Текст книги "Абсолютный минимум. Как квантовая теория объясняет наш мир"
Автор книги: Майкл Файер
сообщить о нарушении
Текущая страница: 20 (всего у книги 29 страниц)
Метанол – это самая маленькая спиртовая молекула. Этанол – это этан, в котором один атом водорода заменён гидроксильной группой −OH. Метанол – это метан, в котором водород заменён гидроксилом. Если этанол можно употреблять внутрь в разумных количествах без тяжёлых последствий, то метанол крайне токсичен. Его также называют древесным спиртом, и он нередко встречается в качестве примеси в самогоне. Его смертельная доза составляет всего 20 мл (миллилитров), а доза 15 мл может вызвать слепоту. Пятнадцать миллилитров – это одна столовая ложка. Стакан вина содержит около двух столовых ложек этанола. Так что замена этанола на метанол в одном стакане вина может вызвать слепоту и смерть. Это поразительно, поскольку этанол отличается от метанола лишь одной дополнительной метильной группой (−CH3).
Ядовит не сам по себе метанол, а продукты его метаболизма. У человека и других живых организмов спирты превращаются в другие вещества посредством энзимов (белков, отвечающих за химические реакции), которые называются алкогольдегидрогеназами. У человека эти энзимы содержатся в печени и слизистой оболочке желудка. По-видимому, эти энзимы в пищеварительном тракте появились в ходе эволюционного развития для разложения спиртов, которые вырабатываются бактериями или являются естественными составляющими некоторых видов пищи. Этанол сначала превращается в ацетальдегид, а затем в уксусную кислоту, как это обсуждалось выше в связи с рис. 15.4, на котором показана структура этих двух молекул. Ацетальдегид и уксусная кислота безопасны для организма, который легко от них избавляется. Более крупные спиртовые молекулы также превращаются сначала в альдегиды, а затем в органические кислоты, которые легко удаляются из тела, не причиняя ему вреда. Однако метанол превращается алкогольдегидрогеназами в формальдегид, а затем в муравьиную кислоту.
Строение формальдегида представлено на рис. 14.3. Формальдегид подобен ацетальдегиду, за исключением того, что атом углерода C2 в ацетальдегиде (см. рис. 15.4, вверху) связан с одним атомом водорода, а не с метильной группой (C1 на рис. 15.4). Муравьиная кислота подобна уксусной кислоте (рис. 15.4, внизу), но вновь атом C2 связан с водородом, а не с метильной группой. Муравьиная кислота и особенно – формальдегид являются высокотоксичными веществами. Они повреждают сетчатку и зрительный нерв, приводя к неизлечимым поражениям зрения и слепоте. Однако муравьиная кислота также вызывает серьёзную кислотную интоксикацию, которая включает нарушение работы энзимов, расщепляющих углеводороды. Относительно небольшие концентрации формальдегида и муравьиной кислоты, а также других производных от них метаболитов могут привести к смерти.
Мыло
Как мы выяснили, этанол и органические кислоты вроде уксусной кислоты очень хорошо растворяются в воде, поскольку органические группы, содержащие кислород, могут создавать водородные связи с молекулами воды. Напротив, этан, хотя и очень похож на этанол, не растворяется в воде, поскольку не имеет кислородсодержащей группы, способной образовывать водородные связи. Этан – это углеводород, то есть он состоит только из атомов водорода и углерода. Метан и этан – газы. Более крупные углеводороды, начиная с пентана (пять атомов углерода), являются жидкостями при комнатной температуре. Наименьшие из этих жидких углеводородов, такие как пентан и октан (входящий в состав бензина), – очень текучие жидкости, то есть у них низкая вязкость.
Крупные углеводороды – это масло и жирС увеличением числа атомов углерода жидкие углеводороды становятся всё более вязкими. Мазут{27}, используемый для отопления во многих американских домах, состоит из смеси углеводородов, имеющих обычно от 14 до 20 атомов углерода. При комнатной температуре масло вполне текуче, но его вязкость намного больше, чем у бензина. Жир состоит из по-настоящему крупных углеводородов. Они очень вязкие и при комнатной температуре не текут.
