355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Майкл Файер » Абсолютный минимум. Как квантовая теория объясняет наш мир » Текст книги (страница 6)
Абсолютный минимум. Как квантовая теория объясняет наш мир
  • Текст добавлен: 12 октября 2016, 04:34

Текст книги "Абсолютный минимум. Как квантовая теория объясняет наш мир"


Автор книги: Майкл Файер


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 29 страниц)

Интерференция волн разной длины

Так что же представляют собой фотоны, электроны, камни и всё остальное? Это частицы или волны? Чтобы убедиться в отсутствии противоречий в квантовомеханическом описании природы вещей, нам надо подробнее обсудить волны и их интерференцию. Обсуждая рис. 3.2 и 3.3, мы уже говорили о том, что волны могут интерферировать конструктивно, давая более крупную волну, и деструктивно – так, что получается волна меньшего размера или волны полностью гасят друг друга. В примерах, представленных на рис. 3.2 и 3.3, волны имеют одинаковую длину. Когда они складываются конструктивно (см. рис. 3.2), все положительные пики одной волны приходятся на положительные пики другой, и то же самое относится к отрицательным пикам, так что в результате их амплитуда увеличивается. Когда волны складываются деструктивно (см. рис. 3.3), положительные пики приходятся на отрицательные и наоборот, что приводит к их гашению. Однако волны разной длины тоже могут интерферировать.

На рис. 6.2 изображены графики пяти волн разной длины. Единицы измерения длины здесь не имеют значения. Важно то, что эти пять волн имеют длины λ, равные 1,2; 1,1; 1,0; 0,9 и 0,8. Фазы этих волн подогнаны так, чтобы они совпадали в точке x=0, где x – горизонтальная ось. Волны совпадают в точке x=0 в том смысле, что все они имеют в этом месте положительный пик. Однако поскольку волны имеют разную длину, их пики не обязательно будут совпадать в других точках вдоль оси x. Например, вблизи точек x=10 и −10 тёмно-серая волна имеет максимум, а светло-серая пунктирная – минимум. Вдобавок около точки x=10 одна волна имеет отрицательное значение, а другая – положительное. В окрестностях x=16 и −16 две волны имеют максимум, а одна волна – минимум. Важный момент здесь состоит в том, что при разной длине все волны могут совпадать в одной точке (x=0, например), но в общем случае, в других точках, одни волны будут положительными, а другие – отрицательными.

Рис. 6.2.Пять изображённых здесь волн имеют разную длину λ: 1,2; 1,1; 1,0; 0,9 и 0,8. Их фазы подобраны таким образом, чтобы пики всех волн приходились на точку 0 по горизонтальной оси. Однако поскольку волны имеют разную длину, они не совпадают в других местах в отличие от рис. 3.2. Обратите внимание на то, что вблизи точек x=10 и10 тёмно-серая волна имеет положительный пик, тогда как пунктирная светло-серая волна – отрицательный

На рис. 6.3 показан результат суперпозиции (сложения) пяти волн с рис. 6.2. В точке x=0 (на горизонтальной оси) рис. 6.2 все волны точно совпадают по фазе. В результате их суперпозиция (сложение всех волн), представленная на рис. 6.3, здесь образует максимум. На рис. 6.2 эти волны совпадают по фазе только в точке строго x=0. Тем не менее вблизи x=0 различие в длинах волн ещё не даёт большого сдвига пиков одной волны относительно другой, так что волны остаются очень близкими по фазе. Другой набор максимумов возникает вблизи точек x=6 и −6. Однако эти максимумы не столь велики, как в точке x=0, поскольку, как видно на рис. 6.2, не все пики волн совпадают друг с другом. За пределами x=±10 амплитуда суперпозиции становится небольшой. В любой точке одни волны положительные, а другие – отрицательные, и это приводит к деструктивной интерференции. Поскольку имеется только пять волн, деструктивность этой интерференции оказывается лишь частичной.

