Текст книги "Самые знаменитые головоломки мира"
Автор книги: Сэм Лойд
сообщить о нарушении
Текущая страница: 5 (всего у книги 17 страниц)
62
Марки на доллар
Некая леди, протянув почтовому служащему один доллар, сказала:
– Дайте мне двухцентовых марок в десять раз больше одноцентовых, а на остальное – пятицентовых марок.
Как служащий сумел выполнить это довольно головоломное задание?
63
Сколькими акрами земли владеет Пит?
Вот неплохая головоломка о «диком западе», которая связывает знаменитую старую задачу с одним эпизодом из американской истории.
Техас был практически заселен, а точнее кишел американскими поселенцами уже к 1830 г. Однако потребовалось еще 15 лет, прежде чем он был присоединен к США. [8]8
Штат Техас образовался в результате военного захвата США части мексиканской территории. – Прим. перев.
[Закрыть]Вскоре после этого был издан знаменитый закон об оседлости, по которому поселенец считался собственником земли, огороженной или обработанной им в течение года с того момента, когда он завладел ею.
Некоторым из первых поселенцев пришлось хлебнуть горя, зато потомки тех, кому удалось «огородиться», как они это называли, стали буквально мясными королями. Среди крупнейших ранчо Запада, владельцы которых не испугались бы и стад «белых и пятнистых быков, что паслись на равнинах Сицилии», как высокопарно описывал их Архимед, можно упомянуть и ранчо некоего Пита. Он был одним из первых, кто получил землю по закону об оседлости. Согласно его собственному рассказу (а он здоровый и сердечный человек, хотя ему давно уже перевалило за семьдесят), они с женой получили всю землю, которую сумели огородить забором в три жерди за двенадцать месяцев, так что целый год супруги только и делали, что строили эту изгородь. Из этого рассказа мы извлечем следующую любопытную задачу. Предположим, что участок земли имеет квадратную форму и что он огорожен забором в три жерди, как показано на рисунке, причем длина каждой жерди составляет ровно 12 футов. Предположим далее, что число огороженных акров земли совпадает с числом жердей в заборе (вспомним, кстати, что в одном акре содержится 43 560 квадратных футов). Скажите тогда, сколькими акрами земли владеет техасский Пит?
64
Система лорда Рослина
Недавнее сообщение о том, что некто выиграл в Монте-Карло 777 777 франков, невольно вызывает в памяти ранее обнародованную систему лорда Рослина.
Не вдаваясь в детали игры в рулетку, примем к сведению, что система лорда Рослина основывалась на принципе ставок на числа, кратные 7, и попросим наших любителей головоломок разобраться в следующей простой задачке.
Предположим, что игрок ставит просто на красное или черное, где шансы равны, монету в 1 франк 7 раз подряд, а затем вне зависимости от выигрыша или проигрыша повышает ставку до 7 франков и снова играет 7 раз. Затем он 7 раз ставит 49 франков; далее 7 раз ставит 343 франка; затем 7 раз – 2401 франк; потом 7 раз – 16 807; далее тоже 7 раз – 117 649 франков. Если теперь, сделав ставку 49 раз, он выигрывает 777 777 франков, то сколько раз за всю игру ему сопутствовала удача?
Это довольно просто и тем не менее интересно как иллюстрация полной абсурдности пресловутой системы Рослина.
Если вам не удастся получить сумму, в точности равную 777 777 франкам, то несколько экспериментальных попыток покажут, что данная головоломка носит не столь математический характер, как это кажется с первого взгляда.
65
Как может всегда выигрывать первый игрок?
Недавно я обнаружил одно весьма живое описание того, как в XV веке страстно увлекались азартными играми. Среди упомянутых там игр, требовавших умения или слепого везения, в которые смело и безрассудно бросались знатные кавалеры, была и игра с куриными яйцами. По-видимому, именно здесь следует искать истоки известной истории про колумбово яйцо, которая, несмотря на всю содержащуюся в ней поучительную мораль, кажется слишком постной и бесцветной для того кипевшего страстями времени. Я обратил внимание на любопытный принцип, который лежит в основе этой игры и требует изобретательности и оригинальности мышления.