Рис. 15.5. Модели н-тетрадекана C 14 H 30 : шаростержневая (вверху) и объёмная (внизу). Молекула содержит 14 атомов углерода, соединённых друг с другом без ветвления
Углеводороды, составляющие мазут, при комнатной температуре являются жидкими, но они нерастворимы в воде. Молекулы с 14 атомами углерода – это самые лёгкие компоненты мазута. На рис. 15.5 изображена молекула н-тетрадекана. Декан содержит десять (дека) атомов углерода. В тетрадекане на четыре (тетра) атома углерода больше. Буква «н» (нормальный) означает, что все атомы углерода выстроены друг за другом без ветвления, то есть каждый атом углерода связан не более чем с двумя другими. В верхней части рисунка приведена шаростержневая модель н-тетрадекана. Однако важно помнить, что электронная плотность заполняет всё окружающее атомы пространство. В нижней части рисунка представлена объёмная модель н-тетрадекана.
Крупные углеводороды могут иметь много разных структурМногие другие углеводороды содержат по 14 атомов углерода. Они являются ветвящимися. На рис. 15.6 представлены шаростержневая (вверху) и объёмная (внизу) модели одного из них – 2,8-диметилдодекана. Додекан содержит 12 атомов углерода. Две дополнительные метильные группы ответвляются от основной цепочки у второго и восьмого слева атомов углерода. И н-тетрадекан, и 2,8-диметилдодекан являются структурными изомерами. У них одинаковое число атомов водорода и углерода, но никакие повороты вокруг связей не могут преобразовать один в другой. И н-тетрадекан, и 2,8-диметилдодекан имеют множество конформеров, то есть, поворачивая молекулы вокруг одиночных углерод-углеродных связей, можно получить различные формы молекул без изменения схемы соединения атомов углерода. Структурные изомеры и конформеры уже обсуждались на примере бутана (см. рис. 14.12 и 14.13).
Рис. 15.6. 2,8-диметилдодекан C 14 H 30 : шаростержневая модель (вверху) и объёмная модель (внизу). Молекула содержит 14 атомов углерода. Имеется цепочка из 12 атомов углерода с двумя метильными группами, ответвляющимися от неё у второго и восьмого слева атомов углерода
Нефтепродукты и вода не смешиваютсяМазут является относительно вязкой жидкостью, хотя молекулы углеводородов относительно слабо притягиваются друг к другу. Большое число размеров, структурных изомеров и конформеров приводит к тому, что молекулы запутываются, и в результате возрастает вязкость. При попадании нефтепродуктов в воду они всплывают на поверхность. Если всё хорошенько взболтать, то кажется, что они на время смешиваются. Однако если дать смеси отстояться, нефтепродукты вновь отделяются от воды и всплывают на поверхность. С подобным эффектом знаком каждый, кто делал заправку для салата из уксуса и растительного масла. Вы смешиваете оливковое масло, уксус и, возможно, немного воды и встряхиваете смесь. Если оставить её постоять, то оливковое масло всплывёт наверх. В магазинные салатные заправки из масла и уксуса добавляют эмульгаторы, которые предотвращают разделение масла и уксуса.
Эмульгаторы очень похожи на мыло, с которым мы скоро познакомимся ближе. Мы уже знаем, что атом кислорода в молекуле воды частично отрицательный и притягивается к атомам, заряженным положительно или, по крайней мере, имеющим частичный положительный заряд. Атомы водорода в молекулах воды частично положительны и притягиваются к отрицательно заряженным или частично отрицательно заряженным атомам. Углеводороды состоят из атомов углерода и водорода, которые по заряду являются практически нейтральными. Поэтому молекулы воды притягиваются друг к другу значительно сильнее, чем к маслу. Как результат – масло не растворяется в воде.
Строение молекул мылаМыло делает масло растворимым в воде. В мыле и моющих средствах используется много разных молекул. Более строгое название для молекул мыла – поверхностно активные вещества (ПАВ). Хотя химическая природа и строение ПАВ очень сильно варьируются, все ПАВ обладают некоторыми общими свойствами. Часть молекулы ПАВ, если взять её отдельно, была бы очень хорошо растворимой в воде, а другая часть, взятая сама по себе, прекрасно растворялась бы в масле и жирах.
Одна из таких молекул – н-гептадеканацетат натрия; её шаростержневая и объёмная модели изображены на рис. 15.7. Углеводород н-гептадекан – это неветвящаяся 17-атомная цепочка. Эта углеводородная часть молекулы изображена в виде конкретного конформера с парой поворотов вокруг углерод-углеродных связей, что приводит к изогнутой форме. Тетрадекан, изображённый на рис. 15.5, весь находится в транс-конформации. У него нет никаких поворотов, привносящих элементы гош-конформации. У больших углеводородов много разных конформеров, между которыми они могут переходить. Сам по себе гептадекан может быть одним из компонентов мазута.
