Текст книги "Самые знаменитые головоломки мира"
Автор книги: Сэм Лойд
сообщить о нарушении
Текущая страница: 12 (всего у книги 17 страниц)
233
Сколько частей можно получить с помощью шести разрезов?
Тетушка Мэри, экономка в меблированных комнатах, попросила повара показать постояльцам, как следует разрезать пирог на максимальное число частей шестью прямыми разрезами ножа. Чему, по-вашему, равно это число?
234
В галантерейной лавке
– Дайте мне три мотка шелка и четыре – шерсти, – сказала маленькая Сузи, положив на прилавок 31 цент.
Когда продавец пошел за товаром, Сузи воскликнула:
– Я передумала! Я возьму четыре мотка шелка и три – шерсти.
– Но тогда у вас немного не хватает, – заметил продавец. – Вам следует добавить еще один цент.
– О нет, – возразила Сузи и, забрав мотки, выскользнула из лавки. – Это у вас немного «не хватает».
Сколько стоил моток шелка и сколько моток шерсти?
235
Что не так на этой картинке?
Рождественский индюк гоняет доброго старого Санта Клауса по полю, как это видно по следам на снегу. Вы можете заметить, что они начинаются в правом нижнем углу рисунка и описывают несколько лихих петель, прежде чем доходят до места, изображенного на рисунке. Мы просим наших читателей хорошенько разобраться в ситуации и сказать, не находят ли они на этом рисунке нечто весьма странное с математической точки зрения. Если да, то не могли бы вы дать достаточно приемлемое объяснение этой странности, имея в виду, что художник не совершил ошибки?
236
Как Вильгельм Телль выбил 100 очков?
На рисунке показан Вильгельм Телль, который стоит в 35 ярдах от столба и собирается показать свое умение, целясь в те яблоки, что держит Томми Загадочник. Не могли бы вы сказать, в какие яблоки он должен попасть, чтобы выбить 100 очков? В одно и то же яблоко можно попадать неоднократно. А второй вопрос состоит в том, чтобы определить высоту столба.
337
Тандем
Три человека хотят преодолеть 40 миль на велосипеде-тандеме, на котором одновременно помещаются два человека. Третий путешественник в это время идет пешком. Один человек, назовем его А,проходит 1 милю за 10 мин, второй, назовем его В,проходит 1 милю за 15 мин, а третий, С, – за 20 мин. Велосипед движется со скоростью 40 миль в час независимо от того, кто на нем сидит. За какое наикратчайшее время все трое могут закончить путешествие при условии, что они воспользуются наиболее рациональной комбинацией велосипедной езды и пешего хода?
238
Укажите размеры треугольника
На рисунке вы видите, как шахтеры спорят по поводу своих участков. Каждый участок имеет форму прямоугольного треугольника. Размеры этих треугольников не совпадают, но площади у них у всех одинаковы и составляют точно 3360 квадратных футов.
Катеты одного треугольника равны 140 и 48, а его гипотенуза – 148. У второго треугольника катеты равны 80 и 84, а гипотенуза – 116. Можете ли вы указать длины сторон третьего треугольника при условии, что они выражаются целыми числами, а площадь этого треугольника равна площади первых двух треугольников?
239
Чашки и блюдца
На воскресной распродаже, где все стоит на 2 цента дешевле, миссис Барджейн, завсегдатай такого рода торгов, купила тарелки, заплатив за них 1,3 доллара. В понедельник утром она вернула эти тарелки по обычной цене и обменяла их на чашки с блюдцами. Одна тарелка стоила столько же, сколько и чашка с блюдцем, так что предприимчивая миссис вернулась домой, имея на 16 предметов больше, чем ранее. Поскольку блюдца стоили только 3 цента, она взяла на 10 блюдец больше, чем чашек. Сколько чашек могла купить миссис Барджейн на воскресной распродаже за свои 1,3 доллара?
240
Что за молоко в бидоне?
– В одном бидоне у меня налита чистая ключевая вода, – объяснял молочник двум школьникам. – А в другом бидоне у меня находится молоко, оно настолько жирное, что требует разбавки водой до соответствующей кондиции. Я это и делаю. Сначала я наливаю из бидона Ав бидон Встолько жидкости, чтобы удвоить содержимое В,а затем я наливаю из Вв Астолько жидкости, чтобы удвоить содержимое А.Наконец, я снова наливаю жидкость из Ав В,пока содержимое Вне удвоится. Теперь в каждом бидоне содержится одинаковое количество Жидкости, а в Вмолока оказывается на один галлон меньше, чем воды. С какого количества воды и молока я начал и сколько воды и молока оказалось в итоге в каждом бидоне?
