355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сэм Лойд » Самые знаменитые головоломки мира » Текст книги (страница 10)
Самые знаменитые головоломки мира
  • Текст добавлен: 29 сентября 2016, 00:23

Текст книги "Самые знаменитые головоломки мира"


Автор книги: Сэм Лойд



сообщить о нарушении

Текущая страница: 10 (всего у книги 17 страниц)

174
Сколько весит кирпич?

Если целый кирпич уравновешивается 3/ 4кирпича и 3/ 4фунта, то сколько он весит?

175
Передвиньте 4 корабля, чтобы получилось 5 рядов по 4 корабля в каждом

На рисунке показано 10 боевых кораблей, расположенных в два ряда. При подходе неприятеля 4 корабля меняют свои позиции так, чтобы образовалось 5 рядов по 4 корабля в каждом. Как это происходит? Решая головоломку, можно воспользоваться 10 монетами.

176
Разрежьте две доски на части, чтобы составить один круг

Почти каждый сборник головоломок содержит некую задачу о столяре, который захотел сделать из круглой крышки стола две овальные крышки для табуреток с прорезями в центре, как показано на рисунке. Головоломку требуется выполнить с наименьшим числом частей.

Обычно в ответе содержится 8 частей. Круг разрезается, как показано на рис. 1, а затем составляются две крышки для табуреток, как показано на рис. 2.

Пользуясь методом, в котором участвует китайская монада (символ Инь-Ян), [17]17
  Она изображена на рисунке к задаче 178. – Прим. перев.


[Закрыть]
эту задачу можно решить, разрезав круглую крышку всего на 6 частей. Задача представлена здесь в обратной форме. Разрежьте каждую овальную крышку на 3 части так, чтобы из полученных 6 частей образовать круглую крышку стола без дыр.

177
Сколькими способами сумеете вы прочитать палиндром?

В прежние времена, когда модны были лингвистические головоломки, многие занимались придумыванием слов и предложений, которые можно читать в прямом и обратном направлениях. Они известны как палиндромы. Существует много таких слов в английском языке, например level (уровень), eve (канун), gig (кабриолет); но всегда стараются построить предложения-палиндромы вроде слов, обращенных Адамом к Еве: Madam I'm Adam (Мадам, я Адам) или Name no one man (He называй ни одного человека). Палиндромы имеют очень древнее происхождение, и в латинском и французском языках существуют классические и часто цитируемые примеры.

На рисунке вы видите палиндромическую головоломку, которую я в годы своей юности придумал для одной организации, проповедовавшей умеренность в употреблении спиртных напитков, и которая может служить испытанием терпения и смекалки наших любителей головоломок. Задача состоит в том, чтобы определить, сколькими различными способами можно прочитать предупреждение Red Rum amp; Murder (Красный ром и смерть), не впав при этом в delirium tremens. [18]18
  Белая горячка (лат.).


[Закрыть]
Начинайте с любого R, включая и те, что расположены внутри, и читайте фразу, переходя вверх и вниз, влево и вправо или по диагонали к соседней букве.

178
Как следует разделить монаду?

Монада, или Инь-Ян, – один из древнейших религиозных символов мира. Вряд ли можно более наглядно и изящно изобразить противоположные начала, действующие в природе: добро и зло, мужчину и женщину, интегрирование и дифференцирование и т. п.

Один автор, рассматривая великую китайскую монаду, пришел к выводу, что в этом знаке заключен некий скрытый математический смысл. Он цитирует древнюю китайскую рукопись, где говорится: «Безграничное порождает великий предел. Великий предел порождает два принципа. Два принципа порождают четыре четверти, и от четырех четвертей мы производим квадратуру восьми диаграмм Фей-хи». Эти слова, написанные более трех тысяч лет назад, навели меня на мысль о следующих трех головоломках:

1. Это простая головоломка для наиболее юных читателей. Разделите с помощью одной непрерывной линии черную (Инь) и белую (Ян) части монады так, чтобы круг разделился на четыре части одинаковых размеров и формы.

2. С помощью одного прямолинейного разреза разделите Инь и Ян на две равные по площади части.


3. Разрежьте каждую из двух подковообразных фигур, изображенных на рисунке (темную и светлую), на две части так, чтобы из получившихся четырех частей удалось сложить монаду.

179
Далеко ли до Пайктауна?