Рис. 15.7.Гептадеканацетат натрия C18H37COO−Na+: шаростержневая модель (вверху) и объёмная модель (внизу). Диссоциированный ион натрия не показан. Молекула содержит 19 атомов углерода. В ней есть цепочка из 17 атомов углерода и на её конце ацетатная группа. Обозначение δ− указывает, что каждый из атомов кислорода (самые тёмные сферы) несёт примерно половинный отрицательный заряд
Углеводород н-гептадекан присоединяется к ацетатной группе или ацетатному аниону. Ацетатная группа состоит из двух последних атомов углерода и двух атомов кислорода в правой части молекулы на рис. 15.7. Ацетатный анион изображён на с. 269 на химической диаграмме, описывающей диссоциацию уксусной кислоты. Там катионом при диссоциации был ион H+. Здесь же катион – это ион натрия Na+, который на рис. 15.7 не показан. Ацетат натрия представляется следующей диаграммой:
Ацетат натрия – это натриевая соль, подобно поваренной соли NaCl. В данном случае анион является органическим в отличие от элементарного аниона Cl−. Ацетат натрия полностью растворяется в воде, как и соль NaCl.
В воде мыло образует мицеллыТаким образом, молекула н-гептадеканацетата натрия состоит из длинной углеводородной цепочки, которая не будет растворяться в воде, и ацетата натрия, который в воде легко растворяется.
Рис. 15.8. Схематическое изображение сферической мицеллы. Шарики символизируют ацетатные группы либо другие заряженные или гидрофильные части молекул ПАВ. Гидрофильную часть молекулы ПАВ нередко называют головной группой. Волнистыми линиями показаны гидрофобные углеводородные хвосты ПАВ. Головные группы очень хорошо растворимы в воде и образуют внешнюю оболочку. Углеводородные хвосты избегают контакта с водой и группируются друг с другом, образуя нанокапельку масла, называемую ядром мицеллы. Образование мицелл позволяет мылу легко растворяться в воде
Что случится, если поместить значительное количество мыла (в данном случае н-гептадеканацетата натрия) в воду, не содержащую масла и жира? Углеводородные части молекул не любят воду, так что они будут её избегать. Чистый углеводород н-гептадекан полностью отделился бы от воды и всплыл на поверхность. Однако части с ацетатом натрия вода нравится. Эта часть будет диссоциировать на ацетат-анион и натриевый катион, и оба они будут активно взаимодействовать с молекулами воды. Мицеллы – это наномасштабные образования, то есть имеющие размеры порядка нескольких нанометров. Обычная форма мицеллы сферическая или близкая к сферической, хотя есть и другие разновидности в зависимости от ПАВ и его концентрации в воде. Обычно они имеют размеры около 10 нанометров (10 триллионных долей метра) в диаметре. Размеры мицелл определяются размерами и строением молекул ПАВ.
Мыло растворяет жирные загрязненияТеперь рассмотрим, что происходит, когда посуда или руки, испачканные жиром или маслом, попадают в мыльную воду. Чистую воду углеводороды на их поверхности отталкивали бы. Однако наличие в воде мыльных мицелл всё меняет. Заряженные головные группы мицелл приходят в контакт с жирной поверхностью. Они стремятся избежать жира, который заставляет мицеллы открываться, выставляя к жиру углеводородные хвосты ПАВ. Эти хвосты ПАВ с удовольствием погружаются в жирные загрязнения и запутываются в них. За счёт механических движений эти маслянистые углеводороды отрываются от остальной жирной поверхности. Головные группы ПАВ смыкаются вокруг ядра, приводя к реорганизации мицеллы. Однако некоторые углеводороды, составлявшие жирное загрязнение, оказываются захваченными в ядре мицеллы.