241
Ночной экспресс
Инженер ночного экспресса рассказал:
– Через час после отправления у нас полетел цилиндр, и нам пришлось двигаться со скоростью, составляющей 3/ 5прежней. В результате на следующую станцию мы прибыли на два часа позже. А вот если бы поломка произошла на 50 миль дальше, то поезд прибыл бы на станцию на 40 минут раньше.
Чему равно расстояние между станциями?
242
Разрежьте крест на части, которые образовали бы квадрат
Существует легенда о том, как однажды император Август, проезжая на колеснице, заметил однорукого воина, который просил милостыню. Император остановился и спросил ветерана, почему он не получил крест славы и пенсию, которая полагается искалеченным в битвах легионерам.
– Великий император, – ответил Тит, – я всего лишь простой воин, при раздаче пенсий и наград меня так просто не заметить.
Услышав это, Август снял с себя крест святого Андрея и повесил его на грудь Тита.
– Если бы ты потерял обе руки, – сказал он, – то стал бы основателем нового ордена.
Услышав это, воин тут же упал на свой обнаженный меч и отсек себе вторую руку!
Мы не станем здесь обсуждать странности подобного подвига, а обратим внимание на крест, который Тит носит на своей груди и который следует преобразовать в новый орден. Задача состоит в том, чтобы разрезать этот крест на минимальное число частей, из которых можно было бы сложить квадрат.
243
Дележ яблок
Восемь детей разделили между собой 32 яблока следующим образом. Энн получила 1 яблоко, Мэй – 2, Джейн – 3 и Кэт – 4. Нед Смит взял столько же яблок, сколько и его сестры, Тому Брауну досталось вдвое больше яблок, чем его сестре, Биллу Джонсу – втрое больше, чем его сестре, и, наконец, Джек Робинсон получил яблок вчетверо больше, чем его сестра. Назовите фамилии четырех девочек.
244
Игра в шарики
Гарри и Джим, два завзятых игрока в шарики, в начале игры имели их в одинаковом количестве. Гарри выиграл 20 шариков в первом туре, но потерял 2/ 3всех своих шариков в матч-реванше. При этом у Джима осталось вчетверо больше шариков, чем у Гарри.
Сколько шариков было у каждого мальчика перед началом игры?
245
Чайная смесь
Лавочник из Гонконга продавал пользовавшуюся большим спросом смесь двух сортов чая. Один сорт чая обходился ему в 5 битов за фунт, а второй – в 3 бита. 40 фунтов смеси он продал по 6 битов за фунт, получив при этом прибыль в 33 1/ 3%.
Сколько фунтов 5-битового чая находилось в смеси?
246
Сколько лет боссу?
– Шестую часть своей жизни я провел мальчиком в Старом Свете, – заметил босс. – Двенадцатую – занимался бизнесом в Нью-Йорке, а седьмую да еще пять лет я был занят политикой и супружескими делами, после чего как раз и родился Джимми. Четыре года назад его выбрали в муниципалитет, возраст его тогда составлял ровно половину моего настоящего возраста.
Сколько лет боссу?
247
Разгадайте головоломки Колумба
Однажды Христофор Колумб задал королю Страны Головоломок две задачи. В первой требовалось расположить 9 яиц на столе таким образом, чтобы получилось максимальное число рядов по 3 яйца в каждом прямолинейном ряду. Королю удалось построить 8 таких рядов, но курица уверяет, что любой смышленый цыпленок справился бы с задачей лучше.
Старый смешной король пытается теперь решить вторую головоломку, где нужно провести непрерывную ломаную линию с минимальным числом отрезков, проходящую через центры всех яиц. Он выполнил задание, проведя 6 звеньев, но по выражению лица Томми Загадочника видно, что это далеко не лучший ответ.
Обе задачи ничуть не хуже, если не лучше, головоломки с поставленным вертикально яйцом, которая наряду с открытием Америки увековечила имя великого мореплавателя.
248
Сколько земли можно огородить?
Парнишка спросил однажды у мистера Линкольна, сколько земли можно огородить дюжиной жердей.