Рис. 6.3.Суперпозиция пяти волн, изображённых на рис. 6.2. В точке x=0 (по горизонтальной оси) волны на рис. 6.2 находятся в фазе, так что они складываются конструктивно. Вблизи x=0 волны всё ещё очень близки по фазе, но следующие максимумы возле точек x=6 и6 уже не столь велики, как максимум на x=0. В областях от 10 до 20 и от10 до20 вследствие разницы в длинах волн одни волны оказываются положительными, а другие – отрицательными. Здесь имеет место их значительное взаимное подавление

Рис. 6.4.Суперпозиция 250 волн с длинами, равномерно распределёнными в диапазоне от 0 до 4. По сравнению с рис. 6.3, где показана суперпозиция пяти волн, эта суперпозиция имеет значительно более выраженный пик при x=0, в области максимальной конструктивной интерференции, а деструктивная интерференция вызывает более сильное подавление в других областях. Амплитуда суперпозиции сходит на нет с приближением к отметке 20

На рис. 6.4 показана суперпозиция 250 волн разной длины. Длины этих волн равномерно распределены в диапазоне от 0 до 4. Как и в случае с пятью волнами (см. рис. 6.2) и их суперпозицией (см. рис. 6.3), все эти волны имеют одинаковую амплитуду. Фазы 250 волн подогнаны так, чтобы совпадать при x=0. Поскольку здесь волн гораздо больше и диапазон их длин шире, чем в случае, представленном на рис. 6.3, пик вблизи x=0 значительно уже и с удалением от него затухание происходит гораздо быстрее. Небольшие осцилляции возникают вследствие того факта, что все волны в суперпозиции имеют одинаковую амплитуду. Если амплитуда волны в середине распределения по длинам волн является наибольшей, а амплитуды других волн становятся всё меньше и меньше по мере удаления от средней длины волны, то можно получить суперпозицию, которая плавно спадает до нуля без набора убывающих по амплитуде осцилляций. Этот тип суперпозиции будет обсуждаться ниже.

Принцип суперпозиции

В главе 5 интерференционный эксперимент анализировался в терминах суперпозиции двух трансляционных состояний фотона: T1 и T2. Фотон в интерферометре описывается как находящийся в состоянии суперпозиции 50 на 50: T=T1+T2. Идея суперпозиции играет центральную роль в описании природы с точки зрения квантовой теории, а так называемый принцип суперпозиции утверждает, что «всякая система в определённом состоянии всегда может рассматриваться как находящаяся отчасти в каждом из двух или более состояний».

Исходное состояние может рассматриваться как суперпозиция двух или более состояний, подобно задаче с интерферометром, где трансляционное состояние фотона T может быть описано как суперпозиция T1 и T2. И наоборот, два или более состояния могут накладываться друг на друга, порождая новое состояние. Именно это, второе, утверждение мы будем использовать для понимания фундаментальной природы частиц. Тот факт, что фотон может вести себя как частица в случае фотоэлектрического эффекта и как волна при интерференции, вытекает из принципа суперпозиции и влечёт за собой принцип неопределённости Гейзенберга.

Собственные состояния

При обсуждении рис. 6.1 говорилось, что свободная частица с чётко определённым импульсом p представляет собой делокализованную волну амплитуды вероятности, распределённую по всему пространству. Про такую частицу говорят, что она находится в собственном состоянии по импульсу. При обсуждении задачи об интерференции мы называли T1 и T2 чистыми состояниями, однако их корректное название – собственные состояния. Собственное состояние для конкретной наблюдаемой физической величины, такой как импульс, – это состояние с чётко определённым значением данной величины.

Свободная частица, находящаяся в собственном состоянии по импульсу, полностью делокализована в пространстве. Для каждого из бесконечного числа возможных значений импульса существует по одному такому собственному состоянию. Положение частицы однородно размазано по всему пространству, поскольку волновая функция, связанная с этим собственным состоянием, распределена по всему пространству. Однако, согласно принципу суперпозиции, новое состояние может быть образовано из любого числа собственных состояний по импульсу.

Суперпозиция волн амплитуды вероятности импульсных собственных состояний

Для понимания природы реальных частиц – фотонов, электронов и т. п. – мы будем строить суперпозиции волн амплитуды вероятности для целых диапазонов импульсных собственных значений, подобно тому как это было показано на рис. 6.1. Для каждого импульса p волна имеет свою длину: – λ=h/p. Из рис. 6.3 и 6.4 видно, что сложение волн с различными длинами приводит к концентрации амплитуды волны в определённой области пространства. Как отмечалось в обоих рассмотренных выше примерах, амплитуда всех волн в этих суперпозициях была одинаковой.

Теперь мы будем складывать импульсные волны амплитуды вероятности с различными амплитудами. Есть одна волна (определённое значение p) с наибольшей амплитудой. И чем больше другие волны отличаются от неё по длине, тем меньше их амплитуда. Длина волны с максимальной амплитудой находится в центре распределения. Под распределением имеется в виду просто диапазон длин волн. Представьте себе такую аналогию: комната, полная людей, которые распределены по возрасту. Некоторые люди будут иметь средний возраст, соответствующий центру распределения, другие будут старше или моложе среднего. В нашем случае имеется волна в центре распределения и другие волны – более короткие и более длинные.

