Текст книги "Перелом (СИ)"
Автор книги: Сергей Суханов
Жанр:
Альтернативная история
сообщить о нарушении
Текущая страница: 45 (всего у книги 51 страниц)
Глава 21
Эти же кристаллы сегнетовой соли мы использовали и для взрывателей кумулятивных снарядов – разброс времени подрыва по сравнению с механическими системами резко уменьшился, что позволило применить более эффективные схемы кумулятивных воронок – теперь нам не надо было делать их исходя из худших условий подрыва. Хотя и механические взрыватели оставили – для дублирования. Дублирование требовалось, так как пьезоэлементы на сегнетовой соли, хотя и выдавали гораздо большее напряжение, чем кварц, но были менее надежными.
Так, уже при температуре в 56 градусов они начинали разлагаться, что требовало дополнительных телодвижений. Ведь, скажем, в радиоаппаратуре присутствуют довольно горячие лампы, и температура запросто может превысить и шестьдесят градусов. Пришлось ставить пьезоэлементы в отдельные термобоксы, вводить отдельные радиаторы и принудительную вентиляцию. В снарядах для танковых орудий мы вообще пока не стали применять эти элементы – нагреться в стволе они могут запросто, особенно после интенсивной серии выстрелов, а вентилятор на снаряд уже не поставишь, да и брать в стволе холодный воздух неоткуда. И нагрузить экипаж отслеживанием за тем, чтобы снаряд с таким взрывателем находился в стволе не больше минуты – тоже не выход – у экипажа и без того забот хватает. Вот на РПГ, а позднее и на РС ставить такие взрыватели ничто не мешало – вероятность их сильного нагрева невелика, особенно если будут следить за тем, чтобы не держать оружие на солнце или близко к источникам тепла.
Но у сегнетовых кристаллов были и другие недостатки. Например, они были водорастворимы, хотя это и решалось закаткой в целлулоид или другой пластик. Еще они были хрупкие, так что требовалось защищать их от вибраций. Впрочем, тонкие кристаллы использовали только в радиоаппаратуре, а ее и так надо защищать от вибраций, ну и мы еще дополнили виброзащитой термобоксы. А в снарядах РПГ и РС ставились сравнительно толстые кристаллы, которые лучше выдерживали вибрации при полете, к тому же мы ставили их через резиновые прокладки. Тем не менее, радисты и экипажи всегда держали при себе комплект сменных пьезоэлементов, а из кумулятивных выстрелов не срабатывало семь процентов – высокая величина, хотя, наверное, далеко не всегда из-за пьезокристаллов.
Как бы то ни было, сегнетовые кристаллы как-то позволили нам продержаться до начала массового выпуска кристаллов из кварца. И еще послужат какое-то время, так как уж больно большой их объем мы сейчас выпускали. Начали мы, как я говорил, с лабораторных объемов – по несколько сот граммов в сутки с десятка-другого лабораторных постов. Впрочем, и в СССР до начала войны была примерно такая же ситуация. Исследования по промышленному выпуску кристаллов были инициированы в 1934. Правда, несколько лет было потрачено на изготовление кристаллов из сахарозы (а ее кристаллы – тоже пьезоэлектрики!). Зато набили руку на выращивании кристаллов, поэтому, наконец взявшись в 1939 за выращивание кристаллов сегнетовой соли, уже в 1940 м году вышли на полузаводской уровень производства, а в 1941 – на заводской. Причем на выращивание кристалла весом 1,4 килограмма уходило всего 40 дней, тогда как в Физтехе подобные кристаллы вырастали за полгода – просто за счет других параметров. Причем технологию выращивания кристаллов разработали всего за полгода, и всего два – два! – человека – Николай Наумович Шефталь и его лаборантка.
