить заядлых игроков бросить игру?). И тут возникает вопрос: как разделить поставленные деньги между партнерами?

– Вот так задачка! – Фило озабоченно почесывает затылок. – На месте де Мере я бы тоже ее не решил.

– Зато это сделали Ферма и Паскаль, причем каждый своим способом. И так как способ Ферма несколько сложнее, разберем решение Паскаля. Итак, первому игроку не хватает одного угадывания. Но ведь неизвестно еще, как бы сложилась игра в дальнейшем. Могло ведь повезти и другим партнерам! Стало быть, НАВЕРНЯКА первому причитается 1/3 и сверх того какой-то добавок, так как к моменту прекращения игры он был все-таки впереди. Остается выяснить величину этого добавка (при этом заметьте, что до выигрыша одного из игроков не хватает максимум трех бросков). Допустим, игра продолжается, и при следующем броске удача приходит ко второму игроку. Тогда его шансы уравниваются с шансами первого. Но не упущена возможность выиграть и у третьего. Поэтому, после того как первому отдадут одну треть ставок, надо оставшуюся часть, то есть 2/3 ставок, снова разделить на три равные части. Таким образом, первый игрок получает дополнительно одну треть от 2/3, то есть 2/9. То же, естественно, полагается и второму игроку. Значит, в кассе остается 2/3 – 2/9 – 2/9 = 2/9. Если игра все еще продолжается, то при третьем, последнем, броске повезти может и третьему игроку. Тогда права всех партнеров на оставшиеся деньги уравниваются. А посему остаток снова следует разделить на три части. Значит, первый получает еще одну треть от 2/9, то есть 2/27. А всего ему причитается:

1/3 + 2/9 + 2/27 = 17/27

– Можете не продолжать, – перебивает Фило. – Оставшиеся 10/27 надо поделить поровну между двумя другими игроками, по 5/27 каждому. Ведь когда игра прервалась, шансы их на выигрыш были одинаковы.

– Итак, – заканчивает бес, – ставки следует разделить в отношении 17:5:5. А теперь давайте подумаем, в каких отношениях разделить между всеми присутствующими яблочный пирог, оставшийся после утреннего заседания.

– Прекрасная задача, – смеется Фило. – Прежде всего потому, что долго думать над ней не приходится.

Он берет большое круглое блюдо с доброй половиной пышного, румяного пирога и торжественно преподносит черту.

– Что вы, что вы, мсье! – отнекивается тот. – Ни под каким видом! Я бес не БЕСсовестный…

И, ловко выхватив блюдо из рук обескураженного хозяина, молниеносно скрывается за переплетом. На сей раз – до утра.

КОФЕЙНОЕ ВОСКРЕСЕНЬЕ

Следующий день – не только воскресный, но и кофейный. Собираются, стало быть, у Мате, и Асмодей, который не раз заглядывал в его прежнее жилье (покойная тетка Мате, читавшая запоем, очень любила роман Лесажа и не раз брала его в библиотеке), еще раз с удовольствием убеждается, что сохранить в неприкосновенности свой замоскворецкий хаос хозяину все же не удалось. Что ни говорите, а новый дом – не старый дом! Никаких книг на полу. Электрические розетки в порядке. Зато самодельная кофеварка – гибрид электрочайника и алюминиевой кастрюльки – все та же. Кстати, она уже включена, и черт с наслаждением вдыхает густой кофейный аромат, которым насквозь пропитана вся небольшая квартира.

По правде говоря, Мате побаивается, как бы кофе не испортил им нынешнего заседания. Вдруг он тоже подействует как снотворное?

Но бес опустошает чашку за чашкой, не проявляя никаких признаков сонливости. Напротив: узкие глазки его так и зыркают по сторонам, – дескать, что бы такое вытворить? Наконец, они останавливаются на телевизоре, и тут черт вдруг объявляет, что неплохо бы отдохнуть и посмотреть новую серию «Знатоков». «Знатоки» – его любимая передача (он ведь и сам знаток!), и отказаться от нее, хотя бы и во имя науки, он просто не в состоянии!

