355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Майкл Файер » Абсолютный минимум. Как квантовая теория объясняет наш мир » Текст книги (страница 8)
Абсолютный минимум. Как квантовая теория объясняет наш мир
  • Текст добавлен: 12 октября 2016, 04:34

Текст книги "Абсолютный минимум. Как квантовая теория объясняет наш мир"


Автор книги: Майкл Файер


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 29 страниц)

При дифракции электроны ведут себя как волны

Как показано на рис. 7.4, электронные волновые пакеты тоже демонстрируют волновые свойства. В изображённом эксперименте пучок электронов, сгенерированный электронной пушкой, подобной описанной выше, направляется не на телевизионный экран, а на поверхность кристалла. Электроны недостаточно энергичны, чтобы проникнуть в кристалл. На поверхности кристалла атомы выстроены в ряды, называемые кристаллической решёткой. Эти ряды атомов разделены интервалами в несколько ангстремов. (Один ангстрем – это единица длины, равная 10−10 м, или одной десятимиллиардной метра. Ангстремы часто используются в атомных масштабах, для их обозначения служит символ Å.) Указанный интервал определяется размерами атомов. Ряды атомов работают как штрихи дифракционной решётки, но они расположены гораздо плотнее. Длина волны электронов относится к тому же масштабу расстояний, что и шаг решётки (интервал между рядами). Длина волны определяется формулой де Бройля: λ=h/p, где p=mV. Масса электрона составляет 9,1∙10−31 кг. При скорости 7,3∙105 м/сек (730 км/сек) длина волны составит: λ=10 Å. Такая скорость легко достигается в простейшей электронной пушке.

Электронные волны амплитуды вероятности испытывают дифракцию на поверхности кристалла подобно фотонам на обсуждавшейся выше дифракционной решётке. Однако дифракционная решётка обладает единственным шагом d, поскольку все канавки идут параллельно друг другу в одном направлении. Решётка же на поверхности кристалла двумерная. Как видно на рис. 7.5, у неё имеется много направлений, вдоль которых располагаются параллельные ряды атомов. В качестве примеров на рисунке сплошными линиями обозначены некоторые ряды атомов, идущие в разных направлениях. Штриховыми линиями, параллельными сплошным, показано, что для каждого из таких направлений существует параллельный ряд атомов. Ряды атомов, идущие в разных направлениях, разделены разными расстояниями (интервалами между дифракционными канавками). Различие этих интервалов наглядно показано на рис. 7.5: обратите внимание на расстояния между парами параллельных сплошной и штриховой линий. Каждая пара разделена своим расстоянием, соответствующим интервалу между канавками.

Рис. 7.4. Схема дифракции низкоэнергетических электронов на поверхности кристалла. Входящий пучок электронов низкой энергии не проникает в кристалл, отражаясь от поверхности. Ряды атомов действуют подобно канавкам дифракционной решётки на рис. 7.1. Они вызывают дифракцию приходящих электронных волн

Рис. 7.5. Решётка с рис. 7.4, на которой показаны примеры рядов атомов, идущих в различных направлениях. Для каждой прямой, проходящей через центры атомов, образующих ряд, можно провести другие параллельные ей прямые, которые также проходят через центры атомов. Интервалы между этими параллельными рядами различаются. Каждый набор рядов вызывает дифракцию в своём направлении

Поскольку существует множество межатомных интервалов для «канавок», идущих в разных направлениях, электронные волны будут испытывать дифракцию по многим различным направлениям. На рис. 7.6 приведён пример дифракции низкоэнергетических электронов на поверхности кристалла. Чёрный круг в центре – это кусок металла, называемый поглотителем пучка. Его поддерживает другая металлическая деталь, которая на изображении выглядит как тёмная вертикальная полоска под ним. Поглотитель не позволяет части электронного пучка, которая отразилась от кристалла, попасть в детектор. Яркие и тусклые белые пятна порождаются испытавшими дифракцию электронами, которые попали в детектор. По положению пятен можно определить расположение атомов и интервалы между ними. Анализ дифракции электронов на кристаллах – это важный метод научного исследования их поверхности. Рисунок электронной дифракции убедительно демонстрирует, что электроны, как и фотоны, ведут себя подобно волнам.

