Текст книги "Абсолютный минимум. Как квантовая теория объясняет наш мир"
Автор книги: Майкл Файер
сообщить о нарушении
Текущая страница: 5 (всего у книги 29 страниц)
Новое описание фотонов в интерферометре
Вот здесь-то и требуется полное изменение мышления, возвращающее нас к котам Шрёдингера. Как может возникать интерференционная картина, если в каждый момент в интерферометр входит лишь один фотон? Наше понимание этой проблемы и природы квантовой механики в целом основывается на концептуальной интерпретации математического формализма, тесно связанного с работой Макса Борна (1882–1970). Борн получил Нобелевскую премию по физике в 1954 году
«за фундаментальные исследования по квантовой механике, в особенности за статистическую интерпретацию волновой функции».
Эту интерпретацию часто называют копенгагенской.
Корректное описание эксперимента с интерферометром состоит в том, что каждый фотон движется по обоим плечам интерферометра. Это и есть наш большой скачок. Одиночный фотон встречает полупрозрачное зеркало. Значит, с 50-процентной вероятностью фотон отразится и пойдёт по первому плечу интерферометра (см. рис. 5.1), а с 50-процентной вероятностью – по второму плечу. Это ошибка. Когда фотон встречает зеркало – разделитель пучка, – его состояние меняется. Если фотон действительно движется по первому плечу, назовём это состояние движения «трансляционным состоянием 1», сокращённо T1. Если фотон движется по второму плечу, назовём это состояние движения «трансляционным состоянием 2», сокращённо T2. После взаимодействия фотона с разделителем пучка он не находится ни в состоянии T1, ни в состоянии T2. Состояние системы после разделителя пучка называют состоянием суперпозиции. Это смесь состояний T1 и T2 в равных пропорциях. В некотором смысле фотон одновременно находится в состояниях T1 и T2. Это звучит по-настоящему странно. Одиночный фотон находится в двух областях пространства одновременно. Он пребывает в трансляционном состоянии T=T1+T2 – суперпозиции, в которой поровну смешаны состояния T1 и T2.
Фотон находится в этой суперпозиции трансляционных состояний T=T1+T2, поскольку именно это о нём известно. Он с 50-процентной вероятностью находится в первом плече (T1) и с 50-процентной вероятностью – во втором (T2). Борновская интерпретация волновой функции заключается в том, что это не реальная волна в смысле амплитуды колеблющегося электромагнитного поля. Правильнее говорить, что волновая функция описывает «амплитуду вероятности волны». Ошибочная интерпретация волновой функции в терминах фотонов состоит в том, что она якобы говорит, сколько фотонов находится в каждом плече прибора, то есть сколько фотонов пребывает в некоторой области пространства. Правильная интерпретация состоит в том, что волновая функция фотона говорит о вероятности обнаружения фотона в этой области пространства.
Может показаться, что различие между ошибочной и правильной интерпретациями незначительно, однако, как подробно объясняется далее, оно фундаментально меняет наше представления о природе. В классическом описании света его интенсивность пропорциональна абсолютному значению квадрата амплитуды электрического поля, которая, в свою очередь, задаётся амплитудой волновой функции. В борновской интерпретации возведённая в квадрат абсолютная величина волновой функции для определённой области пространства даёт вероятность обнаружения частицы, в нашем случае фотона, в этой области пространства.
Фотон интерферирует сам с собой
При попадании фотона на разделитель пучка рождаются две волны амплитуды вероятности: одна в первом плече, другая – во втором. В целом волна амплитуды вероятности T является суперпозицией волн амплитуды вероятности T1 и T2. Встретившись с разделителем, каждый отдельный фотон попадает в состояние T1+T2. Поскольку за разделителем есть две волны амплитуды вероятности, они пересекаются в области перекрытия. С одиночным фотоном внутри интерферометра связаны две волны – T1 и T2. Интерференция этих двух волн определяет высокую вероятность обнаружить фотон вблизи пика интерференционной картины и низкую вероятность обнаружить фотон вблизи её нуля. Фотон интерферирует сам с собой, поскольку в интерферометре он состоит из двух волн, и эти две волны могут интерферировать друг с другом. Так как после прохождения разделителя пучка каждый отдельный фотон попадает в состояние суперпозиции T1+T2, снимается проблема, связанная с низкой интенсивностью света. Одиночный фотон, входя в прибор, порождает две волновые функции, две волны амплитуды вероятности в интерферометре. Поэтому всегда есть пара волн, порождающих интерференционную картину.