Одному туристу, попавшему на Дикий Запад, в гостинице сказали, что до Пайктауна он может добраться четырьмя различными способами:

1) доехать дилижансом; при этом будет одна 30-минутная остановка на придорожной станции;

2) дойти пешком; при этом если он отправится из гостиницы одновременно с дилижансом, то при въезде в Пайктаун дилижанс опередит его на одну милю;

3) дойти пешком до станции и там сесть в дилижанс; если он выйдет из гостиницы одновременно с дилижансом, то дилижанс приедет на станцию, когда турист пройдет 4 мили. Но из-за 30-минутной остановки он придет на станцию как раз к моменту отправки оттуда дилижанса, так что сумеет сесть на него и далее ехать в Пайктаун;

4) доехать на дилижансе до станции, а остальную часть пути пройти пешком. Этот способ самый быстрый, ибо позволяет туристу прийти в Пайктаун на 15 минут раньше дилижанса.

Далеко ли от гостиницы до Пайктауна?

180
Сколько стаканов уравновесят бутылку?
181
Чему равен доход?

Вот одна элементарная головоломка из области бухгалтерского учета, которая не вызовет затруднения у тех, кто разбирается в доходах и расходах. Она основана на реальном случае, когда ко мне обратились за советом. Поскольку мнения участников мероприятия разошлись, я думаю, это неплохая тема для головоломки.

Один городок в штате Нью-Хэмпшир, ограничивавший продажу алкогольных напитков, назначил своего агента, который в течение года был единственным лицом, имевшим право продавать спиртное. Власти выдали ему разменной монеты на сумму 12 долларов и напитков на сумму 59,5 доллара. Представив в конце года отчет, агент указал дополнительные закупки спиртного на сумму 283,5 доллара. Общая стоимость проданных напитков поднялась до 285,8 доллара, откуда в качестве зарплаты агент взял себе 5 % комиссионных.

На рисунке вы видите агента, который вместе с городской комиссией подводит итоги торговли за год. На каждом наименовании остатка указана продажная цена. Головоломка состоит в том, чтобы выяснить, какой доход получил город от продажи спиртного. Необходимо, разумеется, выяснить, на сколько процентов увеличил для этого агент общую стоимость напитков.

182
Трое нищих

Одна леди, занимавшаяся благотворительностью, повстречала бедняка, которому она отдала на 1 цент больше, чем половина суммы, лежавшей у нее в кошельке. Бедняк оказался членом тайного общества нищих и незаметно сделал на ее одежде меловую отметку «хороший клиент». Поэтому во время прогулки леди представился не один случай проявить благотворительность.

Второму просителю она отдала на 2 цента больше, чем половина оставшейся суммы. Третьему нищему она пожертвовала на 3 цента больше половины остатка. Теперь у нее остался 1 цент.

Сколько денег было у леди, когда она вышла на прогулку?

183
Головоломный лепет

Двое детей, совершенно запутавшихся в подсчете дней недели, остановились по дороге в школу, чтобы во всем разобраться.

– Когда «послезавтра» станет «вчера», – сказала Присилла, – то «сегодня» будет так же далеко от воскресенья, как и тот день, который был «сегодня», когда «позавчера» было «завтра».

В какой день недели произносился этот головоломный лепет?

184
Телеграфные столбы

Однажды я ехал на автомобиле вдоль линии телеграфных столбов длиной 3 5/ 8мили. С помощью секундомера я определил, что число столбов, которое я миновал за одну минуту, умноженное на 3 5/ 8, равнялось числу миль, которые я проезжал за один час. Допустим, что столбы располагались на равных расстояниях друг от друга и что я ехал с постоянной скоростью. Каково тогда расстояние между двумя соседними столбами?

185
Удивительная ловушка

Попросите ваших приятелей выписать 5 нечетных цифр, сумма которых составила бы 14. Любопытно понаблюдать, как много потратят они времени, решая эту на первый взгляд простую задачу. Однако следует быть внимательным и говорить «цифры», а не «числа».

186
Как сгруппировать деревья?

Я знавал одного пожилого эксцентричного садовника, который имел обыкновение размещать в своем саду саженцы фруктовых деревьев так, чтобы никто, кроме него самого, не сумел определить, где какое дерево. Объясняя эту странность, он говорил, что занят опытами с прививками и не хочет, чтобы посетители и даже его рабочие знали все его секреты.