Удержание углеводородов внутри мицеллы схематически изображено на рис. 15.9. Углеводородные хвосты ПАВ обозначены двойными линиями, а жирные углеводороды – одиночными линиями с точками. Молекулы жирных загрязнений остаются в ядре мицеллы в качестве части масляной нанокапли. Эти дополнительные углеводороды в её ядре делают мицеллу крупнее. Чтобы полностью покрыть увеличившуюся нанокаплю, к мицелле добавляются новые молекулы ПАВ, содержащиеся в воде. Заряженные главные группы одной мицеллы отталкивают другие, предотвращая тем самым слияние содержащихся в них загрязнений с образованием нерастворимых в воде комков.
Рис 15.9. Схематическое изображение маслянистых углеводородных загрязнений (одиночные узорчатые линии), захваченных мыльной мицеллой
Первые свидетельства о производстве мылоподобных веществ относятся ещё к 2800 году до нашей эры. Настоящее мыло – практически такое же, каким мы пользуемся сегодня, – было изготовлено химиками исламского мира в VII веке. Мы часто слышим о наступлении эпохи нанотехнологий, в которых нанометрового размера конструкции из молекул и атомов могут выполнять различные очень тонкие задачи. В этом смысле весьма примечательно, что мыло в воде является наноматериалом. ПАВ образует нанометрового размеры мицеллы, которые захватывают жировые загрязнения. Эти мицеллы, содержащие углеводороды, растворимы в воде, что позволяет нам отмывать самостоятельно нерастворимые в воде молекулы.
16. В жирах важны двойные связи
В этой главе мы, опираясь на развитые ранее идеи, поговорим о некоторых крупных молекулах, часто встречающихся в повседневной жизни. Мы, наконец, добрались до таких веществ, как насыщенные жиры, ненасыщенные жиры, транс-жиры и холестерин. Что они собой представляют и чем различаются? Как их влияние на здоровье связано с их молекулярным строением?
Из чего состоят жировые молекулы?
Слыша слово «жир», вы, вероятно, думаете о сливочном масле, сале, оливковом или хлопковом масле. Каждое из них в действительности представляет собой смесь различных жиров. На рис. 16.1 изображена одна конкретная молекула жира{28}. Это стеариновая кислота. Она представляет собой длинную углеводородную цепочку с кислотной органической группой на конце. Стеариновая кислота содержит 18 атомов углерода. Крайний справа атом углерода входит в состав органической кислотной группы. На рис. 15.4 (внизу) изображена молекула уксусной кислоты, которая представляет собой кислотную группу с присоединённой к ней метильной группой. На рис. 15.5 изображён тетрадекан – входящий в состав нефти углеводород, который содержит 14 атомов углерода. Стеариновая кислота подобна уксусной кислоте, но вместо одиночной метильной группы к кислотной группе присоединена цепочка из 17 атомов углерода. Можно также рассматривать стеариновую кислоту как относительно длинный углеводород тетрадекан с кислотной группой на конце. В общем, жирная кислота – это длинная углеводородная цепочка с органической кислотной группой на одном из концов. Эта кислотная группа образует водородные связи с водой. Как говорилось в главе 15, уксусная кислота растворима в воде благодаря сильным водородным связям между кислотной группой и молекулами воды. Стеариновая кислота, как и жирные кислоты вообще, нерастворима в воде из-за длинной углеводородной цепочки. Хотя кислотная группа сильно взаимодействует с водой (гидрофильна), длинная углеводородная цепочка, подобно обсуждавшимся в главе 15 углеводородам, избегает взаимодействия с водой (гидрофобна). У жирных кислот влияние длинной углеводородной части молекулы перевешивает, и в общем случае они не растворяются в воде.
Рис. 16.1. Шаростержневая (вверху) и объёмная (внизу) модели стеариновой кислоты. Стеариновая кислота содержит 18 атомов углерода, 36 атомов водорода и два атома кислорода. Это 17-углеродный углеводород с кислотной группой −COOH на конце (справа)
Насыщенные и ненасыщенные жирные кислоты
Стеариновая кислота является насыщенной. Все атомы углерода в ней связаны с одним или двумя другими соседними углеродными атомами одиночной связью. Двойных связей между атомами углерода нет. К насыщенным относят такие жиры, в молекулах которых между атомами углерода есть лишь одиночные связи.
На рис. 16.2 изображена шаростержневая модель олеиновой (масляной) кислоты. Олеиновая кислота, как и стеариновая, содержит 18 атомов углерода и кислотную группу на конце. Однако у неё имеется двойная связь между девятым и десятым атомами углерода (нумерация начинается от атома углерода в составе карбоксильной кислотной группы{29}). Олеиновая кислота – мононенасыщенная. Она является ненасыщенной, потому что имеет двойную связь, и мононенасыщенной, потому что такая связь только одна. В насыщенных жирах нет двойных связей между атомами углерода.