Рис. 7.6. Экспериментальные данные, демонстрирующие дифракцию электронов на поверхности кристалла. Светлые пятна соответствуют различным направлениям, в которых распространяются испытавшие дифракцию электроны. Этих пятен много, поскольку дифракция происходит на многих различных параллельных рядах атомов (см. рис. 7.5)

Электроны и фотоны – это частицы и волны, а бейсбольные мячи – это лишь частицы

Электроны в ЭЛТ ведут себя как частицы, подобно фотонам в фотоэлектрическом эффекте. Низкоэнергетические электроны ведут себя как волны при дифракции на поверхности кристалла, что аналогично поведению фотонов, когда они испытывают дифракцию на дифракционной решётке. На самом деле фотоны, электроны и все остальные частицы являются волновыми пакетами, которые в большей или меньшей степени локализованы. Волновые пакеты могут демонстрировать свои волновые или корпускулярные свойства в зависимости от обстоятельств.

Если фотоны и электроны могут демонстрировать как волновые, так и корпускулярные свойства, то почему такого не бывает с бейсбольными мячами? Чтобы понять, почему мячи ведут себя как частицы с позиций классической механики, необходимо рассмотреть, как соотносятся размеры частиц и длины связанных с ними волн.

Рассмотрим для начала электрон в атоме водорода. Мы будем обсуждать квантовое описание атома водорода и других атомов в главах 10 и 11, а сейчас используем лишь простые количественные оценки волновых параметров атома водорода. Согласно формуле де Бройля, длина волны определяется формулой λ=h/p. Импульс равен p=mV, то есть произведению массы и скорости. Масса электрона составляет me=9,1∙10−31 кг, а характерная скорость электрона в атоме – V=5,0∙106 м/сек. Тогда длина волны де Бройля составляет

λ=h/p = (6,6∙10−34 Джсек)/[(9,1∙10−31 кг)∙(5,0∙106 м/сек)] = 1,5∙10−10 м = 1,5 Å.

Заметим, что значение 1,5 Å примерно соответствует размеру атома. Таким образом, длина волны электрона в атоме и размеры атома примерно одинаковы. Волновые свойства электронов становятся очень важны, когда электроны оказываются в очень маленьких системах, таких как атомы.

А что можно сказать о бейсбольном мяче? По правилам Главной лиги бейсбола мяч должен весить от 142 до 149 г. Примем его массу равной 145 г = 0,145 кг. При очень сильной подаче развивается скорость 145 км/ч = 40 м/сек. Импульс быстрого мяча составляет p= 0,145 кг ∙ 40 м/сек = 5,8 кгм/сек. Таким образом, длина волны де Бройля для такого мяча будет равна

λ=h/p = (6,6∙10−34 Джсек)/[(0,145 кг)∙(40 м/сек)] = 1,1∙10−34 м = 1,1∙10−24 Å.

Это невероятно малая величина. Размер одного атома составляет около 1 Å, размер ядра атома – примерно 10−5 Å. Следовательно, длина волны бейсбольного мяча составляет 0,0000000000000000001 размера атомного ядра. Такая длина волны чрезвычайно мала – настолько, что она никогда не проявится ни при каких измерениях. Ни у какой дифракционной решётки не может быть столь малого шага, чтобы продемонстрировать дифракцию волн длиной в одну десятимиллионную от триллионной доли размера атомного ядра. Поскольку эта длина волны та́к мала́, нам не приходится беспокоиться о том, что мяч может испытать дифракцию на бейсбольной бите. Он всегда ведёт себя как классическая частица.

Объекты, которые велики в абсолютном смысле, обладают тем свойством, что ассоциированная с ними длина волны совершенно ничтожна по сравнению с их размерами. Поэтому крупные частицы демонстрируют только свою корпускулярную природу, а их волновая природа никогда не проявляется. Напротив, для частиц, которые малы в абсолютном смысле, длина волны де Бройля сопоставима с их размерами. Такие абсолютно малые частицы ведут себя как волны или как частицы в зависимости от ситуации. Они представляют собой волновые пакеты. В контексте нашего обсуждения они являются и волнами, и частицами.