В игре участвуют двое. Игроки выкладывают по очереди яйца одинаковых размеров на квадратную салфетку. После того как яйцо положено на стол, его нельзя больше ни передвигать, ни касаться другим яйцом. Так продолжается до тех пор, пока вся салфетка не будет настолько густо покрыта яйцами, что на ней не останется места для очередного яйца. Последний, кому удалось положить яйцо, выигрывает, а поскольку размеры салфетки или яиц, так же как и меняющиеся расстояния между яйцами, роли не играют, то кажется, что выигрывает просто тот, кому больше повезет. И все же первый игрок может всегда выиграть, если он выберет правильную стратегию, которая, как заметил великий мореплаватель, «проще простого, если вы знаете, в чем тут дело»!
66
Насколько большими станут их стада?
Древние греки столь слепо полагались на оракулов своих богов, что ни одно дело, от объявления войны до продажи коровы, не совершали без обращения к ним за советом. Так, если вы помните знаменитую картину «Юпитер в Додоне», то представьте себе двух крестьян, которые пришли спросить совета у оракула и которых повелительно направляют к зеркалу. Мы, в свою очередь, показали на рисунке двух бедных крестьян, желающих узнать, улыбнется ли им Юпитер в деле приобретения ягненка и козы.
– Они будут увеличиваться, – изрек оракул, – до тех пор, пока овцы, умноженные на коз, не дадут произведение, которое, будучи отраженным в священном зеркале, покажет число животных во всем стаде!
Конечно, слова оракула столь же таинственны, сколь и двусмысленны, но тем не менее мы предлагаем нашим любителям головоломок поразмыслить над ними.
67
Какое время показала яхта-победительница?
На рисунке показаны две участвующие в гонках яхты, которые находятся на первой прямой треугольного замкнутого пути от Ак Ачерез В и С.
Три сухопутных увальня с лидирующей яхты попытались записывать скорость своего судна, но, жестоко страдая от морской болезни, безвозвратно погубили записи. Смит заметил, что яхта прошла первые 3/4 пути за 31/2 часа. Джонс указал только, что последние 3/4 пути яхта преодолела за 41/2 часа. А Брауну до того хотелось поскорее ступить на сушу, что он лишь отметил, что средний участок пути (от Вдо C)занял на 10 минут больше времени, чем первый.
Допустим, что буи отмечают равносторонний треугольник и что скорость яхты на каждом прямолинейном участке постоянна. Можете ли вы сказать, какое время показала яхта-победительница?
68
Сколько человек было в армии Гарольда?
Те, кто изучал историю, наверное, знают, насколько таинственны и неопределенны детали знаменитой битвы при Гастингсе, которая произошла 14 октября 1066 г. В нашей головоломке речь пойдет об одном любопытном эпизоде в ходе этой битвы, который, к сожалению, не привлек к себе должного внимания историков.
Вот что донесло до нас предание: «Люди Гарольда, сомкнувшись тесными рядами согласно своему обычаю, образовали тринадцать квадратов по одинаковому числу человек в каждом, и горе было тому норману, который дерзал пробиться внутрь – одного удара саксонского боевого топора было достаточно, чтобы переломить его копье и прорвать кольчугу… Когда Гарольд бросился в гущу сражения, саксы образовали один могучий квадрат, оглашая воздух боевыми кличами "Ут!", "Оликросс!", "Годемит!"».
Современные авторитеты подтверждают, что саксы действительно сражались такими плотными рядами.
Если силы Гарольда были разбиты на 13 квадратов, которые вместе с самим славным предводителем удалось расположить в виде одного большого квадрата, то сколько человек было у него под началом? Эта головоломка весьма трудна; очевидно, лишь немногим удастся получить на нее правильный ответ.
69
Марсианские каналы
Здесь представлена карта вновь открытых городов и каналов нашего собрата по Солнечной системе Марса. Начните с города, отмеченного буквой 3 и расположенного на южном полюсе Марса, и посмотрите, сможете ли вы прочитать фразу, следуя путем, где все города посещаются ровно по одному разу, и вернувшись в исходную точку.
Когда эта головоломка впервые появилась в журнале, то более пятидесяти тысяч читателей написали в редакцию: «Здесь нет никакого пути». И все же это очень простая головоломка.
70
В какой пропорции смешан чай?