Последний раз я видел этого человека, когда он только что высадил 60 молодых деревьев на участке, прилегающем к дому, как показано на рисунке. Эти молодые деревья он хотел использовать просто для прививки к ним некоторых видов фруктовых деревьев. Обычно он прививал один вид на 10 стволов таким образом, чтобы он образовал 5 прямых рядов по 4 ствола в каждом. Садовник спросил меня, возможно ли это сделать с четырьмя различными видами фруктовых деревьев – персиками, грушами, абрикосами и сливами, – и я нашел, что это неплохая головоломка.

Эту головоломку удобно решать, нарисовав шахматную доску 8 х 8 на большом листе бумаги. Удалите 4 клетки, где стоит дом садовника. Вместо четырех видов деревьев воспользуйтесь 40 игральными картами, по 10 карт каждой масти. Теперь посмотрите, сможете ли вы расположить 40 карт на 60 клетках шахматной доски так, чтобы каждая масть образовала 5 прямых рядов по 4 карты в каждом ряду. Разумеется, на каждой клетке может располагаться не более одной карты.

187
Распилите шахматную доску

Этот сноровистый молодой плотник получил в подарок ящик с инструментом и немедленно приступил к работе, дабы сделать шахматную доску в подарок чемпиону мира по шахматам доктору Ласкеру. Конечно, доктор Ласкер – крупный математик и мастер головоломок, равно как и превосходный шахматист, но сумеет ли он победить наших любителей головоломок, пытаясь определить наибольшее число различных частей, из которых плотник сделал свою доску?

Каждая часть должна состоять из одной или нескольких клеток и по форме или чередованию их цветов отличаться одна от другой. Так, одна часть может состоять из единственной черной или из единственной белой клетки. Только одна часть может состоять из двух клеток, поскольку все двуклеточные части одинаковы. Но уже трех-клеточных частей может быть 4: прямая полоска с белой клеткой в центре, прямая полоска с черной клеткой в центре, Г-образная часть с одной черной клеткой и Г-образная часть с одной белой клеткой. Когда вы разделите доску на максимальное число различных частей, вы решите головоломку.

188
Какой должна быть крышка котла?

Изображенный на рисунке медник только что закончил плоскодонный котел ровно на 25 галлонов, глубина которого 12 дюймов. [19]19
  1 галлон содержит 231 кубический дюйм.


[Закрыть]
Многие ли из наших читателей смогут назвать нам (с точностью до дюйма) диаметр крышки котла, считая, что его обод вдвое превышает диаметр дна?

189
Благотворительность

Одна леди, которая каждую неделю жертвовала некую сумму нуждающимся, намекнула получавшим это «пособие», что каждый из них имел бы на 2 доллара больше, будь их на 5 человек меньше. Каково же было общее разочарование, когда на встрече в конце недели обнаружилось, что кроме всех прежних явилось еще четверо новых просителей. В результате каждый человек получил на доллар меньше.

Считая, что сумма, которую еженедельно раздавала леди, одинакова, скажите, чему она была равна?

190
Расположите тома так, чтобы получилось 9 различных дробей

Когда я был мальчиком, мне подарили 9 огромных томов «Истории Англии» Хьюма, пообещав надарить еще кучу всяких прекрасных вещей, если я проштудирую эти книги. Должен признаться, что все, чего я не знаю об истории Англии, по объему раза в два превышает объем средней библиотеки, но я обнаружил, что с этими увесистыми томами связаны некоторые интересные головоломки.

Например, я установил, что если расположить тома на двух полках, как показано на рисунке, то получится дробь 6729/13458, в точности равная 1/2. Возможно ли с помощью всех девяти томов устроить и другие расположения, которые были бы эквивалентны дробям 1/3, 1/4, 1/5, 1/6, 1/7, 1/8 и 1/9

191
На что смотрит народ?

Юный Гарри был столь недоверчив, что не спешил платить деньги за вход в цирк, не разузнав о нем все, что можно. На рисунке вы видите, как он расспрашивает служителя, сколько в цирке лошадей, наездников и разных животных.

Служитель, слегка смущенный тем, насколько жалкой выглядит горстка посетителей внутри по сравнению с яркой рекламой снаружи, притворился, что не знает точного числа захватывающих аттракционов. Он объяснил, что в дополнение к лошадям и наездникам, у которых вместе 100 ног и 36 голов, имеется зверинец с дикими африканскими животными, так что общая сумма всех голов составляет 56, а всех ног 156.

Мы просим наших читателей назвать число лошадей и наездников в цирке, а также сказать, что за аттракцион расположен в клетке слева, которую вы видите на рисунке, где, как видно, находится самая интересная часть зверинца.