8. Квантовый ракетбол и цвет фруктов

В предыдущих главах были введены и объяснены фундаментальные понятия квантовой теории. Приведённые примеры, однако, касались только поведения свободных частиц. Было показано, что электроны могут вести себя как частицы, когда обсуждается работа ЭЛТ, но они ведут себя как волны, когда речь идёт о дифракции на поверхности кристаллов.

Свободная частица может иметь любую энергию. Эта энергия, которая является кинетической, определяется массой и скоростью частицы. Небольшое приращение скорости даёт небольшой прирост энергии. Значительное увеличение скорости приведёт к существенному увеличению энергии. Шаги изменения энергии могут быть любой величины; она меняется непрерывным образом.

О связанных электронах мы говорили только вскользь, в связи с фотоэлектрическим эффектом. При этом подчёркивалось, что если энергии приходящего фотона недостаточно для преодоления связи электронов с металлом, то ни одного электрона из него не вылетит. Электроны, связанные с атомными ядрами, отвечают за свойства атомов и молекул. Выше упоминалось о том, что Планк объяснил излучение абсолютно чёрного тела, которое будет подробно обсуждаться далее, постулировав, что энергия связанных электронов может меняться только дискретными шагами. Чтобы понять свойства атомной и молекулярной материи, окружающей нас в повседневной жизни, необходимо уметь в квантовой теории работать со связанными электронами.

Ключевое свойство электронов, связанных с атомами и молекулами, состоит в том, что их энергетические состояния дискретны. Мы говорим, что энергия электрона может квантоваться, то есть электрон, связанный с атомом или молекулой, может иметь лишь некоторые определённые значения энергии. Энергия меняется ступенчато, и эти ступени имеют определённые дискретные размеры. Энергетические состояния подобны лестнице. Вы можете стоять на одной ступени или подняться на следующую, более высокую ступень. Однако невозможно стоять на полпути между двумя ступенями. Эти дискретные, или квантованные, значения энергии часто называют энергетическими уровнями. В отличие от обычных лестниц интервалы между энергетическими уровнями, как правило, не одинаковы.

Важная сфера современных квантовых исследований – расчёт электронных состояний молекул. Эта область называется квантовой химией. Такие вычисления позволяют получить квантованные уровни энергии для электронов в молекулах (энергетические уровни), а также рассчитать строение молекул. Расчёт строения молекулы даёт расстояния между атомами и положения всех атомов в молекуле с точностью, ограниченной лишь принципом неопределённости. Таким образом, квантовомеханические расчёты позволяют определять размеры и форму молекул. Подобные вычисления важны для понимания фундаментальных принципов связывания атомов в молекулы и для конструирования новых молекул. По мере развития квантовой теории и появления всё более мощных и сложных компьютеров, способных решать трудоёмкие математические задачи, всё более и более крупные молекулы удаётся исследовать методами квантовой химии. Одно из наиболее важных приложений квантовой теории – разработка фармацевтических препаратов. Молекулы можно конструировать так, чтобы они имели нужные размеры и «подходили» по форме к конкретным локусам протеинов или энзимов.

Квантовая химия требует очень трудоёмких вычислений. Даже для простейшего атома водорода квантовомеханические расчёты математически очень сложны. Атом водорода состоит из одного электрона, связанного с одним протоном. Протон, который является ядром атома водорода, – это положительно заряженная частица, а электрон заряжен отрицательно. Притяжение отрицательно заряженного электрона к положительно заряженному протону удерживает их вместе, скрепляя атом водорода. Детали расчёта энергетических уровней атома водорода здесь излагаться не будут, но в следующих главах мы рассмотрим некоторые особенности результатов этих вычислений. Они дают энергетические уровни атома водорода и его волновые функции. Именно волновые функции, то есть волны амплитуды вероятности для атома водорода, являются отправной точкой для понимания всех атомов и молекул. Атомы и молекулы сложны потому, что они являются абсолютно малыми трёхмерными системами, и необходимо учитывать, как протоны и электроны взаимодействуют друг с другом.