С началом войны организовали завод, причем в качестве термостатов использовали деревянные бочки по 700 литров – первый же урожай с двадцати бочек дал 329 килограммов монокристаллов. В мае 1942го был разработан динамический метод выращивания кристаллов – с перемешиванием раствора. Именно этот метод мы и получили, когда наладили контакты по обмену научной и технологической информацией, так что две-три сотни килограммов в месяц было для нас не проблемой. А потом – уже мы придумали не перемешивать раствор, а вращать в нем саму затравку с кристаллом – рост стал еще быстрее. Так что проблем с пьезоэлектриками в общем-то не было, и дополнительные объемы кварца лишь улучшат и расширят их использование – так, температурная стабильность кварца в качестве генератора частоты все-таки выше, чем у сегнетоэлектриков – примерно в три-пять раз, что означает, что для радиостанций на кварце потребуется еще реже подкручивать рукоятку подстройки – да, хотя ее уже не надо крутить почти постоянно, как на вообще нестабилизированных радиостанциях, но раз в десять-пятнадцать минут – требовалось, именно из-за изменения температуры окружающей среды. Сейчас потребуется еще реже, а может и вообще не потребуется – посмотрим. А вот в танковых снарядах более широкое применение кварца будет очень кстати – это позволит применять более эффективные формы кумулятивной облицовки, что с появлением у фашистов новых танков и все более широким использованием противокумулятивных экранов становится очень актуальным.
Впрочем, в плане синтеза кристаллов у нас шли и другие работы, например – по рубину. Синтетические кристаллы рубина были получены еще в 1837 году, а в 1902 во Франции Вернейлем был разработан простой метод их синтеза. И, пока об этом методе мало кто знал, помощники Вернейля тут же провернули аферу по продаже искусственных рубинов – они ездили на восток и впаривали эти камни "со скидкой". Для правдоподобия в них даже вводились изъяны – в камнях просверливались небольшие отверстия и туда вставлялись кусочки антрацита или другой породы, а затем отверстия заливались тем же расплавом, из которого был сделан сам камень, и тщательно зашлифовывалось. Я же, узнав о том, что рубины уже делаются искусственно, тут же запустил исследования по их производству, благо метод Чохральского по выращиванию кристаллов нами использовался для изготовления слитков кремния. Ведь рубин – это не только и даже не столько украшение – это ценный технический камень – именно с началом его использования в качестве высокоскоростных подшипников наши гироскопы повысили устойчивость на два порядка, да и про лазеры на основе рубина я помнил и инициировал соответствующие исследования – прежде всего для самонаводящихся боеприпасов, так как горячее пятно от луча лазера будет надежно схватываться нашими ИК-датчиками, думаю, на любой местности и фоне. Фрицам пипец.
Впрочем, я немного ушел в сторону от темы разрушения дотов и дзотов – уж просто появилась возможность рассказать об эффективности кумулятивных боеприпасов разных стран – тут мы были впереди планеты всей, причем на голову и даже больше – наши четыре-шесть калибров пробиваемости крыли как бык овцу один-два калибра других стран – что Германии, что США – немцев – за счет материала и формы облицовки, а также взрывателей; более богатых американцев – за счет тех же взрывателей и формы облицовки – собственно, ни тем, ни другим, с механическими взрывателями ничего лучше и не достичь, о причинах я уже рассказывал. Про англичан и французов – вообще отдельная песня – еще перед войной там не считали получение металлической кумулятивной струи важным делом, предполагая, что металлическая облицовка нужна лишь для усиления газовой кумулятивной струи. Неверное предположение хотя и приводило к верным результатам – работа кумулятивных боеприпасов с такой облицовкой действительно усиливалась – вот только исследования шли в неправильном направлении, соответственно, и результаты были не ахти.