Филоматики встречают его предложение по-разному: Фило – с тайной радостью, Мате – с явным неудовольствием. Но Асмодей будто и не слышит его протестов! Он самолично включает приемник, потребовав наперед, чтобы все присутствующие, в том числе Пенелопа, Клеопатра и Буль, заняли свои места и потом уж не вздумали отлучаться. Он этого терпеть не может!

Наконец на экране появляются первые титры. Слышится знакомая музыка. И вдруг… Что такое? Кадры начинают мелькать как сумасшедшие, что-то трещит, гудит, и наконец изображение, а заодно и звук исчезают вовсе. Только и остается, что пустая освещенная поверхность.

Фило обиженно надувает губы. Вечная история! Только настроишься посмотреть хорошую передачу – и на тебе…

– Спокойствие, мсье! Только спокойствие! – призывает черт, не двигаясь с места. – Сейчас все будет в полном порядке. Недаром Хромой бес лучший телевизионный мастер на свете! Уж во всяком случае не хуже, чем Карлсон, который живет на крыше.

Он издали дует на телевизор, и тот снова оживает. Да, но куда же делись «Знатоки»? На экране титры совсем другой передачи!

– «Клуб знаменитых математиков», – читает Фило. – В первый раз слышу. Насколько я помню, в программе нет ничего подобного.

– В вашей программе, может, и нет, мсье. Зато в моей…

Мате понимающе вздергивает брови. Все ясно! Очередной адский фокус. Однако бранить беса он и не думает: передача-то как-никак математическая! Интересно, с чего она начнется? Наверное, как водится, со вступительной песенки…

Так и есть! Звучит хорошо известная мелодия «Клуба знаменитых капитанов», к которой немного погодя присоединяется хор мужских голосов. Только поют они все же какие-то другие слова:

 
Добрый вечер, мэтры!
Встречи пробил час.
Что нам километры?
Что веков запас?
Вновь камин заветный
Нас к себе манит…
Все мы геометры,
Каждый знаменит!
 

Но вот хор умолкает, и на экране появляется какая-то комната. Вглядевшись в нее, филоматики взволнованно ахают: это же комната Паскаля на улице Сен-Мишель! Конечно, вот и знакомый диванчик. По-прежнему пылает огонь в очаге. Но теперь перед ним уже не два, а великое множество людей. И как только все они здесь уместились!

Поначалу друзья различают в толпе только Ферма и Паскаля. Лица остальных теряются в красочной сумятице одежд самых разных времен и национальностей (заметьте: черно-белое изображение телевизора Мате непонятным образом превратилось в цветное). Но потом Фило вдруг узнает Омара Хайяма,[75]75
  Хайям Омар (около 1040–1131) – выдающийся поэт и ученый средневекового Востока, с которым филоматики познакомились во время предыдущих странствий.


[Закрыть]
а Мате – Фибоначчи,[76]76
  Фибоначчи – прозвище средневекового итальянского математика Леонардо Пизанского (около 1170–1228), с которым Фило и Мате также успели уже познакомиться (см. книгу «Искатели необычайных автографов»).


[Закрыть]
и только вмешательство Асмодея не дает им влезть в экран с головой.

Как раз в это время слово берет Ферма. Он объявляет очередное заседание Клуба знаменитых математиков открытым и предлагает избрать председателя на сегодняшний вечер.

– Так как тема нынешнего заседания – «Арифметический треугольник», – говорит Паскаль, – предлагаю избрать мэтра Пифагора.

Раздаются бурные рукоплескания, и с места поднимается смуглолицый грек в белом струящемся облачении.

– Благодарю высокое собрание за честь! – произносит он, с достоинством наклонив курчавобородую голову. – Хотя совершенно очевидно, что причина ее – не столько моя причастность к теме заседания, сколько уважение к древности. Потому что арифметическим треугольником я никогда не занимался.