Частица в ящике – классический случай

Есть очень простая задача, имеющая отношение к нашей теме. Она известна как задача о частице в ящике. Для её решения не нужна сложная математика, однако это решение позволяет проиллюстрировать важные свойства связанных электронов, например квантование уровней энергии и волноподобную природу электронов в связанных состояниях. Прежде чем анализировать природу электрона в одномерном ящике атомных размеров, обсудим классическую задачу об идеальной одномерной игровой площадке для ракетбола, чтобы выявить различия между классической (большой) и квантовомеханической (абсолютно малой) системами.

На рис. 8.1 изображён идеальный «ящик». Он одномерный. Его стенки считаются бесконечно высокими, бесконечно массивными и совершенно непроницаемыми. Внутри ящика нет воздуха, который оказывал бы сопротивление движению. На рисунке внутренняя часть ящика обозначена Q=0, а внешняя – Q=∞. Ранее говорилось, что свободной называют такую частицу, на которую не действуют никакие силы. Силы возникают, когда частица с чем-то взаимодействует. Например, отрицательно заряженная частица, такая как электрон, может взаимодействовать с положительно заряженным протоном. Взаимодействие в виде притяжения между противоположно заряженными частицами будет порождать силу, действующую на электрон. При управлении электронами в ЭЛТ (см. рис. 7.3) электрическое поле порождает силу, действующую на электроны и заставляющую их менять направление.

Мера взаимодействия частицы с чем-то влияющим на неё, вроде электрического поля, называется потенциалом и имеет размерность энергии. В дальнейшем потенциал будет обозначаться буквой Q. Внутри ящика Q=0, как в случае свободной частицы. Это означает, что частица не взаимодействует ни с чем внутри ящика. Здесь нет ни электрических полей, ни сопротивления воздуха. Однако снаружи ящика Q=∞. Бесконечный потенциал означает, что частица должна была бы обладать бесконечной энергией, чтобы оказаться в областях вне ящика. Выражение Q=∞ – это просто способ формализации утверждения о том, что стенки ящика являются идеальными. Частица не может проникнуть сквозь стенки или перепрыгнуть через них, сколь бы велика ни была её энергия. Если поместить частицу в такой ящик, она не может ускользнуть и всегда будет оставаться внутри него. В этом смысле частица заперта в ящике. Она может находиться в области пространства длиной L, но нигде больше.

Рис. 8.1. Идеальный одномерный ящик. Его стенки бесконечно высокие, бесконечно толстые, бесконечно массивные и совершенно непроницаемые. В ящике нет сопротивления воздуха. Внутри ящика потенциальная энергия Q равна нулю, а снаружи – бесконечности. Ящик имеет длину L

На рис. 8.2 изображён мяч для игры в ракетбол, отскакивающий от стенок идеальной одномерной классической (большой) ракетбольной площадки. Как уже было сказано, эти стенки идеальные, а внутри нет сопротивления воздуха. Кроме того, мяч тоже идеален, то есть обладает абсолютной упругостью. Когда мяч сталкивается со стенкой, он сжимается, как пружина, и снова распрямляется, что вызывает его отскок. Реальные мячи не идеально упругие. Когда мяч сжимается при ударе, не вся энергия, затраченная на его сжатие, идёт на отталкивание от стены. Часть энергии, затраченной на сжатие мяча, идёт на его нагрев. Однако здесь мы будем считать мяч идеально упругим. При ударе о стену вся кинетическая энергия мяча, которая обусловливает его сжатие, расходуется затем на отталкивание мяча от стены. Поэтому скорость мяча перед самым столкновением со стеной равна скорости его отскока после столкновения.