Фотон может находиться в двух местах сразу
Первая естественная реакция человека с классическим мышлением на борновскую интерпретацию: «Это безумие какое-то!» Мы что, действительно верим, будто один фотон может находиться в двух местах сразу? После разделителя пучка порождается состояние T1+T2. Это состояние означает, что в некотором смысле фотон одновременно находится в обоих плечах прибора. Если поместить детектор в плечо 1, чтобы посмотреть, сколько там света, то обнаружится, что туда прошла половина света. Однако это не та информация, которая нам нужна. Возможно, половина фотонов пошла по каждому плечу, и мы видим эту половину, или, возможно, имеется 50-процентная вероятность того, что каждый фотон прошёл в каждое плечо. В этом случае мы тоже увидим половинную интенсивность. Правильный эксперимент состоит в использовании настолько слабого света, что в каждый момент внутри прибора находится лишь один фотон.
Рассмотрим эксперимент, в котором интерферометр обстреливается одиночными фотонами. Будем использовать фотодетектор, настолько чувствительный, что он способен зарегистрировать отдельный фотон. Это легко достижимо с помощью научного эквивалента цифровой суперкамеры. Поместим детектор в первое плечо интерферометра. Фотон входит в прибор, и мы регистрируем его. Мы наблюдаем фотон целиком, а не его половину. Другой фотон входит в прибор, но мы его не видим. Пять фотонов входит в прибор. Мы регистрируем два из них, а остальные три не замечаем. Продолжая в том же духе достаточно долго, мы обнаруживаем, что детектор в левом плече прибора регистрирует 50 % фотонов. Мы также видим, что никакой интерференционной картины не возникает. Фактически наблюдается одно светлое пятно (без периодически меняющегося рисунка) в той области, где раньше возникала интерференционная картина.
Наблюдение вызывает непренебрежимо малое возмущение, приводящее к изменению состояния
Что же происходит? Попадая на разделитель пучка, фотон оказывается в состоянии суперпозиции T1+T2. Однако фотоны – это частицы, малые в абсолютном смысле. Акт их наблюдения вызывает непренебрежимо малое возмущение. Помещая фотодетектор в первое плечо прибора, мы производим наблюдение местоположения фотона. Этот акт наблюдения заставляет систему перескочить из состояния суперпозиции T1+T2 в одно из чистых состояний – либо T1, либо T2. Волновая функция суперпозиции «коллапсирует» в одно из чистых состояний, из которых складывается эта суперпозиция. Если система перескакивает в состояние T1, то фотон регистрируется. И конечно, попав в фотодетектор, он уже не распространяется дальше по интерферометру. Если фотон перескакивает в состояние T2, он не регистрируется фотодетектором, расположенным в первом плече, и продолжает двигаться дальше, достигая в конце концов области, подготовленной к регистрации интерференционной картины. Однако, поскольку этот фотон находится в чистом состоянии T2, то имеется лишь одна волна амплитуды вероятности. Когда она достигает области «перекрытия» (на рис. 5.1 внизу), там нет другой волны амплитуды вероятности, с которой могла бы возникнуть интерференция. Поэтому никакой интерференционной картины не появляется. Одиночное пятно образуется, когда каждый фотон, пройдя через прибор в чистом состоянии T2, подобно пуле, попадает в это пятно на детекторе. Размер пятна такой же, как размер (диаметр) исходного светового пучка, вошедшего в прибор, и в нём нет пространственных колебаний, характерных для интерференционной картины.