В Англии были 76 миллиметровые неуправляемые зенитные ракеты (и это еще до наших разработок!), а когда англичане узнали, что РККА массово применяет реактивные снаряды с самолетов, то на основе этих зенитных ракет они начали выпускать реактивные снаряды для авиации, причем пусковая труба ракеты была неизменной, а боевая часть прикручивалась по необходимости – у англичан были бронебойная калибром 87 миллиметров – обычная болванка, даже не кумулятивная, и осколочно-фугасная калибром 114 миллиметров. Причем, по заявлениям англичан, их бронебойный снаряд, разгонявшийся до 430 метров в секунду, пробивал броню толщиной 88 миллиметров – как они этого достигали, было неведомо – возможно, знаменитый туман мешал сделать правильные замеры. Более того – эти ракеты применялись против немецких подлодок, поражая те даже на глубинах до десяти метров – лодки как минимум лишались возможности к погружению. Но, повторю, кумулятивных боевых частей на английских ракетах не было.
Американцы тоже применяли реактивные снаряды калибра 114 миллиметров, но, как и англичане, без кумулятивных боевых частей – только бронебойные болванки и осколочно-фугасные снаряды. Да, не успели еще как следует повоевать ни те, ни другие, с противником, массово применяющим бронетехнику с сильным бронированием. Зато с подлодками столкнулись обе страны, и если англичане могли достать немцев или японцев на глубине до десяти метров, то американцы в 1943 м разработали специальную ракету для борьбы с подлодками – калибра 89 миллиметров, эти ракеты с цельнометаллической боевой частью уверенно двигались под водой якобы до глубин в 30 метров, да еще поражали там подлодки – пока информация была непроверенной.
Впрочем, сейчас, с середины 194Зго, англичане наконец-то начали мыслить в правильном направлении и стали выпускать во все больших количествах свой гранатомет PIAT, в боекомплекте которого были и кумулятивные гранаты – при калибре 87 миллиметров он обеспечивал пробитие до 120 миллиметров брони (что для невращающегося снаряда – очень, очень мало – британские ученые в очередной раз подкачали), но дальность прямого выстрела составляла не более ста метров, да и то вероятность попадания была не более шестидесяти процентов – невысокая начальная скорость давала очень высокий разброс. К тому же кумулятивные экраны и сетки существенно снижали эффективность. Мы "познакомились" с этими гранатометами во время боев с Армией Крайовой – англичане массово забрасывали это оружие своим союзникам. И, несмотря на свои недостатки, гранатомет обладал большим преимуществом при стрельбе из засад, так как в нем отсутствовала струя пороховых газов, исходящая назад – белополяки уже давно вели с нами диверсионную войну, поэтому новый агрегат стал для них большим подспорьем, а от нас потребовал навешивать противокумулятивные решетки практически на всю технику, ходившую в тылу вне городов и поселков, в том числе и на автомобили. Причем при стрельбе осколочными гранатами можно было вести и навесной огонь, и тут дистанции увеличивались до трехсот метров – неплохая замена миномету.
Возвращаясь к теме разрушения укреплений с помощью кумуляции, во время войны и наши, и немцы применяли переносные кумулятивные заряды для борьбы с укреплениями. Так, при штурме бельгийских фортов в 1940 году немецкие десантники использовали заряды с весом взрывчатки от 12 до 50 килограммов, причем они пробивали настолько большие отверстия, что позволяли забрасывать внутрь укрепления гранаты, уничтожая тех, кто подходил на смену убитым при взрыве кумулятивного заряда. В РККА также были заряды для работы по дотам – КЗ-1 – общим весом под пятнадцать килограммов, со взрывчаткой массой 9 килограммов и диаметром корпуса 350 миллиметров, ну а облицовки – чуть поменьше. Медная сферическая облицовка толщиной пять миллиметров пробивала тридцать сантиметров стали с диаметром пробоины 10–15 миллиметров, железобетон – на метр тридцать с диаметром 40–70 миллиметров, а кирпичную кладку – на два метра с диаметром пробоины 80-100 миллиметров. И советские саперно-штурмовые группы активно использовали эти заряды – все-таки тащить пятнадцать килограммов к немецком доту проще, чем пятьдесят-сто, а то и больше килограммов обычной взрывчатки, необходимой для его подрыва.