192
Сколько денег выручил фермер?

В Стране Головоломок ни одна деловая операция не совершается просто. Вот, например, фермер Джонс избавился от своих дынь следующим любопытным образом. Сначала он продал первому покупателю половину всех дынь да еще полдыни. Затем второму покупателю он продал треть остатка плюс еще треть дыни. Следующему покупателю он продал четверть остатка и четверть дыни. Потом он продал пятую часть остатка плюс пятую часть дыни. Все эти дыни он продавал по доллару за дюжину. Наконец, весь остаток он продал по цене 1 доллар за 13 дынь. Предположим, что вначале у фермера было менее 1000 дынь Не могли бы вы сказать, сколько денег он получил за все свои дыни?

Мальчик, которого вы видите на рисунке справа, складывает пирамиду из небольших круглых дынь. Он хочет сложить две треугольные пирамиды (то есть два правильных тетраэдра, у которых боковые грани и основания представляют собой правильные треугольники) таких размеров, чтобы, объединив затем все составляющие их дыни без остатка, сложить из них одну большую треугольную пирамиду. Каких размеров будут его пирамиды?

[Лойд не дает ответа на задачу о пирамидах. Из рисунка видно, что мальчик складывает пирамиду с квадратным основанием. Если Лойд имел в виду два тетраэдра, из которых можно сложить пирамиду с квадратным основанием, то ответ найти не сложно. Из любых двух тетраэдров, стороны которых выражаются последовательными числами, можно сложить одну пирамиду с квадратным основанием. (Например, из тетраэдра, содержащего 4 дыни, и тетраэдра, составленного из 10 дынь – их стороны равны соответственно 2 и 3, – можно сложить пирамиду, содержащую 14 дынь, с квадратным основанием из 9 дынь.)

Если же задача Лойда поставлена правильно, то простейшим ответом будет: две пирамиды по 10 дынь, из которых можно сложить одну пирамиду, содержащую 20 дынь. Однако что будет простейшим решением в случае, если Лойд имел в виду две малые пирамиды разных размеров? – М. Г.]

193
Система лорда Рослина

Два молодых человека, располагая одинаковыми суммами денег, отправились на скачки. Здесь они стали делать ставки, пользуясь системой лорда Рослина, то есть они ставили на слабейшую лошадь столько долларов, до какой суммы долларов против одного доллара поднималась ставка против этой лошади на ипподроме. [20]20
  Например, если ставка поднималась до 5 долларов против 1 за то, что лошадь не выиграла, то наши приятели ставили 5 долларов на то, что она выиграет, и в случае выигрыша получали 25 долларов. – Прим. перев.


[Закрыть]

Джим поставил на то, что Кохинор выиграет, а Джек поставил на то, что он займет не меньше второго места. Поскольку соответствующие ставки были различными, то приятели поставили разные суммы, хотя их суммарная ставка составляла половину их суммарного капитала. Оба они выиграли, но, произведя подсчеты, обнаружили, что у Джима денег оказалось вдвое больше, чем у Джека.

Теперь, памятуя о том, что ставки всегда делаются в целых долларах (никаких долей доллара не допускается), не смогли бы вы сказать, сколько выиграл каждый из молодых людей?

194
Разрежьте кусок ткани на три части, из которых можно сложить квадрат

Леди собирается разрезать кусок ткани необычной формы на 3 части, из которых можно было бы сложить правильный квадрат. Помогите ей.

Этот кусок мог иметь и любую из двух форм, которые вы видите на помещенном ниже рисунке, и все же задачу можно было бы по-прежнему решить, разрезав его на три части.


195
Сколько тыкв потеряют незадачливые фермеры?

Два старых «земляных крота», которые не имеют представления о том, что в одном акре земли содержится 43 560 квадратных футов, обсуждают одно дельце, которое они сейчас обстряпали с молодым Сайксом, только что закончившим колледж. Они обменяли свое поле с тыквами, план которого нарисовали на правой половине дверей сарая, на его поле с тыквами, план которого нарисовали на левой половине. Фермеры думают, что они ловко провели мальчишку Сайкса, раз их бывшее поле огорожено меньшим числом жердей, чем его.