Возвращаемся к котам Шрёдингера
Наблюдение местоположения фотона с помощью фотодетектора в первом плече интерферометра заставляет фотон перескочить из состояния суперпозиции T1+T2 в чистое состояние – либо T1, либо T2. Однако единственное измерение не позволяет узнать, какое состояние будет получено в результате наблюдения. Шансы получить T1 или T2 составляют 50 на 50. После многочисленных измерений мы знаем, что вероятность перескакивания в состояние T1 равна 50 %, но невозможно заранее сказать, что случится в конкретном единичном наблюдении. Это настоящее физическое проявление ситуации, которую мы обсуждали в главе 1 на примере котов Шрёдингера, когда в каждом из 1000 ящиков было по коту. Каждый кот находился в состоянии суперпозиции – на 50 % живой и на 50 % мёртвый. В этом совершенно нефизическом, но способствующем пониманию сути вопроса сценарии при вскрытии ящика выполнялось наблюдение состояния здоровья кота. Иногда он оказывался совершенно здоровым, иногда – мёртвым. После вскрытия всех ящиков было определено, что вероятность обнаружить живого кота составляет 50 %, но нет способа предсказать до вскрытия конкретного ящика, то есть до выполнения отдельного наблюдения, живой или мёртвый кот будет там найден. До вскрытия ящика кот находится в состоянии суперпозиции живого и мёртвого в пропорции 50:50. Акт выполнения наблюдения порождает непренебрежимое возмущение и заставляет состояние суперпозиции перескочить в одно из чистых состояний – либо живое, либо мёртвое. Как говорилось в главе 1, состояние суперпозиции живого/мёртвого кота не существует и не может существовать, но интерферометр – это реальный пример той идеи, иллюстрацией которой служат коты Шрёдингера.
С помощью полупрозрачного зеркала фотон легко привести в состояние суперпозиции, представляющее собой смесь 50 на 50 двух трансляционных состояний. Когда фотон находится в состоянии суперпозиции, невозможно сказать, движется он по первому или по второму плечу прибора. Можно лишь сказать, что если мы выполним измерение, чтобы узнать, где фотон находится, это вызовет возмущение, которым невозможно пренебречь. Данное возмущение приведёт к тому, что состояние системы изменится, и, вместо того чтобы быть в обоих плечах интерферометра с равной вероятностью, фотон окажется либо в одном из них, либо в другом. Интерференционная картина рождается, когда волны амплитуды вероятности фотона интерферируют друг с другом. Две компоненты состояния суперпозиции – T1 и T2, из которых складывается совокупная волна амплитуды вероятности для фотона в приборе, – интерферируют друг с другом. Если выполняется наблюдение, позволяющее узнать, где находится фотон, он будет найден либо в первом, либо во втором плече интерферометра. Однако сам факт наблюдения меняет систему так, что она более не находится в состоянии суперпозиции. Амплитуда вероятности больше не состоит из двух частей, которые могут интерферировать друг с другом, и интерференционная картина исчезает. Таким образом, фотон в интерферометре – это реальное проявление идей, связанных с котами Шрёдингера.
Возвращаемся к фотоэлектрическому эффекту
В главе 4 фотоэлектрический эффект описывается в терминах фотонов, которые являются частицами, ведущими себя в некотором смысле наподобие световых пуль. Один фотон ударяет по одному электрону и выбивает его из куска металла (см. рис. 4.3). Это описание фотоэлектрического эффекта показывает, что классическое представление о свете как об электромагнитных волнах неверно. Для того чтобы объяснить фотоэлектрический эффект и одновременно тот факт, что фотоны порождают интерференционную картину, потребовалось ввести новую концепцию. Борновская интерпретация волновой функции как волны амплитуды вероятности придаёт фотону необходимые волноподобные характеристики, так что фотоны способны порождать интерференционную картину. Однако при обсуждении волн амплитуды вероятности в применении к интерферометру мы характеризовали положение фотона лишь с точностью до выбора одной из двух больших областей пространства; фотон находился в состоянии суперпозиции T1+T2 с равной вероятностью оказаться в первом или во втором плече интерферометра.
Фотоэлектрический эффект предполагает, что фотон весьма мал. В главе 6 будет показано, как суперпозиция волн амплитуды вероятности может породить фотон, имеющий очень маленькие размеры. Эти идеи приведут нас к центральному и самому неклассическому аспекту квантовой механики – принципу неопределённости Гейзенберга.