На Востоке искусство смешивания различных сортов чая не пренебрегает миллионными долями унции! Говорят, секреты некоторых смесей сохранялись в глубокой тайне и веками их не удавалось повторить.
Дабы проиллюстрировать, сколь сложно проникнуть в тайну искусства смешивания чая, мы предлагаем вашему вниманию одну простую головоломку, где смешиваются только два сорта.
Составитель смесей получил два ящика чая. Оба они были кубической формы, но имели разные размеры. В большем ящике находился черный чай, а в меньшем – зеленый. Смешав содержимое этих ящиков, человек обнаружил, что полученной смесью удалось заполнить ровно 22 коробки кубической формы и одинакового размера. Допустим, что внутренние размеры коробок выражаются конечной десятичной дробью. Сумеете ли вы определить, в какой пропорции в данную смесь входили черный и зеленый чай? [Другими словами, найдите два различных рациональных числа, таких, чтобы при сложении их кубов получился результат, который после деления на 22 и последующего извлечения кубического корня привел бы тоже к рациональному числу, – М. Г.]
71
Сколько кубов в монументе и его квадратном основании?
Стала классической легенда, связанная с задачей об удвоении поверхности куба. Филопон рассказывает, как афиняне, напуганные эпидемией чумы 432 г. до н. э., обратились за советом к Платону. Но прежде чем прийти к великому философу, они воззвали к Аполлону, который устами Дельфийского оракула повелел им вдвое увеличить размеры золотого алтаря в своем храме. Однако афиняне оказались неспособными это сделать. Платон сказал, что несчастье постигло их из-за злостного пренебрежения возвышенной наукой геометрией, и посетовал, что среди них не нашлось ни одного человека, достаточно мудрого, чтобы решить эту задачу.
Задача Дельфийского оракула, где речь идет просто об удвоении куба, так тесно связана с задачей о кубах Платона, что не слишком искушенные в математике авторы их часто путают. Последнюю задачу называют также задачей о геометрических числах Платона, утверждая обычно, что об истинных ее условиях почти ничего не известно. Некоторые считают даже, что ее условия утеряны.
Существует древнее описание массивного куба, воздвигнутого в центре выложенной плитами площадки, и не требуется большого воображения, чтобы связать этот монумент с задачей Платона. На рисунке вы видите Платона, созерцающего такой массивный мраморный куб, который сложен из некоторого числа меньших кубов. Монумент возвышается в центре квадратной площадки, выложенной такими же малыми мраморными кубами. Число кубов в площадке и в монументе одинаково. Скажите, сколько кубов требуется, чтобы построить монумент и квадратную площадку, и вы решите великую задачу о геометрических числах Платона.
72
Дэдвудский экспресс
Дэдвудский экспресс доставил в шахтерский городок два ящика для одной юной леди. Между проводником и шахтерами, приятелями этой леди, которые явились за грузом, произошел спор.
Дело в том, что проводник хотел взять плату за провоз ящиков согласно прейскуранту – по 5 долларов за кубический фут. А шахтеры упрямо отказывались платить на подобных условиях, утверждая, что по действующим на шахтах законам всегда платят за погонный фут. Да и вообще молодые люди не могли понять, какое право имеет железнодорожная компания касаться «кубического содержимого» ящиков юной леди!
Проводнику в конце концов пришлось принять их условия: он измерил длину ящиков и взял по 5 долларов за погонный фут. Оба ящика имели форму правильных кубов, и один был ровно вдвое ниже другого.
Самое странное состоит в том, что, приложив ящики друг к другу и измерив их суммарную длину, проводник обнаружил, что в обоих случаях цены за провоз не отличаются даже на одну тысячную цента: можно было с равным успехом брать по 5 долларов как за кубический, так и за погонный фут.
Каковы размеры двух ящиков?
Эта простая, но и достаточно интересная головоломка заставит вас подумать, прежде чем вы найдете правильный ответ.
73
Передвигая одновременно по два бокала, за четыре хода измените их расположение так, чтобы пустые бокалы чередовались с полными
Для читателей, интересующихся трюками, которые можно было бы продемонстрировать в гостиной, мы предлагаем позабавящую гостей головоломку. Вам нужны для этого восемь бокалов – четыре пустых и четыре полных.