– Все зависит, – ответил мистер Линкольн, – от длины жерди.
Допустим, что каждая жердь имеет в длину 16 футов. Какова максимальная площадь участка, который можно огородить с помощью 12 таких жердей? Так, если расположить жерди в форме квадрата, то они огородят участок в 2304 квадратных фута. Однако можно поступить гораздо лучше.
249
Убывающая скорость
Месье Де Фуа Грас, знаменитый французский шофер, упомянул как-то, что во время одной поездки его автомобиль прошел 135 миль за первые два часа и 104 мили в течение следующих двух часов. Предположим, что скорость в течение этих четырех часов с каждым часом уменьшалась на одно и то же число миль. Скажите тогда, какое расстояние прошел автомобиль за каждый из этих четырех часов?
250
Насколько близко сумеете вы подобраться к 82?
Вот знаменитая задача, которую я опубликовал в 1882 году, предложив приз в 1000 долларов за лучшее решение. Задача состоит в том, чтобы расположить 7 цифр и 8 точек таким образом, чтобы сумма полученных цифр оказалась как можно ближе к 82. Точки можно использовать в качестве символа десятичной точки и в качестве символа периода десятичной дроби. Например, дробь 1/ 3можно записать в виде 3. Точка над цифрой означает, что 3 повторяется бесконечное число раз. Если период десятичной дроби содержит несколько цифр, то точка используется, чтобы отметить его начало и конец. Так, дробь 1/ 7можно записать в виде •142857.
Из нескольких миллионов ответов только два оказались правильными.
251
Определите время
Дженни и Мод разъехались на милю друг от друга по глади замерзшего озера, а затем решили поменяться местами. Благодаря сильному попутному ветру Дженни добралась до места, где прежде стояла подруга, в 2 1/ 2раза быстрее, чем Мод, опередив последнюю на 6 минут. Сколько времени потратила каждая девушка на преодоление мили?
252
Полярная невеста
Во время недавней экспедиции к Северному полюсу один из членов группы попытался по пути умыкнуть на одном из островов невесту. Все местные жители спят там в мешках из медвежьих шкур, и существует обычай, согласно которому влюбленный парень должен пробраться ночью и утащить мешок с невестой.
В данном случае влюбленному пришлось преодолеть изрядное расстояние, но он шел туда со скоростью 5 миль в час, а возвращался со своей ношей со скоростью 3 мили в час, затратив на все путешествие ровно 7 часов. Когда наш влюбленный открыл мешок, чтобы похвастаться перед товарищами своей ценной добычей, то оказалось, что похитил… дедушку своей избранницы.
Эта история, без сомнения, сильно преувеличена, но не могли бы наши читатели сказать, какое расстояние преодолел незадачливый исследователь Арктики во время этого памятного путешествия?
253
Найдите скорость козлов
«Однажды мне довелось стать свидетелем смертельной схватки двух козлов, – пишет профессор Блюмгартен, – которая оказалась связанной с одной любопытной математической задачей. У моего соседа был козел, который в течение нескольких сезонов слыл общепризнанным чемпионом окрестных скал; потом у кого-то еще в округе появился козел, который был на 3 фунта тяжелее соседского. Соседский козел весил 54 фунта, а новый – 57.
Какое-то время козлы гармонично сосуществовали, Но вот однажды более легкий козел, встав на вершине холма, издал угрожающее блеяние, вызывая соперника на бой. Соперник бросился вверх по холму, а задира ринулся ему навстречу. Как это ни печально, при столкновении оба козла погибли.
Джордж Аберкромби, который написал внушительную работу о козлиных боях, говорит: «В результате повторных экспериментов я выяснил, что сила удара, соответствующая количеству движения, которое развивают 30 фунтов, падающих с высоты в 20 футов, как раз достаточна, чтобы проломить череп козла и тем самым привести к летальному исходу».
Допустим, что это так и есть. Тогда чему должна равняться минимальная относительная скорость двух наших козлов, достаточная для того, чтобы они проломили черепа друг другу?»
254
Как поскорее спустить семью?