6. Размеры фотона и принцип неопределённости Гейзенберга
В главе 5 мы узнали, что фотон в интерферометре интерферирует сам с собой. Фотон в некотором смысле может находиться более чем в одном месте сразу. Положение фотона описывается волной амплитуды вероятности. Она не похожа на водяную, звуковую или даже классическую электромагнитную волну. Волна, ассоциируемая с фотоном (или с другими частицами вроде электронов), описывает вероятность обнаружения частицы в некоторой области пространства. В задаче с интерферометром (см. рис. 3.4 и 5.1) одиночный фотон находился одновременно в первом и во втором плечах прибора при равной вероятности обнаружить его в обеих этих областях пространства. Чтобы лучше понимать и описывать положение фотона, необходимо подробнее обсудить свойства волн. Нужно понять природу волн амплитуды вероятности, в особенности то, как они объединяются и что происходит, когда выполняются измерения.
Проще всего начать с задачи о свободной частице, которую мы обсуждали в главе 2. Свободная частица может быть фотоном, электроном или бейсбольным мячом. Свободной она является в том случае, если на неё не действуют никакие силы – нет ни гравитации, ни электрического или магнитного поля, ни фотонов, сталкивающихся с электроном, ни бейсбольных бит, ударяющих по мячу, ни сопротивления воздуха – ничего подобного. В отсутствие сил, действующих на частицу, она имеет строго определённый неизменный импульс. Таким образом, если она движется в определённом направлении, она будет просто продолжать двигаться в этом направлении. Можно выбрать для этого направления любое обозначение: пусть, например, это будет направление x. Представим себе график с горизонтальной осью x. Мы просто выберем направление этой оси x вдоль направления движения частицы. Обсуждая рис. 2.5, мы говорили о классической частице, движущейся вдоль оси x с классическим импульсом p. Здесь мы поговорим о квантовой частице с импульсом p.
Частицы имеют длину волны
Импульс фотона определяется уравнением p=h/λ, где h – постоянная Планка, λ – длина волны света. Таким образом, импульс связан с длиной волны (цветом) света. Луи Виктор Пьер Раймон, герцог Брольи{10}, получил Нобелевскую премию по физике в 1929 году
«за открытие волновой природы электрона».
Луи де Бройль теоретически показал, что такие частицы, как электроны или бейсбольные мячи, также имеют волновые свойства. Как рассказывается далее, волновое описание электронов, как и любых других типов частиц, даётся с помощью того же рода волн амплитуды вероятности, что были введены в главе 5 для описания фотонов.
Длина связанной с частицей волны равна λ=h/p. Это результат простого преобразования приведённой выше формулы для импульса фотона. Если обе части формулы для импульса фотона умножить на λ и разделить на p, то получится выражение для длины связанной с частицей волны. Важный результат, полученный де Бройлем, состоит в том, что связь между импульсом и длиной волны одинакова для фотонов (света) и для материальных частиц, таких как электроны и бейсбольные мячи. Поэтому свойства фотонов на фундаментальном уровне описываются точно так же, как свойства электронов и бейсбольных мячей. Длина волны, связанной с частицей, называется дебройлевской длиной волны. (В следующей главе мы покажем на физических примерах, почему кажется, будто бейсбольные мячи не обладают волновыми свойствами, тогда как у фотонов и электронов эти свойства заметны.)
Как выглядит волновая функция свободной частицы
Что представляет собой волновая функция свободной частицы с некоторым заданным значением импульса p? Вспомним, что волновая функция связана с вероятностью обнаружить частицу в некоторой области пространства. На рис. 6.1 представлен график волновой функции для свободной частицы с импульсом p. Как говорилось выше, длина волны связанной с этой частицей волновой функции равна λ=h/p. Из рисунка видно, что волновая функция свободной частицы представляется двумя волнами, которые называются действительной и мнимой компонентами волновой функции.
Рис. 6.1.Волновая функция свободной частицы с импульсом p, которая имеет длину волны λ=h/p. Квантовомеханическая волновая функция имеет две части, которые называются действительной и мнимой. Эти волны имеют одинаковую длину. Они лишь смещены одна относительно другой на четверть длины волны, что эквивалентно сдвигу на 90° по фазе. Эти две компоненты отделены друг от друга. Они не интерферируют ни конструктивно, ни деструктивно. Для свободной частицы с чётко определённым значением импульса p волновая функция простирается от плюс бесконечности до минус бесконечности (от +∞ до −∞)
Эти компоненты равноценны. Слово «мнимая» – это просто математический термин. Его не следует понимать так, будто мнимая компонента в каком-либо смысле менее важна, чем компонента, называемая действительной. Это просто такой жаргон для обозначения двух компонент, различающихся по своему математическому представлению. Действительная и мнимая компоненты волновой функции имеют одинаковую длину волны, но смещены на одну четверть длины волны. Это означает, что одна волна сдвинута по фазе относительно другой на 90°. Эти две компоненты волновой функции не интерферируют друг с другом ни конструктивно, ни деструктивно, поскольку и в математическом смысле, и по сути они перпендикулярны друг другу.