Рис. 6.5. График вероятности обнаружить частицу в конкретном импульсном собственном состоянии, соответствующем импульсу p, задаётся как суперпозиция импульсных волн амплитуды вероятности. Значение p 0 – это средняя волна с наибольшей амплитудой в данном распределении. Величина ∆p служит мерой ширины распределения собственных значений

На рис. 6.5 показано распределение волн амплитуды вероятности для импульсных состояний. Значение p0 – это импульс волны в центре распределения. Она имеет длину λ=h/p0. Это волна с наибольшей амплитудой, с наибольшей вероятностью обнаружения в данном распределении. При увеличении или уменьшении импульса относительно p0 (λ соответственно будет меньше или больше) величина отдельной волны в суперпозиции (её вероятность) убывает. Величина ∆p служит мерой ширины распределения. Если значение ∆p велико, имеется большой разброс по p, а значит, и большая ширина распределения длин волн. Если значение ∆p мало́, то мала и ширина распределения длин волн.

Импульс свободной частицы в состоянии суперпозиции

Чему равен импульс свободной частицы, которая находится в суперпозиции собственных состояний импульса, как показано на рис. 6.5? Суперпозиция собственных состояний импульса означает, что мы просто складываем (накладываем друг на друга) группу волн (амплитуды вероятности), где каждой волне соответствует конкретное (собственное) значение импульса. При любом измерении любой характеристики – системы будет получено конкретное значение этой характеристики. Если мы измерим импульс частицы, то получим одно конкретное значение импульса. Природа возмущения, сопутствующего измерению абсолютно малого объекта, состоит в том, что состояние суперпозиции коллапсирует в одно-единственное собственное значение. Выполнение измерений меняет систему, переводя её из исходного состояния суперпозиции в одно из конкретных собственных значений. Именно это мы называем коллапсом.

При обсуждении задачи об интерференции говорилось, что если попытаться обнаружить, находится ли фотон в состоянии T1, поместив детектор в первое плечо интерферометра, то состояние суперпозиции, необходимое для интерференции, будет разрушено. Состояние суперпозиции T превратится либо в T1, либо в T2. Поскольку состояние T является суперпозицией в равных пропорциях T1 и T2, в половине измерений результатом будет обнаружение системы в состоянии T1, а в другой половине – T2. В каждом конкретном измерении невозможно заранее узнать, какой будет получен результат. Большое число измерений покажет, что суперпозиция имеет пропорцию 50:50, поскольку в половине случаев фотон обнаружится в первом плече прибора (состояние T1), а в половине случаев – во втором плече (состояние T2).

Суперпозиция собственных значений импульса, показанная на рис. 6.5, состоит из огромного (бесконечного) числа состояний, лежащих в диапазоне импульсов, характеризуемом шириной распределения ∆p. Таким образом, существует широкий диапазон значений импульса, которые могут быть получены в любом отдельном измерении. Если выполнить единичное измерение, будет получено одно из множества этих значений.

Допустим, мы выполнили измерение и обнаружили, что импульс немного больше p0. Обозначим его p1, поскольку это наше первое измерение. В процессе выполнения измерения мы произвели возмущение системы, которым нельзя пренебречь. Она перешла из состояния суперпозиции в состояние с единственным собственным значением импульса p1. Таким образом, для выполнения ещё одного измерения понадобится начать всё сначала и подготовить частицу (систему) тем же способом, которым она была подготовлена изначально, чтобы получить такое же распределение импульсов.

Теперь выполняем второе измерение. На этот раз мы получаем значение, которое несколько меньше p0. Обозначим его p2. Вновь подготовим систему и выполним ещё одно измерение. Назовём результат p3. Каждый раз, выполняя измерения одинаково подготовленных систем, мы будем получать разные конкретные значения импульса. Заранее неизвестно, какое получится значение. Если выполнить очень много измерений, можно построить график вероятности получения различных значений p. Такой график даст распределение, подобное тому, что представлено на рис. 6.5. Невозможно предсказать, какое значение будет получено в отдельном измерении. Однако кое-что нам всё же известно. Весьма маловероятно, что будет получено значение p, которое намного больше или намного меньше p0, поскольку распределение имеет очень малую амплитуду на краях диапазона. Скорее всего, измеренное значение p будет находиться вблизи p0, потому что именно в этой части распределения велика амплитуда.