Лучшее средство для спасения при пожаре – перекинутая через блок веревка с большими корзинами по концам. Когда одна корзина опускается, другая поднимается. Поместив какой-то предмет в одну из корзин в качестве противовеса, более тяжелый предмет можно затем спустить вниз в другой корзине. Автор этого патентованного изобретения считает, что такое приспособление необходимо установить с внешней стороны каждой спальни во всем мире. В одном из наших отелей попробовали испытать его, однако нашлись постояльцы, которые не преминули воспользоваться им для того, чтобы покидать отель ночью вместе с имуществом, не заплатив по счету. Естественно, после этого приспособление перестало пользоваться популярностью у владельцев отелей.
На рисунке показано это приспособление, приделанное у окна фешенебельного летнего отеля. Если одна из корзин пуста, то в другой можно безопасно спустить предмет весом не более 30 фунтов. Если же обе корзины нагружены, то безопасная разница в весе между ними также равна 30 фунтам.
Когда однажды ночью в отеле вспыхнул пожар, все постояльцы, за исключением ночного сторожа и его семьи, благополучно спаслись. Последних не удалось разбудить до тех пор, пока все пути к спасению, кроме патентованного приспособления, не оказались отрезанными. Сторож весил 90, его жена – 210, собака – 60 и младенец – 30 фунтов.
Каждая корзина достаточно велика, чтобы вместить всех четверых, но никаких дополнительных грузов использовать нельзя – в спуске участвуют только сторож, жена, собака и младенец. Предполагается, что ни собака, ни младенец не могут влезть в корзину или выбраться из нее без посторонней помощи. Каким образом все четверо смогут поскорее спуститься вниз?
255
Орел Эзопа
В одной из басен Эзопа рассказывается о честолюбивом орле, который решил долететь до солнца. Каждое утро, когда солнце всходило на востоке, орел летел по направлению к нему до полудня, затем, когда солнце начинало клониться к западу, орел, продолжая свою бессмысленную погоню, тоже поворачивал на запад. В тот момент, когда солнце исчезало за горизонтом, орел оказывался как раз в том месте, откуда утром начинал свой полет.
Эта поучительная история обнаруживает некоторые нелады Эзопа с математикой. В первой половине дня орел и солнце движутся навстречу друг другу. Послеполуденная же часть пути окажется длиннее, и орел с каждым днем будет перемещаться все дальше к западу.
Допустим, что орел стартует с купола Капитолия в Вашингтоне, округ Колумбия, где Земля имеет в окружности 19500 миль. Орел летит на некоторой высоте над землей, что не влияет существенно на это расстояние, и каждый день он кончает свой полет на 500 миль западнее точки, из которой он отправился утром.
Сколько суток пройдет в Капитолии с момента, когда орел улетел, до момента, когда он, облетев земной шар в западном направлении по кругу, вновь сядет на прежнее место?
256
Сколько треугольников изображено на печати?
Вы видите на рисунке, как король Страны Головоломок и принцесса Загадка исследуют тайны знаменитой печати царя Соломона, изображенной на его гробнице. Король пытается подсчитать, сколько на этом рисунке можно обнаружить различных равносторонних треугольников. А как полагаете вы?
257
Заяц и черепаха
Юный заяц-спортсмен и черепаха бегут в противоположных направлениях по круговой дорожке, диаметр которой 100 ярдов. Они начали свой забег в одном и том же месте, но заяц не бежал до тех пор, пока черепаха не прошла 1/ 8часть всей дистанции (то есть окружности данного круга). Заяц придерживается столь невысокого мнения о спортивных качествах своей соперницы, что он лениво бежит, пощипывая травку, до тех пор, пока не встречается с черепахой. К этому времени он проходит 1/ 6всей дистанции. Во сколько раз быстрее, чем до сих пор, придется теперь бежать зайцу, чтобы он выиграл этот забег?
258
Решите задачи с флагом
Эта хорошенькая швейцарка очень искусна в решении геометрических головоломок на разрезание. Она сумела найти способ, с помощью которого кусок красных обоев, что находится в ее правой руке, можно разрезать на две части, чтобы сложить из них швейцарский флаг. Вы видите его в левой руке девушки, белый крест в центре флага образует дыра. Разрез должен идти вдоль прямых, указанных на обоях.
Кроме того, швейцарка просит вас разрезать флаг, который она держит в левой руке, на две части, из которых можно было бы сложить прямоугольник размером 5x6.
259
Сколько потребуется провода?