Впрочем, наши изделия РС-120К были еще удобнее – тут и работа со штурмовика, и тандемная кумулятивная часть, обеспечивавшая диаметр отверстия в полтора раза больше. А ведь мы разрабатывали уже снаряды РС-160К, которые обеспечат полтора метра пробития бетона и диаметр отверстия 20–25 сантиметров, и даже 40 сантиметров во второй модели – эти устройства мы испытывали двух видов – первое – как и РС-120К – с последовательно расположенными кумулятивными элементами – с облицовкой и без, а вот вторая модель в первом ряду имела четыре кумулятивных снаряда, прошивавших преграду длинными тонкими струями, а следом шла широкая воронка, которая прошивала центр, заодно обрушая то, что было прошито первым рядом, а уже затем – ударное ядро, которое обрушивало все что было сломано предыдущими рядами кумулятивов. Ну и вишенкой на торте – сосредоточенный заряд чистой взрывчатки, чтобы загнать вовнутрь ударную волну, нерастраченную даже на формирование металлических кумулятивных струй. Но тут пока были проблемы с синхронизацией зарядов – требовались слишком жесткие допуски на время инициирования и детонации.
Впрочем, сейчас снаряды РККА, даже вращающиеся с высокой скоростью, тоже повышали свою пробиваемость – мы передали технологию производства кварцевых взрывателей, так что советские снаряды избавились от трубки, которая шла по центру снаряда, в том числе и через кумулятивную воронку – эта трубка передавала детонационный импульс от взрывателя, расположенного в головной части снаряда, но она же, располагаясь по оси будущей кумулятивной струи, снижала ее эффективность.
Впрочем, из кумулятивных средств у РККА еще в сорок первом году (по другим сведениям – в 1939-40) появился прототип нашего РПГ-7, разве что выстреливавшийся немного по-другому – ЛМГ – летающая мина Галицкого – изобретение генерал-майора инженерных войск И.П.Галицкого. Она выстреливалась зарядом пороха в 15 граммов из специальной мортирки, закреплявшейся на грунте, могла пролететь 25 метров, и при заряде взрывчатки в 2,8 килограмма пробить броню до ста миллиметров. Не бог весть что, но это все-таки не ползти с гранатой к танку. Хотя низкая дальность и необходимость установки на грунте тоже существенно повышали риск, поэтому в РККА обычно использовали заранее установленные мины, которые выстреливались с помощью электродетонатора, когда мимо проезжал танк. Эх, им бы уменьшить заряд и тем самым повысить дальность, да штамповать как ПТАБы – цены бы устройству не было. К сожалению, до нападения немцев военные не шибко жаловали кумулятивы, во многом – справедливо, из-за недостатков первых конструкций.
Впрочем, сейчас РККА уже массово использовала кумулятивные боеприпасы – как собственной, так и нашей разработки. Собственные появились у них независимо от нас, да и далее советских ученых особо подстегивать не требовалось – устройства пеклись как пирожки, и наше влияние было скорее в том, что началось массовое применение прежде всего реактивных и гранатометных систем, а также пьезоэлементов во взрывателях.
Гранатометы были приняты наши – РПГ-7, СПГ-9, как и РС-60 – ПТАБы тоже появились, но по сравнению с РС-60 были признаны неэффективными – слишком большой разброс бомбочек на единицу поражаемой техники. Ну а пьезоэлементы уменьшили разброс времени подрыва боевой части, что дополнительно увеличило бронепробиваемость невращающихся боеприпасов, точнее, эти боеприпасы все-равно вращались, но не для стабилизации, а лишь для снижения неточности в изготовлении.