Импульс частицы в состоянии суперпозиции определён не вполне чётко

Частица, находящаяся в суперпозиции собственных состояний импульса, вроде представленной на рис. 6.5, не имеет чётко определённого значения импульса. Нельзя предсказать, какое его значение будет получено в одном конкретном измерении. Можно утверждать, что, скорее всего, будет получено значение, близкое к p0. Выполнив много измерений, можно найти распределение вероятности.

Классическая частица, подобная той, что показана на рис. 2.5, имеет чётко определённое значение импульса. Измерить это значение можно, не изменяя его. Если частица свободна, можно выполнять новые измерения импульса в разные моменты времени, и всегда будет получено одно и то же значение p. Однако это совсем не так в случае абсолютно малых квантовых частиц, находящихся в состоянии суперпозиции по импульсу. В единичном измерении мы получим одно конкретное значение p, но сам акт измерения фундаментальным образом меняет природу частицы. Частица переходит из состояния суперпозиции в одно из собственных состояний (одиночная волна с единственным значением импульса). Из состояния, в котором существует распределение вероятности по импульсам, частица переходит в состояние с единственным значением импульса – тем, которое наблюдалось. Чтобы восстановить распределение, частицу необходимо подготовить заново.

Где находится частица, когда она пребывает в состоянии суперпозиции по импульсу?

При обсуждении рис. 6.1 говорилось, что частица, находящаяся в отдельном собственном состоянии импульса, делокализована по всему пространству. Это совсем не согласуется с описанием фотоэлектрического эффекта, поэтому теперь возникает вопрос: где находится частица, которая пребывает в состоянии суперпозиции? Определённый намёк на ответ мы уже получили, обсуждая рис. 6.2–6.4. Из рис. 6.3 и 6.4 видно, что суперпозиция волн разной длины порождает распределение, которое концентрируется в некоторой области пространства. На рис. 6.3 длина волны изменяется от 0,8 до 1,2 и распределение выглядит не столь сильно сконцентрированным в одной области, как на рис. 6.4, где длина волны изменяется от 0 до 4. На рис. 6.6 показано пространственное распределение, соответствующее распределению волн (импульсных собственных состояний), изображённому на рис. 6.5. Есть положение, где пространственное распределение достигает максимума, и это положение также является средним. Для значений x, больших и меньших, чем x0, амплитуды (вероятности) становятся меньше.

Рис. 6.6.График вероятности обнаружения частицы в точке x, когда она находится в суперпозиции собственных состояний по импульсу, показанной на рис. 6.5. Точка x0 соответствует среднему положению с наибольшей вероятностью. Величинаx служит мерой ширины пространственного распределения

Что означает распределение вероятности положений (значений x)? Частица с распределением вероятности по импульсам, изображённым на рис. 6.5, даёт пространственное распределение вероятности, представленное на рис. 6.6. Одиночное измерение положения даёт конкретное значение координаты. Обозначим его x1. Выполнение измерения абсолютно малой квантовой частицы вызывает возмущение, которым нельзя пренебречь, что приводит к коллапсу пространственного распределения вероятности до собственного значения с чётко определённой координатой. Чтобы выполнить другое измерение, систему (частицу) надо подготовить заново прежним способом, тогда она будет иметь такое же распределение вероятности по импульсу и, следовательно, такое же пространственное распределение вероятностей. Второе измерение положения частицы даст значение x2, которое в общем случае не будет совпадать с x1. Если, подготавливая систему вновь и вновь, выполнить много измерений положения, обнаружится распределение вероятности по координате, изображённое на рис. 6.6. Величина ∆x служит мерой ширины пространственного распределения. Пространственное распределение, изображённое на рис. 6.6, определённое по множеству измерений идентично подготовленных систем, говорит о вероятности получить при измерении любое конкретное значение положения. С наибольшей вероятностью измерение обнаружит частицу где-то вблизи точки x0, но для любого отдельного измерения невозможно сказать, где будет найдена частица. В то же время мала вероятность получить при измерении положения значение, далёкое от x0.

Волновые пакеты

Частица, находящаяся в суперпозиции собственных состояний импульса, как это показано на рис. 6.5, называется волновым пакетом. Импульс её более или менее известен – с точностью до величины ∆p. Поскольку импульс – это произведение массы и скорости, а массу частицы мы знаем, то нам примерно известна её скорость. Чем больше ∆p (чем шире распределение импульсов в волновом пакете), тем хуже определён импульс, а значит, при отдельных измерениях будут получаться значения импульса, лежащие в более широком диапазоне. Волновой пакет также растянут и по положению. Частица не находится в конкретной точке x, как в классической физике. Существует разброс координат, задаваемый распределением вроде того, что изображён на рис. 6.6, а количественно его можно охарактеризовать шириной распределения ∆x.