Рис. 8.2. Мяч на идеальной одномерной ракетбольной площадке. Сопротивление воздуха отсутствует, а мяч идеально упруг. Когда мяч ударяется об стену в точке L, он отскакивает, ударяется об стену в точке 0 и продолжает отскакивать взад и вперёд, поскольку площадка идеальна, мяч идеален и нет сопротивления воздуха. Начав так отскакивать, мяч будет бесконечно долго продолжать двигаться туда-обратно

На этой идеальной ракетбольной площадке мяч отскакивает от стен без какой-либо потери энергии; кроме того, нет ни сопротивления воздуха, ни гравитации. Поэтому мяч будет вечно двигаться туда-обратно, отражаясь от стен. Он ударится о стену в точке L, отскочит, столкнётся со стеной в точке 0, снова отскочит и будет продолжать своё движение взад и вперёд. Внутри ящика, поскольку потенциал равен нулю (см. рис. 8.1), никакие силы на мяч не действуют. Поэтому его энергия является чисто кинетической:

EkmV2,

где m – масса мяча, а V – его скорость. Если мяч испытает слабые внешние воздействия, его скорость станет немного меньше и значение Ek тоже немного уменьшится. В этом идеальном ракетболе энергия может меняться непрерывным образом. Значение Ek может увеличиваться или уменьшаться произвольным образом в зависимости лишь от силы воздействия на мяч.

Другая важная особенность классического ракетбола – это возможность остановить мяч так, чтобы он неподвижно лежал на полу. В этой ситуации его скорость равна нулю: V=0. А раз V=0, то и Ek=0. При V=0 импульс тоже равен нулю, поскольку p=mV, так что импульс известен нам точно. Если мяч лежит на полу (V=0), то его положение известно. Если обозначить это положение x (см. рис. 8.2), то значение x будет находиться в интервале от 0 до L. Величина x не может принимать никакие другие значения, поскольку мяч находится на площадке (в ящике) и не может оказаться снаружи из-за идеальных стенок. Мяч можно поместить в определённое положение x на полу площадки, и тогда его положение будет известно точно. Это свойство макроскопической игровой площадки, даже идеальной. Это классическая система, и в ней можно точно и одновременно знать импульс p и положение x.

Площадка для игры в ракетбол имеет длину 12 м, диаметр мяча составляет 5,6 см, а его вес – около 0,04 кг. Очевидно, что игра в ракетбол описывается классической механикой. С помощью света можно следить за отскоками мяча туда-обратно, не влияя на них.

Частица в ящике – квантовый случай

Что изменится, если теперь мы перейдём к рассмотрению квантового ракетбола? Площадка остаётся идеальной, но теперь её длина не 12 м, а 1 нм (10−9 м). Кроме того, частица обладает массой электрона, равной 9,1∙10−31 кг, а не 0,04 кг. Таким образом, это задача о квантовой частице в ящике.

Сразу можно сказать, что наименьшая энергия квантовой частицы в ящике нанометрового размера не может быть нулевой. На классической ракетбольной площадке возможна скорость мяча V, равная нулю, а значит, нулевым может быть и импульс p=mV. Кроме того, положение мяча x имеет чётко определённое значение. Например, мяч может лежать неподвижно (V=0) точно посередине площадки, что соответствует x=L/2. В таком случае для нашего классического ракетбольного мяча ∆p=0 и ∆x=0. Значение произведения ∆x∙∆p=0 не соответствует принципу неопределённости Гейзенберга, что нормально, поскольку речь идёт о классической системе. Однако абсолютно малая частица в ящике нанометрового размера является квантовым объектом и должна подчиняться принципу неопределённости, утверждающему, что ∆x∙∆ph/4π. Если V=0 и x=L/2, то мы знаем одновременно x и p, а значит, ∆x∙∆p=0, как в классическом ракетболе. Для квантовой системы это невозможно. Таким образом, V не может быть равно нулю. Частица не может неподвижно пребывать в заданной точке. А если значение V ненулевое, то и значение Ek не может быть равно нулю. Принцип неопределённости говорит, что наименьшая энергия нашего квантового ракетбольного мяча не может быть нулевой. Квантовый мяч никогда не пребывает в неподвижности.