В стеариновой кислоте все атомы углерода, кроме входящего в кислотную группу, используют для образования связей четыре гибридные sp3-орбитали. Атомы углерода, которые не находятся на концах молекулы стеариновой кислоты, используют две из четырёх гибридных sp3-обиталей для образования одиночных связей с двумя соседними атомами углерода и две другие для связей с атомами водорода.
Все атомы углерода, кроме входящего в кислотный остаток, имеют тетраэдрическую конфигурацию связей с другими атомами углерода и водорода. В олеиновой кислоте девятый и десятый атомы углерода используют три гибридные sp2-орбитали для образования σ-связей – одной с водородом и двух с соседними атомами углерода. Остающиеся 2p-орбитали девятый и десятый атомы углерода используют для образования между собой π-связи. Таким образом, девятый и десятый атомы углерода соединены двойной связью и имеют треугольную, а не тетраэдрическую конфигурацию связей. Это различие в геометрии отчётливо видно на рис. 14.14 при сравнении моделей этана (одиночная углерод-углеродная связь) и этилена (двойная углерод-углеродная связь). В этане углеродные центры тетраэдрические, в этилене – треугольные. Олеиновая кислота содержит 34 атома водорода против 36 в стеариновой кислоте. В олеиновой кислоте для образования двойной связи используются две орбитали, которые в стеариновой кислоте служат для присоединения атомов водорода. Насыщенные жиры содержат максимально возможное число атомов водорода, что означает отсутствие двойных связей.
Рис. 16.2. Шаростержневая модель олеиновой кислоты. Олеиновая кислота содержит 18 атомов углерода подобно стеариновой кислоте на рис. 16.1, но у неё есть одна двойная углерод-углеродная связь между девятым и десятым атомами углерода, считая от кислотной группы
Формы жировых молекул
Стеариновая кислота, изображённая на рис. 16.1, целиком находится в транс-конформации. На рис. 14.13 изображена молекула бутана в транс-конформации, но с поворотом вокруг одной из связей, дающим гош-конформацию. Молекула стеариновой кислоты может принимать множество конформаций, помимо изображённой чистой транс-конформации. Для насыщенных углеводородов и насыщенных жирных кислот чистая транс-конформация является самой прямолинейной и низкоэнергетической. В силу наличия только одиночных углерод-углеродных связей насыщенные жирные кислоты постоянно переходят из одной конформации в другую. На рис. 15.7 изображён гептадеканацетат в конформации, которая не является чистой транс-конформацией.
В отличие от стеариновой кислоты олеиновая кислота (см. рис. 16.2) не может естественным образом находиться в чистой транс-конформации. На рис. 16.2 углы между атомами углерода 8, 9 и 10, а также 9, 10 и 11 составляют 120° (что соответствует треугольнику), а не 109,5° (что характерно для тетраэдра). Таким образом, в нормальных биологических условиях добавление одной двойной связи фиксирует конкретную форму молекулы вблизи этой связи.
Насыщенные, мононенасыщенные и полиненасыщенные жирные кислоты
На рис. 16.3 представлена шаростержневая модель α-линоленовой кислоты. Так же как стеариновая и олеиновая кислоты, α-линоленовая кислота содержит 18 атомов углерода, но она имеет три двойные связи.
Рис. 16.3.Шаростержневая модель α-линоленовой кислоты, которая содержит 18 атомов углерода и имеет три двойные углерод-углеродные связи
В линоленовой кислоте шесть атомов углерода, а именно 9-й, 10-й, 12-й, 13-й, 15-й и 16-й, имеют треугольную конфигурацию с углом 120°, и такие тройки углеродных атомов, как 8-й, 9-й и 10-й, образуют угол 120°, а не тетраэдрический угол 109,5°. В нормальных условиях эти дополнительные двойные связи уводят форму молекулы всё дальше от чистой транс-конфигурации. Хотя α-линоленовая кислота имеет три двойные связи, очень похожая на неё линоленовая кислота имеет только две такие связи. Жирные кислоты без двойных связей называются насыщенными, с одной двойной связью – мононенасыщенными, а с двумя и более двойными связями – полиненасыщенными.