– Зато ты занимался фигурными числами, которые в него входят, – возражает Хайям.

Пифагор протестующе поднимает руку.

– Не преувеличивай моих заслуг, о Хайям! Фигурные числа – не мое открытие. Много путешествуя, я, конечно, многое и запамятовал. Но фигурные числа я, помнится, вывез из Вавилона заодно с другими математическими редкостями.

– А все-таки узнали мы о них не от вавилонян, а от тебя и от твоего последователя Никомаха, – упорствует Хайям.

– Ну, если так, – Пифагор делает приглашающий жест, – тогда позволь предоставить слово тебе. Недаром ходят слухи, что Омар Хайям тоже имеет некоторое отношение к арифметическому треугольнику.

– Разве? – усмехается тот. – Другие всегда знают о нас больше, чем мы сами. Во всяком случае, если в моей жизни и было что-нибудь подобное, то сам я об этом начисто забыл. Зато наверняка помню, что арифметический треугольник был известен в Древней Индии и в Древнем Китае. А потому предоставь лучше слово мэтру Тарталье. Надеюсь, он-то свою причастность к арифметическому треугольнику отрицать не станет.

– Ни-ни-ни в коем случае, – подает голос высокий итальянец с глубокими шрамами на подбородке, одетый по моде шестнадцатого столетия. – Хотя числа в этом треугольнике я ра-ра-расположил так, что правильнее было бы называть его прямоугольником.

– Какое, однако, удивительное совпадение! – не выдерживает Фило. – «Тарталья» – по-итальянски «заика», а этот уважаемый мэтр и впрямь заикается.

– Ничего удивительного, – поясняет Асмодей. – Прозвище Тартальи сей даровитый синьор получилкак раз за свое заикание, которое началось у него после сильного ранения в нижнюю челюсть.

– А настоящая его фамилия как? – продолжает приставать любопытный Фило.

Но Асмодей лишь досадливо пожимает плечами. Не всегда ж ему знать то, чего не знает никто! И вообще, дадут ему наконец смотреть передачу?

– Однако, до-до-дорогие мэтры, – продолжает Тарталья, – хочу обратить ваше внимание на то, что арифметические треугольники возникали в разные времена и в разных странах совершенно самостоятельно. Свой я, во-во-во всяком случае, придумал сам.

– И я тоже, достопочтенный мэтр Тарталья, – присоединяется Паскаль, – потому что ваши изыскания были мне, к сожалению, неизвестны.

– Вы забыли сказать главное, уважаемый мэтр Паскаль – вмешивается представительный горбоносый красавец с густыми бархатными бровями и легкой любезной улыбкой в уголках рта.

– Насколько я понял, мэтр Лейбниц, вы просите слова, – строго намекает Пифагор. – Рад его вам предоставить.

Тот, извиняясь, склоняет набок голову в крутокудром каштановом парике. Достопочтенному председателю незачем затрудняться! Он, Лейбниц, хотел лишь заметить, что заслуга мэтра Паскаля не столько в том, что он открыл арифметический треугольник, сколько в том, что ему удалось вывести формулу сочетаний. Ту самую формулу, с помощью которой легко вычислить любой элемент числового треугольника.


– Прошу прощения! – живо перебивает Паскаль. – Одновременно со мной ту же формулу вывел мэтр Пьер Ферма.

– Не отрицаю! – весело басит Ферма. – И все-таки честь ознакомить собравшихся с некоторыми свойствами формулы сочетаний я предоставляю вам.

Паскаль молча кланяется и, подойдя к стоящей у камина грифельной доске, выписывает на ней две таблицы.