Значения энергии квантовой частицы в ящике

Какой энергией может обладать квантовая частица в ящике нанометровых размеров? На этот вопрос можно ответить без сложных расчётов, но сначала нам нужно вновь вернуться к волнам. В главе 6 мы говорили о волновых функциях свободных частиц. Волновая функция свободной частицы с определённым импульсом p – это волна, которая простирается по всему пространству. Таким образом, электрон с идеально определённым импульсом – это делокализованная волна, охватывающая всё пространство. Вероятность обнаружить свободный электрон всюду одинакова. Такой электрон обладает чётко определённой кинетической энергией EkmV2, поскольку имеет чётко определённый импульс p=mV.

Электрон в нанометровой коробке подобен нашей свободной частице в том, что касается внутренней области коробки, где Q=0. Внутри коробки отсутствует потенциал, а значит, нет и действующих на частицу сил. В этом отношении она очень похожа на свободную частицу, на которую тоже не действуют никакие силы. Однако есть важное различие между частицей в коробке и свободной частицей – это стенки ящика. Электрон в ящике находится только внутри ящика. Идеальный характер ящика не позволяет его волновой функции распространиться на всё пространство. Частица находится внутри ящика и никогда не может оказаться снаружи. Волновая функция задаёт амплитуду вероятности обнаружить частицу в некоторой области пространства. Это борновская интерпретация волновой функции. Если наш электрон может быть обнаружен только внутри ящика и никогда снаружи, то вероятность его обнаружения в ящике должна быть конечной, а вовне – нулевой. Если вероятность найти частицу вне ящика равна нулю, то и волновая функция должна быть равна нулю во всех точках вне ящика.

Итак, мы пришли к выводу, что волновая функция частицы в ящике подобна волновой функции свободной частицы, но волновая функция должна быть равна нулю вне ящика. В своей интерпретации природы квантовомеханической волновой функции Борн наложил некоторые физические ограничения на форму, которую может принимать волновая функция. Одно из них состоит в том, что хорошая волновая функция должна быть непрерывной. Это условие означает, что волновая функция должна плавно меняться от места к месту. Бесконечно малое изменение положения не может приводить к неожиданному скачку вероятности. Это очень простая мысль. Если вероятность обнаружить частицу в некоторой очень малой области пространства составляет, например, 1 %, то смещение на невообразимо малую величину не может вдруг сделать вероятность обнаружения частицы равной 50 %. Это ясно по изображениям волновых пакетов на рис. 6.7. Вероятность плавно меняется от места к месту. Это позволяет нам кое-что добавить к описанию волновых функций частицы в ящике помимо того факта, что они являются волнами с конечными амплитудами внутри ящика и нулевой амплитудой вовне. Поскольку волновая функция должна быть непрерывной, непосредственно у стенки ящика с внутренней стороны она должна иметь нулевую амплитуду, чтобы совпадать с нулевой амплитудой волновой функции вне ящика.

На рис. 8.3 показан (запрещённый) разрыв волновой функции внутри ящика. Волновая функция обозначена φ (греческая буква «фи»). По вертикальной оси отложена амплитуда волновой функции. Штриховой линией показан её нулевой уровень. Волновые функции, представляющие собой волны амплитуды вероятности, могут колебаться между положительными и отрицательными значениями. Волновая функция, представленная на рис. 8.3, имеет возле стенок значения, отличные от 0. Однако волновая функция должна быть нулевой вне ящика, то есть для значений x меньше 0 и больше L она должна быть равна нулю. На рисунке волновая функция неожиданно перескакивает от ненулевого значения у стенки внутри ящика к нулевому значению сразу за стенкой вне ящика. Таким образом, волновая функция, изображённая на рис. 8.3, не является допустимой, поскольку она не является непрерывной. Эта функция не может представлять квантовую частицу в ящике.

Рис. 8.3.Разрывная волновая функция внутри ящика. Волновая функция обозначена φ. По вертикальной оси отложена амплитуда волновой функции. Штриховой линией показано, где волновая функция обращается в нуль; это значение она должна иметь вне ящика. Волновая функция имеет ненулевое значение у стенок внутри ящика и затем должна скачкообразно (негладко) стать равной нулю вне ящика


    Ваша оценка произведения:

Популярные книги за неделю