Как вы можете заметить, их бывшее поле огорожено 140 жердями с одной стороны и 150 – с другой, что в сумме дает 580 жердей. Поле же, которым они только что завладели, имеет стороны в 110 и 190 жердей, а всего в его ограде – 600 жердей. Разумеется, молодой Сайке достаточно хорошо разбирается в элементарной геометрии, чтобы сообразить, что, чем ближе пропорции прямоугольника к квадратным, тем большую по отношению к своему периметру площадь он занимает. Поэтому в данном случае он получил поле несколько большее, чем отдал взамен.

Допустим, что на обоих полях на одном акре растет 840 тыкв. Можете ли вы точно сказать, сколько тыкв с одного акра потеряют на всей операции незадачливые фермеры?

196
Чему равен вес каждого из четырех колец?

Однажды мне попал в руки дневник некоего путешественника, где описан ряд методов, практиковавшихся некогда при сделках на Филиппинах. Торговец, изображенный на рисунке, пользуется примитивными рычажными весами, а вместо гирь употребляет четыре металлических кольца. Кольца имеют разную форму и размеры, и торговец обычно носит их на руке наподобие браслетов. С помощью этих колец можно взвесить все что угодно в пределах от четверти фунта до десяти фунтов. Манипуляции с гирями на рычажных весах часто встречаются в головоломках, но они не столь хитроумны, как в данном случае, где торговец способен с точностью до четверти фунта определить любой вес в указанных пределах.

Чему равен вес каждого из четырех колец?

197
Двое часов

Пустив в одно и то же время двое часов, я обнаружил, что одни из них отстают на 2 минуты в час, а другие спешат на 1 минуту в час. Когда я вновь посмотрел на часы, то увидел, что спешившие часы ушли по сравнению с отстававшими на 1 час вперед. Сколько времени шли часы?

198
Сколько яиц можно поместить в коробку?

Курица, которую вы видите на рисунке, пытается выяснить, сколько яиц она может снести в коробку так, чтобы в каждом из рядов, включая диагональные, оказалось не более двух яиц. Два яйца уже находятся в коробке, так что на эту большую диагональ яйца больше помещать нельзя.

199
Карточный проигрыш

Во время путешествия на пароходе я был посвящен в тайны одной карточной игры. В первой партии я проиграл барону фон Д. и графу де С, каждый из которых выиграл достаточно, чтобы удвоить свои фишки. [21]21
  В ряде азартных игр фишки используются как эквивалент соответствующих денежных сумм. – Прим. перев.


[Закрыть]

Во второй партии я оказался на равных с бароном, что позволило нам удвоить наши капиталы. Затем я и граф выиграли третью партию и удвоили свои фишки. Таинственная особенность сложившейся ситуации состояла в том, что каждый из игроков дважды выиграл и один раз проиграл, в результате чего у всех оказалось одинаковое число фишек.

Я обнаружил, что проиграл 100 долларов. С какой суммой я начал игру?

200
Сколько лет мальчику?

– Сколько лет этому мальчику? – спросил кондуктор.

Польщенный тем интересом, который был проявлен к его семье, житель пригорода ответил:

– Мой сын в пять раз старше моей дочери, а моя жена в пять раз старше сына, а я вдвое старше моей жены, тогда как бабушка, которая столь же стара, как и мы все вместе взятые, сегодня отмечает свой 81 день рождения.

Сколько лет было мальчику?

201
Пчелы

Вот одна задача из древнего индийского трактата: – Если 1/5 пчелиного роя полетела на цветы ладамбы, 1/3 – на цветы слэндбары, утроенная разность этих чисел полетела на дерево, а одна пчела продолжала летать между ароматными кетаки и малати, то сколько всего было пчел?

202
Обычные вклады

– Джентльмены, – сказал на собрании директоров Чаунси, – нынешний доход от железной дороги позволил бы нам выплатить 6 % годовых от общей суммы вкладов, но поскольку 4 000 000 долларов составляют льготные вклады, по которым мы выплачиваем 7 1/2 % годовых, то по общим вкладам мы в состоянии оплатить только 5 % годовые.

Чему равнялась сумма обычных вкладов?

203
Грязное белье

Чарли и Фредди отдали свои засаленные воротнички и манжеты, всего 20 штук, в китайскую прачечную. Когда несколько дней спустя Фредди развернул полученный пакет, то обнаружил там половину всех манжет и треть воротничков, за стирку которых он заплатил 27 центов. Стирка четырех манжет стоила столько же, сколько и стирка пяти воротничков. Сколько заплатил за оставшуюся часть белья Чарли?


    Ваша оценка произведения:

Популярные книги за неделю