Здесь, как и при демонстрации многих других трюков такого типа, все зависит от умения и ловкости рук. Вы должны тщательно подготовиться, чтобы быстро и легко проделывать нужные манипуляции как в ту, так и в другую сторону. Если вы к тому же будете отвлекать зрителей разговором, создастся впечатление, что повторить этот маленький трюк очень просто. Каждый не откажется продемонстрировать свою сноровку, однако девяносто девять человек из ста не справятся с заданием.
Итак, передвигая одновременно по два бокала, за четыре хода измените расположение восьми бокалов так, чтобы пустые бокалы стали чередоваться с полными. На рисунке бокалы для удобства пронумерованы.
74
Найдите путь к опушке леса!
Великий математик Эйлер открыл правило, позволяющее решать все виды головоломок с лабиринтами, которые, как известно, зависят главным образом от движения в обратном направлении. Однако к настоящей головоломке правило Эйлера неприменимо. Попытки, предпринимающиеся до сих пор, заставляют думать, что, вероятно, это единственная головоломка, не поддающаяся его методу.
Начинайте с сердечка в центре рисунка. Пройдите три шага по прямой в любом из восьми направлений: на север, юг, восток, запад или на северо-восток, северо-запад, юго-восток или юго-запад. Сделав три шага, вы окажетесь в квадрате с номером, который показывает, сколько шагов вы должны сделать по прямой «на следующий день» в любом из восьми направлений. Из этой новой точки двигайтесь снова в соответствии с новым числом и т. д., пока не окажетесь в квадрате, [9]9
Этот квадрат не обязан быть «местом ночлега», а может быть одним из квадратов, который вы проходите во время «дневного пути». – Прим. перев.
[Закрыть]из которого сделаете ровно один шаг на опушку леса. Тогда вы выберетесь из леса и можете кричать от радости сколько угодно, ибо вы решили головоломку!
75
Поссорившиеся пары
Я полагаю, что все любители головоломок, как молодые, так и умудренные опытом, сумеют переправить через речку волка, козу и капусту в двухместной лодке.
Вот другой вариант этой задачи. Три супружеские пары, возвращаясь с пикника, вышли к реке, через которую они должны переправиться в маленькой лодке. Лодка одновременно вмещает только двоих, и ни одна из женщин не умеет грести.
Случилось так, что приходский священник Синч поссорился с двумя другими джентльменами. В результате и миссис Синч перестала разговаривать с остальными леди.
Каким образом все участники пикника сумеют переправиться через реку так, чтобы никакие два участника, находящиеся в ссоре, не переправлялись одновременно и даже не находились одновременно на одном и том же берегу. Еще одна любопытная особенность этих натянутых отношений состоит в том, что ни один джентльмен не должен оставаться ни на каком берегу одновременно с двумя леди.
Головоломка состоит в том, чтобы показать, каким образом все участники пикника могут переправиться в двухместной лодке на другой берег. Хочу заметить, что ни один человек из тысячи не сумеет решить Эту задачу без помощи карандаша и бумаги, хотя научиться этому не сложно
76
На какое наименьшее число квадратов, содержащих одну или несколько клеточек, можно разрезать одеяло?
На рисунке вы видите членов общества «Добровольные работники», которые свою признательность объединившему их приходскому священнику облекли в форму красивого лоскутного одеяла. Каждый член общества пришил к одеялу один правильный квадратный лоскут, содержащий одну или несколько маленьких клеточек.
Каждая леди тут же покинула бы общество, если бы ее лоскут оказался пропущенным или болтался сбоку. Поэтому было крайне важно рассчитать, каким образом из всех этих квадратных лоскутов следовало сшить одно большое квадратное одеяло. Поскольку каждый лоскут имеет форму квадрата, вы сумеете определить, сколько в обществе было членов, если узнаете, на какое наименьшее число квадратных кусков можно разрезать одеяло. Эта простая головоломка дает большой простор изобретательности, но требует терпения.
77
Какие два удара позволят закончить игру быстрее всего?
Ныне каждый играет в гольф, и даже те ленивцы, которые еще совсем недавно заявляли, что куда как лучше покачиваться где-нибудь в прохладе в гамаке, заразились спортивной лихорадкой и гоняют мяч от лунки к лунке. Сам я играю в гольф не слишком-то блестяще, но как-то встретил гениального игрока, у него своя система игры, основанная на математике. Он говорит:
– Используйте всего две разновидности ударов разной длины, «прогон» и «подход», и бейте прямо по направлению к лунке так, чтобы комбинация этих двух расстояний привела мяч прямо в лунку.