Хотя с вращающимися боеприпасами ситуация тоже выправлялась – в РККА уже начали поступать снаряды с пьезовзрывателями на основе кварца – все-таки у советских ученых было больше возможностей наладить их выпуск, тут нужно было только понимание важности этого производства, а такое понимание как раз дали наши боеприпасы. Повышению пробиваемости способствовали и конструктивные изменения в кумулятивных воронках. Советские ученые выяснили, что менее высокие воронки менее подвержены негативному влиянию быстрого вращения – кумулятивная струя начинает образовываться из вершины конуса, а уже затем в нее переходит металл из более нижних частей, соответственно, чем быстрее вращается снаряд, тем на большее расстояние повернутся нижние участки облицовки, прежде чем перейти в струю, тем больше получится закрутка. Ну и чем длиннее конус, тем дольше будет закручиваться струя. Это помимо всегда присутствующей асимметрии заряда из-за допусков при изготовлении – она в любом случае будет разносить в стороны струю тем сильнее, чем быстрее вращается снаряд.
Так, для калибра 76,2 при воронке с соотношением диаметра и высоты конуса один-к-двум пробиваемость невращающегося снаряда была 205 миллиметров, а для вращающегося падала на шестьдесят процентов – до 82 миллиметров, а при соотношении один-к-одному, то есть с более низким конусом, пробиваемость без вращения была ниже – 132 миллиметра, зато с вращением падение было всего тридцать процентов и в итоге пробиваемость была выше – 90 миллиметров. Причем для снарядов меньшего калибра падение было меньше. Так, в калибре 37 миллиметров при соотношении один-к-одному пробиваемость без вращения – 45 миллиметров, с вращением – 37. А при соотношении один-к-двум – 74 и 44, то есть уже имеет смысл применять длинные конуса. Как результат этих исследований, в авиации РККА намечался бум 37-миллиметровых авиационных пушек для борьбы с танками – кумулятив позволял снизить начальную скорость снаряда, то есть уменьшалась отдача на самолет, соответственно, это оружие могли применять и менее опытные пилоты. Да, снижение скорости снаряда увеличит рассеивание на дальних дистанциях, зато таких снарядов можно выпустить гораздо больше, чем тех же РС-60, и при стрельбе с верхних ракурсов такой пробиваемости хватит для подавляющего количества немецкой техники – даже у Тигра бронирование крыши корпуса и башни было всего 28 миллиметров, так что даже с учетом наклонного подхода снарядов к этой горизонтальной броне оставался запас пробития или как минимум внутреннего откола. Так что штурмовики РККА уже начинали применять и кумулятивные 37-миллиметровые снаряды, правда, пока были проблемы с автоматикой – сниженная отдача означала и меньший импульс для перезарядки, поэтому ее конструкция была изменена и еще доводилась до ума.
И работы по вращающимся кумулятивам продолжались. Тут, конечно, сказывалась серьезная математическая подготовка советских ученых и конструкторов – мы пользовались именно их математическими моделями. Но вот проверка этих моделей была уже делом наших рук – именно наши ЭВМ просчитывали параметры кумулятивных струй по переданным матмоделям – программы крутились на технике, расположенной на нашей территорией, а с советскими научными учреждениями мы наладили радиоканалы связи, по которым к нам приходили параметры расчетов, а от нас – длинные столбцы с результатами – для их распечатки в советских КБ и институтах устанавливались ЦПУ – цифровые печатающие устройства, которые могли принимать только цифры, знак "минус", пробел, перевод строки и символ степени – все как раз вмещалось в четыре бита и пока все были довольны, да чего там довольны? все писали кипятком от таких возможностей. Обслуживали технику наши специалисты, а вместе с советскими учеными и конструкторами работали и наши – учились, мотали на ус, нарабатывали опыт.
Вот и с уменьшением высоты воронки все было проверено на наших ЭВМ – расчеты показали, что чем выше воронка, тем нестабильнее будет получающаяся кумулятивная струя. Эти же расчеты показали, что чем больше калибр, тем больше на него воздействует вращение – именно поэтому "выстрелил" уже было списанный в утиль калибр 37 миллиметров. Причем этот калибр имел еще перспективы для роста пробития. Так, модели и последующие эксперименты показывали, что на пробиваемость практически не влияет вращение со скоростями до 1000–1500 оборотов в минуту – это при обычных скоростях до двадцати тысяч. Поэтому, если в дополнение к снижению заряда пороха снизить еще и крутизну нарезов, то снаряду вполне можно придать скорость меньше этих границ – пока еще отрабатывались опытные пушки под такие скорости – отдача-то от выстрела снова снижается, то есть снова надо подкручивать автоматику, а расчеты и опытные стрельбы показывали, что на дальности до пятисот метров такие уменьшенные скорости еще не приведут к большому разбросу стрельбы – а дальше, в принципе, стрелять и смысла не было, летчики наоборот старались подобраться поближе, чтобы уж наверняка.