– Как видите, – поясняет он, – арифметический треугольник изображен здесь в двух видах: в числовом и условном, где каждый член его выражен через число сочетаний из номера строки по номеру своего места в ней. Разумеется, верхней строке и первому числу каждой строки присвоен нулевой номер. Далее обратите внимание на то, что все сочетания, у которых верхний индекс нуль, равны единице. Почему это так, понять нетрудно. Стоит только сравнить обе таблицы. Выберем, допустим, шестую строку (ее порядковый номер 5) и рассмотрим два ее числа, хотя бы 5 и 5. Одно из них в условном треугольнике обозначено как C51, второе – как C54. Но ведь числа эти равны между собой, ибо каждое из них порознь равно 5: C51 = C54 = 5. В свою очередь C51 можно записать какC55–4. И если это обобщить для любой строки (n) и любого порядкового числа в ней (m), то получится любопытное свойство сочетаний:

(це из эн по эм равно це из эн по эн минус эм). Отсюда ясно, что так как с одной стороны Cnn = 1, а с другой

то и выходит, что Cn = 1. Ну, а дальше уж, для общности правила, условились и С тоже считать единицей. Вот вам простой и удобный способ отыскивать любое, даже самое большое число сочетаний. И потому вопрос, чему равно, скажем, число сочетаний из тысячи по девятисот девяноста девяти, не должен пугать даже школьника, – вычислить это проще простого:

– За-за-замечательно! – восхищается Тарталья. – Я бы до такого ни-ни-никогда не додумался.

– Не клевещите на себя, дорогой мэтр Тарталья, – протестует Паскаль. – Просто вы жили на сто лет раньше, и время формулы сочетаний еще не пришло. А теперь попрошу нашего досточтимого председателя предоставить слово мэтру Лейбницу, ибо я горю желанием узнать, что сделал с арифметическим треугольником он.

– С величайшим удовольствием! – кивает Пифагор. – Тем более что я и сам давно дожидаюсь такого случая.

– Собственно говоря, я шел по стопам мэтра Паскаля, – уголками рта улыбается Лейбниц, – но мой треугольник составлен в обратном порядке. Так сказать, шиворот-навыворот. Прежде всего вместо целых чисел я взял дробные. А уж из этого вытекает и все остальное.

Он вытирает доску влажной тряпкой и пишет на ней другую таблицу.


– Этот свой треугольник я назвал гармоническим, – поясняет он.

– Превосходно! – горячо одобряет Пифагор. – Всегда говорил, что главное в мире – гармония.

– Вполне с вами согласен, – кланяется Лейбниц. – Но название это объясняется тем, что в правом и левом наклонных рядах моего треугольника стоят числа, которые принято называть гармоническим рядом: 1/1,1/2,1/3,1/4, 1/5, 1/6, 1/7… Особенность этого ряда заключается в том, что сумма его членов: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7… не стремится ни к какому определенному числу – иначе говоря, она бесконечна. Не то что, скажем, другой ряд: 1/2 + 1/22 + 1/23 + 1/24 + 1/25 + … = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + …, сумма которого стремится к единице. Так вот, если в треугольнике мэтра Паскаля каждое число равно сумме двух чисел, стоящих НАД ним (справа и слева), то в моем треугольнике каждый член равен сумме чисел, стоящих ПОД ним (также справа и слева). Например 1/6 = 1/12 + 1/12. А потому, если в треугольнике мэтра Паскаля общий член выражается формулой Cnm, то в моем он выглядит так:

Вот, например, в третьем ряду сверху второй член таков:

– О-о-очень любопытно! – восклицает экспансивный Тарталья.