Однажды я повстречал электрика, который сделал что-то вроде распределительного щита и хотел определить наиболее экономный способ протянуть хороший дорогой провод через все его контакты. Щит содержал несколько сот контактов, но я хочу познакомить читателей с самой идеей их соединения, а потому ограничусь участком 8x8, содержащим 64 контакта, который и показан на рисунке.
Задача состоит в том, чтобы определить кратчайшую длину провода, который должен из точки Впротянуться в центр маленького квадратика, обозначенного буквой А,через центры всех 64 маленьких квадратиков. Сторона каждого квадратика равна 1 дюйму, а расстояние между центрами двух соседних квадратиков равно 3 дюймам. Каждый раз при изменении направления провод необходимо обернуть вокруг угла квадратика; на эту операцию уходит 2 дюйма провода. Никакие соединения по диагонали не допускаются.
Предположим, что для соединения точки Вс центром ближайшего квадратика расходуется 2 дюйма провода. Можете ли вы определить наикратчайшую длину провода, необходимого для того, чтобы соединить В с A?
260
Какое расстояние проезжает курьер?
В старой задаче, которую можно найти во многих сборниках головоломок, речь идет об армейской колонне длиной в 50 миль. Пока колонна движется вперед с постоянной скоростью, курьер скачет из арьергарда в авангард, чтобы передать пакет, а затем возвращается обратно. Назад он прибывает как раз в тот момент, когда колонна прошла 50 миль. Какое расстояние проделал курьер?
Если бы колонна стояла на месте, то, очевидно, он бы проделал 50 миль туда и 50 миль, обратно. Но поскольку она движется вперед, всадник должен проделать более 50 миль, пока доберется до головы колонны, а возвращаясь назад, он проедет меньше 50 миль, ибо колонна движется ему навстречу. Предполагается, конечно, что скорость курьера постоянна.
Более трудная разновидность этой головоломки состоит в следующем. Армия, построившись вкаре 50 х 50 миль, проходит 50 миль вперед. Курьер, выехав из середины заднего ряда, пока армия движется вперед, объезжает вокруг всего каре и возвращается в исходную точку. Какое расстояние проезжает курьер?
261
Образуйте 6 фигур из пяти частей
Беппо, королевский шут, объясняет Птолемею, как разрезать фигуру, напоминающую трапецию, на 5 частей, которые можно использовать в шести восхитительных головоломках. Нарисуйте такую фигуру на куске картона, разрежьте ее на 5 частей, а затем попытайтесь из них сложить:
1) квадрат,
2) греческий крест;
3) ромб;
4) прямоугольник;
5) прямоугольный треугольник;
6) исходную трапециевидную фигуру. Первые 5 фигур показаны на рисунке справа. При складывании каждой из шести фигур должны быть использованы все 5 частей.
262
Какова вместимость каждой банки?
Миссис Хуббард придумала оригинальную систему хранения банок с ежевичным джемом. Она расположила их в своем буфете таким образом, что на каждой полке находится по 20 кварт джема. Банки же в ее хозяйстве трех размеров. Можете ли вы сказать, сколько кварт содержится в банке каждого размера?
263
Как кратчайшим путем проложить провод?
Электрика пригласили провести звонок в зале для собраний. Звонок должен быть в середине стены за президиумом, а кнопка его – у входной двери, дабы удобнее было напоминать разболтавшимся ораторам, что пора заканчивать выступление. Длина провода, необходимого для такой проводки, породила жаркую дискуссию, к которой привлекли и меня.
Зал, как показано на рисунке, имел в длину 30, а в ширину и высоту – 12 футов. Провод должен идти от звонка, который расположен в 3 футах от потолка в середине дальней стены, к кнопке, расположенной в 3 футах от пола в середине ближней стены. Провод может проходить по стенам, полу и потолку. Задача состоит в том, чтобы определить наикратчайший путь, по которому можно проложить провод. Толщиной стен и кнопки следует пренебречь.
264
Щенки и крысы
Один мелкий торговец из Кантона купил некоторое количество толстых щенков и вдвое меньше пар крыс. Он заплатил 2 бита за каждого щенка и такую же сумму за каждую пару крыс. Затем он продал этих животных на 10 % дороже, чем купил.
Когда торговец продал всех животных, кроме семи, он обнаружил, что выручил ровно такую же сумму, какую потратил на приобретение всех животных. Следовательно, его доход равен цене семи оставшихся животных.
Какие это семь животных?