Похоже, скоро немцев ждет очередной неприятный сюрприз – пробиваемость более семидесяти миллиметров от калибров всего в 37 миллиметров – тут уже и не всякая лобовая такое выдержит, а уж борта и корма – им конец. Да и для полковых пушек уже отстреливались опытные партии таких снарядов – там и так начальная скорость не более 370 метров в секунду, то есть кумулятивы работали эффективнее, чем на дивизионках, а если насыпать еще и меньше пороха – скорость вращения еще уменьшится. Правда, уменьшится и дальность прямого выстрела, что скажется на точности. Так что тут еще думали. В дивизионках было еще сложнее – от уменьшенного заряда перестанет работать автоматика перезаряжания, то есть снизится боевая скорострельность. Впрочем, сейчас шли расчеты и исследования рифленых воронок – теория подсказывала, что спиральные выступы закрутят струю в обратную сторону и компенсируют вращение снаряда. Ну, может быть – только интересно, как они собираются их изготавливать – там ведь требуется невероятная точность. Может, будет все-таки проще сделать кумулятивный блок вращающимся, точнее, проскальзывающим внутри внешнего корпуса снаряда – корпус вращается с высокой скоростью и стабилизирует снаряд, а кумулятивная часть, не связанная жестко с корпусом, хотя и вращается, но гораздо медленнее. Как у немцев на некоторых снарядах. Хотя наши как раз и пытались сделать рифленые воронки, чтобы не менять технологию изготовления самих снарядов. Ну, может что и получится. Уж как минимум разработают математическую модель, а мы ее обсчитаем.
Свои-то боеприпасы мы делали без расчетов, только подбором на основе множества испытаний. Так, за лето по теме реактивных снарядов против укреплений мы провели более пяти тысяч экспериментов по разрушению укреплений боеприпасами с кумулятивными частями, пробивавшими стены и крыши укрытий – уж что-что, а технология массового эксперимента была у нас отработана на пять. Работы упрощал и тот факт, что взрывные явления масштабируются, то есть можно сначала исследовать небольшие устройства с массой взрывчатки пятьдесят-сто грамм и потом переносить результаты, пусть и с поправочными коэффициентами, на устройства с другим количеством взрывчатки – для проверки и отработки уже технологии изготовления.
Так что к началу сентября мы были готовы разрушать и истреблять – метр бетона и метр обсыпки уже не являлись для нас преградой, и это при массе боеприпасов не полтонны, а всего пятнадцать килограммов! Вот только целей не было! Стрелять было не по по чему! Не было у немцев таких укреплений на восточном и южном флангах нашего фронта. И причем военные, что в течение лета вылетали с экспериментальными боеприпасами, нам это и говорили, вот только мы, увлеченные их разработкой, не особо слушали – "не было, так появятся!". Не появились. Как были дерево-земляные, так такие и оставались – неоткуда было у немцев взяться тут бетону в массовом количестве – все транспортные пути и грузоподъемность транспорта были отданы для наступательных операций. А для обороны они строили стандартные дзоты и укрытия.