– Но это еще не все! – продолжает Лейбниц. – Выберем какой-нибудь наклонный ряд – скажем, второй: 1/2 1/6 1/12 1/20 1/30 1/42. Начнем вычисление с любого, хотя бы со второго его члена, то есть с 1/6. Тогда из сказанного о законе образования членов треугольника прежде следуют такие равенства:

1/6 – 1/12 = 1/12

1/12 – 1/20 = 1/30

1/20 – 1/30 = 1/60

1/30 – 1/42 = 1/105

……………………………

Сложим почленно правые и левые части этих равенств. Все равные слагаемые в левых частях, имеющие противоположные знаки (плюс и минус), взаимно уничтожатся, и останется только первое число 1/6. Значит, 1/6 = 1/12 + 1/30 + 1/60 + 1/105 + … Но ведь правая часть этого равенства есть сумма всех чисел следующего за этим наклонного ряда, начиная с 1/12 и до бесконечности. И если в треугольнике мэтра Паскаля каждый член равен конечной сумме чисел, стоящих СЛЕВА и расположенных НАД данным числом, то в моем треугольнике каждое число равно бесконечной сумме чисел, стоящих СПРАВА и ПОД данным.


Вот, собственно, и всё.

Паскаль встает и горячо пожимает руку слегка утомленному оратору.

– Благодарю! Благодарю вас, многоуважаемый мэтр Лейбниц, от имени всех присутствующих, а от себя – особенно. Ваши бесконечные ряды доставили мне бесконечное удовольствие. Потому что бесконечность во всех ее проявлениях – предмет моего самого пристального внимания.

– Если так, – говорит Лейбниц, – попросите нашего достопочтенного председателя предоставить слово мэтру Ньютону, и вы получите удовольствие еще большее. Ибо он использовал вашу общую с мэтром Ферма формулу весьма неожиданно. Причем бесконечность в этом случает играет не последнюю роль.

Тут раздаются аплодисменты, и мэтр Исаак Ньютон, раскланиваясь, поднимается со своего места.

– Преждечем перейти к сути дела, – говорит он, – хочу обратить ваше внимание на одно обстоятельство. Подобно мэтрам Паскалю и Ферма, мы с мэтром Лейбницем также совершили одно и то же открытие. Это дифференциальное и интегральное исчисление. Надо, однако, признать, что открытие это – всего лишь завершение того, что начато нашими предшественниками. В первую очередь мэтрами Паскалем и Ферма, а также отсутствующим здесь мэтром Декартом.

Слова его встречены бурным одобрением. Все встают и долго рукоплещут.

– А теперь перейдем к вопросу, затронутому мэтром Лейбницем, – продолжает Ньютон, дождавшись тишины. – Должен снова оговориться. Формула разложения степени бинома носит мое имя не совсем справедливо. Ею пользовались задолго до меня. О моей роли в ее судьбе я как раз собираюсь рассказать. Для начала запишу эту формулу в ее обычном виде.

Он вытирает доску, и на ней появляется следующее выражение:

– Здесь, – поясняет он, – коэффициенты в каждом члене, как вам уже известно, есть сочетания из n по нулю, по единице, по два, по три и так далее, то есть

Что же нового внес в эту формулу я? Только то, что предложил обобщить ее, иначе говоря, не ограничивать целым числом для n, а распространить на любые значения показателя степени – дробные, отрицательные… При этом формула сочетаний, выведенная мэтрами Паскалем и Ферма, тоже становится обобщенной. Что же касается самой степени бинома, то она раскладывается в бесконечный ряд. – Тут мэтр Ньютон предупредительно оборачивается к Паскалю. – Вот в каком виде я предлагаю ее записывать:

Например, для

получится такой ряд:

Или

Сохраняя любое число слагаемых в правой части, можно вычислить эту сумму с любой степенью точности. Само собой разумеется, что икс в нашей формуле меньше единицы.

Отвесив учтивый поклон, мэтр Ньютон садится, и Пифагор собирается уже объявить следующего оратора… Но тут в телевизоре что-то щелкает, и место Пифагора занимают Знатоки, сообща арестующие разоблаченного преступника.

Мате с досадой хлопает себя по коленке. Опять на самом интересном месте… Черт знает что!

– Вот именно, мсье, – сейчас же откликается Асмодей. – Я, во всяком случае, всегда знаю, что делаю. Кроме того, привычка – вторая натура, как сказал Цицерон. А он тоже знал, что говорил.


    Ваша оценка произведения:

Популярные книги за неделю