Частица с хорошо определённым импульсом размазана по всему пространству
Важная особенность волновой функции, показанной на рис. 6.1, состоит в том, что она тянется от плюс бесконечности до минус бесконечности (от +∞ до −∞). На рис. 6.1 видна лишь малая часть волновой функции в небольшой области пространства, поскольку на конечном листе бумаги нельзя изобразить график от +∞ до −∞. Волновая функция, представленная на этом рисунке, просто продолжается без изменений вправо и влево. Это означает, что квантовомеханическую частицу с чётко определённым значением импульса p мы с равной вероятностью найдём в любом месте вдоль оси x – горизонтальной оси на этом графике. По вертикальной оси отложена амплитуда вероятности обнаружить частицу в том или ином месте. Обе компоненты – действительная (пунктирная кривая) и мнимая (сплошная кривая) колеблются между положительными и отрицательными значениями. У обеих есть места, где они обращаются в нуль.
Тот факт, что волновая функция колеблется между положительными и отрицательными значениями, не важен. Для квантовомеханического объяснения интерференции фотона на рис. 5.1 была введена борновская интерпретация волновой функции. Согласно этой интерпретации, вероятность обнаружить частицу в некоторой области пространства равна квадрату абсолютной величины волновой функции в этой области пространства. Возведённая в квадрат волновая функция может приобретать только положительные значения, точно так же как 22=4 и (−2)2=4, поскольку минус на минус даёт плюс. Обратите внимание, что на рис. 6.1, когда одна из двух волн обращается в нуль, другая волна находится на положительном или отрицательном максимуме. Когда одна волна мала, другая – велика. Когда волновая функция анализируется математически, то, как это видно из графика, абсолютная величина квадрата волновой функции оказывается одинаковой во всех точках оси x.
Абсолютная величина квадрата волновой функции для свободной частицы одинакова вдоль всей оси x – от +∞ до −∞. Таким образом, вероятность обнаружить частицу в любом месте пространства одинакова. Частица с одинаковой вероятностью найдётся в точке x=10, в точке x=−1000000 или где угодно ещё. Представьте себя крошечным созданием, которое часто называют демоном Максвелла. Вы стоите рядом с частицей-волной, изображённой на рис. 6.1. Вы пытаетесь схватить частицу. С некоторой вероятностью она окажется у вас в руках. Если вы станете делать это снова и снова, то в зависимости от размеров вашей руки вы сможете в конце концов поймать частицу. При этом каждый раз вам придётся начинать её ловлю заново. Если вы переместитесь вдоль волны в другое место и повторите попытку, вероятность поймать частицу не изменится. Именно в этом состоит смысл одинаковой вероятности обнаружить частицу где угодно. Для демона Максвелла нет предпочтительного места ловли частицы. Все места равноценны.
Этот образ свободной частицы, которая описывается волновой функцией, задающей равную вероятность обнаружить частицу в любом месте, не очень-то согласуется с нашим классическим представлением о частицах. На рис. 2.5 показана классическая частица, обладающая в заданный момент времени определённым значением импульса и положением. Обсуждая фотоэлектрический эффект (см. рис. 4.3), Эйнштейн описывал свет как фотоны, которые являются квантами света. Один фотон «выбивает» один электрон, и этот электрон вылетает из куска металла. Это описание выглядит так, как будто и фотон и электрон являются частицами в понимании классической механики. Однако при обсуждении интерференции фотонов (см. рис. 5.1) потребовалось использовать интерпретацию Борна и описывать фотоны как волны амплитуды вероятности, когда половина вероятности приходится на каждое плечо интерферометра. На рис. 6.1 график волновой функции свободной частицы полностью делокализован, то есть растянут на всё пространство. Это описание одинаково как для фотона, так и для электрона.