Какую длину следует выбрать для подхода и для прогона, чтобы потребовалось наименьшее число ударов на курсе с девятью лунками: 150, 300, 250, 325, 275, 350, 225, 400 и 425 ярдов? Мяч при каждом ударе должен проходить соответствующее расстояние полностью, однако при любом ударе вы можете сделать так, чтобы мяч прошел над лункой, а затем послать мяч назад по направлению к лунке. Все удары производятся по прямой в направлении лунки.
78
Разрежьте мозаику на части, из которых можно было бы сложить два квадрата
Далеко не все знают, что знаменитая мозаика работы Доменикино из коллекции Гвидо – головы римлян – долгое время была разделена на две квадратные части, обнаруженные в разное время. Они были собраны вместе в своем, как полагают, первоначальном виде в 1671 г. Очевидно, случайно обнаружилось, что каждый квадрат состоял из частей, которые удалось сложить в правильный квадрат 5x5, как показано на рисунке.
Эту головоломку, подобно многим другим головоломкам, допускающим математическую формулировку, можно решать, двигаясь в обратном направлении. Мы обратим задачу и попросим вас разделить большой квадрат на минимальное число частей, из которых можно было бы сложить два квадрата.
Известно, конечно, что два квадрата с помощью диагональных прямых можно разрезать на части, из которых удается сложить один большой квадрат Пифагора, и наоборот; однако в данном случае головы не должны быть повреждены, и поэтому разрезать квадрат можно только вдоль линий соединения. Заметим кстати, что студентам, знакомым с задачей Пифагора, не составит большого труда определить, сколько голов должно содержаться в меньших квадратах.
Задачи такого рода, где речь идет о наилучшем ответе, содержащем наименьшее число частей, дают большой простор для изобретательности. В этой задаче при наилучшем решении ни одна голова не разрушается и не переворачивается вверх ногами.
79
Укажите размеры креста, площадь которого равнялась бы площади остальной части флага
На датском флаге изображен белый крест на красном фоне; правила требуют, чтобы площадь белого креста составляла ровно половину всей площади флага. Допустим, что длина флага составляет 7 1/2фута, а ширина – 5 футов. Интересно, сколько любителей головоломок определят толщину белого креста при условии, что его площадь составляет половину площади всего флага?
80
Фальшивые весы
Оперировать деньгами, которые чеканились прежде на Востоке в виде монет различного размера и веса, чтобы легче било обманывать путешественников, слишком сложно для наших математиков; поэтому, описывая тамошние сделки, мы ради удобства будем говорить о долларах и центах.
Верблюжью шерсть, используемую при выделке шалей и дорогих ковров, крестьяне обычно продают крупным торговцам при посредстве перекупщиков. Дабы не прогореть, перекупщик никогда не покупает шерсть про запас, однако, как только поступает заказ от торговца, он всегда находит желающего продать шерсть и берет как с покупателя, так и с торговца по 2 % комиссионных, зарабатывая таким образом 4 % на всей операции. Более того, с помощью жульнических манипуляций с весами перекупщику всегда удается увеличить свой доход, особенно если ему попадается неопытный клиент, который доверчив настолько, что верит его словам и клятвенным заверениям.
Я хочу предложить вам одну забавную головоломку, связанную с подобной сделкой, которая показывает, насколько просты методы перекупщика. Приобретая шерсть, перекупщик помещал ее на короткий рычаг своих весов, что давало ему лишнюю унцию шерсти на каждый фунт веса, [10]10
В 1 фунте содержится 16 унций. – Прим. перев.
[Закрыть]а продавая шерсть, он менял рычаги местами и недодавал по одной унции на каждый фунт. Благодаря этому он получил лишних 25 долларов.
Эта задача выглядит (и является на самом деле) очень простой, ее условия ясны и вполне достаточны для решения. Тем не менее человеку, искушенному в книжной премудрости, придется поломать голову, прежде чем он определит, сколько заплатил перекупщик за верблюжью шерсть.