Немецкие дзоты имели покрытие в один или два наката с засыпкой грунтом в тридцать-пятьдесят сантиметров – тут и обычные РС-120 справятся, да по ним даже кумулятивные РС-60 неплохо работают – с чего мы, собственно, и начали работы по этой теме. Вот разве что убежища на шесть-десять человек имели покрытие уже из двух-трех, иногда и четырех рядов наката, что защищало их от снарядов 76 миллиметров, а иногда и от 152 – по этим – да, новые снаряды будут уже кстати. Вот только немцы нечасто их пока делали – южный и восточный фронты еще не перешли в стадию позиционных, наоборот, они бурлили и колыхались, и все, что немцы успевали порой построить – это окопы, те же дзоты, иногда завозили пулеметные бронированные колпаки – "Крабы" – толщина их лобовой брони была 140 миллиметров, но на крыше и по бортам – 25–40 – опять же – пробиваются нашими РС-60.
Хотя, в последнее время немцы все чаще и чаще стали стараться строить максимально быстро максимально мощную оборону – как раз с дзотами и укрытиями, тогда как ранее для установки пулеметов предпочитали открытые площадки, с которых можно было обстреливать более широкие сектора и быстро маневрировать между площадками. Да и трудоемкость их сооружения была сравнительно невысокой. Вот только и жили площадки не долго – обнаружить их легко, уничтожить расчет можно даже несколькими выстрелами из пушек калибра 23 миллиметра. Так что, похоже, мы приучили немцев закапываться как можно глубже, они даже начали все больше маскировать брустверы своих окопов, тогда как раньше этого обычно не делали – типа "все-равно наступать". Вот на западном и юго-западном фронтах – там да, немцы понастроили мощные линии обороны, с железобетонными укреплениями – как сборными из отдельных элементов, так и монолитными, с толщиной стен до одного метра, с применением в отдельных случаях в покрытии двутавровых балок, рельс или волнистого железа. Наверное, прежде всего там и пригодятся новые боеприпасы, хотя и без них с начала сентября там были значительные подвижки, о которых расскажу, наверное, уже в следующей книге.
А пока на их производстве работало двести человек, выпуская по четыреста кумулятивных РС-120К в сутки, причем в основном – на изготовлении начинки, требовавшей повышенной точности изготовления, а внешняя обвязка – корпус, оперение, пороховой двигатель – была от обычных РС-120. Если принять, что на один дот, дзот или укрытие уйдет четыре снаряда – из-за сложностей с обнаружением, рассеивания, да и просто для надежности – а на километр у немцев приходится один-два дота-дзота и два-три укрытия, то есть до пяти объектов, то мы сможем стирать в сутки линию обороны длиной в десять километров. Или, с учетом нескольких линий – зачищать от укреплений два-три километра обороны.
Но и это еще не все. Пока мы начинали использовать конструкцию на основе существующего реактивного снаряда. Но мне, пусть и поздно, вспомнилось устройство из моего времени под кодом ОЗ-1 – Окопный Заряд – заряд для проделывания одиночного окопа в твердых или мерзлых грунтах – как-то смотрел про него сюжет в передаче "Полигон". Заряд явно сделан ненормальными в хорошем смысле людьми. Ну еще бы – кому придет в голову пулять ракетами вглубь земли? Нашим это пришло. Кумулятивная часть устанавливается на грунт, сверху прикручивается фугасный заряд с реактивным двигателем, соплом вверх (это не шутка, это солнечный русский гений!!!). Все это дело боец инициирует и отбегает в сторону – дальше работает пиротехника. Кумулятивный заряд пробивает в грунте шурп глубиной в метр-полтора-два, реактивный двигатель загоняет в этот шурп фугасный заряд, который взрывается в грунте и разрыхляет его – получается засыпанная рыхлым грунтом воронка диаметром 0,5–2,5 метра и глубиной до полутора метров. И затем его вычерпывают лопатой. Просто и эффективно. Причем кумулятивная часть диаметром сантиметров десять имеет менее полкило взрывчатки, длинный фугасный заряд диаметром сантиметра три, чтобы прошел в шурп – 650 грамм. На все про все. То есть все это с большим запасом укладывается мало того что в габариты, так еще и в массовые ограничения наших реактивных снарядов. Остается только повторить – если загнать внутрь блиндажа, скажем, даже килограмм взрывчатки – в живых никого там не останется с вероятностью 99 %.