Разброс по импульсу и координате

На рис. 6.7 изображены два волновых пакета. В верхней части показан волновой пакет, состоящий из сравнительно широкого распределения собственных состояний импульса. Большой разброс собственных состояний импульса (большое значение ∆p) приводит к относительно узкому пространственному распределению (малому значению ∆x). В нижней части рисунка показан волновой пакет, составленный из сравнительно узкого распределения собственных значений импульса (с малой величиной ∆p), что приводит к большому разбросу в пространственном распределении (большой величине ∆x).

Связь между ∆p и ∆x, проиллюстрированная на рис. 6.7, носит универсальный характер. Волновой пакет, охватывающий большой диапазон импульсов (с большой неопределённостью импульса), будет иметь небольшой разброс по положению (малую неопределённость координаты). Эта взаимосвязь порождается интерференцией. Волновой пакет, составленный из широкого набора собственных значений импульса, обладает широким спектром длин волн, поскольку каждому собственному значению импульса соответствует волна амплитуды вероятности длиной λ=h/p.

Рис. 6.7.Распределение вероятности импульса (p) и распределение вероятности координаты (x) для двух волновых пакетов. В верхней части имеет место широкий разброс p (большое значениеp), который порождает малый разброс по x (малое значениеx). В нижней части разброс по p мал (p мало́), что приводит к увеличению разброса по x (x велико)

Все волны амплитуды вероятности в пакете могут конструктивно интерферировать в некоторой точке пространства. Однако, как показано на рис. 6.2, с удалением от этой центральной точки конструктивной интерференции нарастает деструктивная интерференция. В любой точке, далёкой от этого центра, одни волны будут положительными, а другие – отрицательными (см. рис. 6.2). Когда разброс длин волн велик, большая разница в длинах волн приводит к тому, что деструктивная интерференция начинается очень близко от центральной точки максимальной конструктивной интерференции, и пакет оказывается узким (большое значение ∆p, малое – ∆x). Когда разброс по длинам волн мал, то есть длины волн различаются несущественно, надо значительно удалиться от центральной точки идеальной конструктивной интерференции, чтобы добраться до места, где равное число волн имеет положительные и отрицательные значения. В этом случае значение ∆p мало́, а ∆x – велико.

Ввиду особой важности представления о разбросе по импульсу и о связанном с ним разбросе по координате давайте ещё раз рассмотрим смысл разброса. Всё это связано с экспериментами. В отдельном эксперименте по измерению импульса частицы может быть получено лишь одно значение. У вас есть некоторый инструмент. Он выдаёт одно число. Он не может сообщить, что импульс равен одновременно 10 и 50. Каким же образом мы получаем одно значение, если наш пакет обладает распределением импульсов?

Волновой пакет состоит из суперпозиции собственных значений импульса, то есть импульсных волн амплитуды вероятности, однозначно связанных со значениями импульса. Когда выполняется измерение, сопутствующее ему непренебрежимое возмущение заставляет систему «перепрыгнуть» из состояния суперпозиции в определённое собственное состояние. Измерение даёт значение импульса, которое соответствует данному собственному состоянию. Обратите внимание на то, что измерение меняет систему. Чтобы выполнить ещё одно измерение, нужно начать сначала и подготовить частицу тем же способом, что и в первый раз. При повторении процедуры подготовления волнового пакета он будет состоять из той же суперпозиции собственных значений импульса. Теперь выполним то же самое измерение, что и в первый раз. В общем случае мы получим другое значение импульса, поскольку волновой пакет состоит из множества импульсных волн, с каждой из которых связано своё наблюдаемое значение импульса.

Выполнив огромное число измерений, мы можем получить значение 400 (единицы в данном случае не важны) тысячу раз, значение 390 – восемьсот раз, 410 – восемьсот раз, но 200 и 600 – только по двадцать раз. Если по всем этим числам построить график, получится распределение вероятности, подобное тем, что показаны для импульса в левой части рис. 6.7. Такое распределение вероятности – это результат экспериментального определения состава волнового пакета. Теперь мы знаем, какова величина (вероятность) каждой волны в пакете. Такое же описание применимо и к положению нашего волнового пакета. Каждое измерение положения волновых пакетов, подготовленных идентичным образом, даёт одно положение зарегистрированной частицы. После множества измерений получается распределение по координате, подобное тем, что представлены в правой части рис. 6.7.


    Ваша оценка произведения:

Популярные книги за неделю