355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Майкл Файер » Абсолютный минимум. Как квантовая теория объясняет наш мир » Текст книги (страница 12)
Абсолютный минимум. Как квантовая теория объясняет наш мир
  • Текст добавлен: 12 октября 2016, 04:34

Текст книги "Абсолютный минимум. Как квантовая теория объясняет наш мир"


Автор книги: Майкл Файер


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 29 страниц)

Формы d-орбиталей

При n=3 число l может быть равно 0, что даёт 3s-орбиталь. Также l может быть равно 1, что при m = 1, 0, −1 даёт три различные 3p-орбитали. Кроме того, l может быть равно 2, что при m = 2, 1, 0, −1, −2 даёт пять различных 3d-орбиталей. Они показаны на диаграмме энергетических уровней (см. рис 10.1). На рис. 10.8 изображено пять различных 3d-орбиталей. Как и p-орбиталям, d-орбиталям часто дают названия, отражающие их форму, вместо того чтобы обозначать их квантовым числом m. Четыре из этих орбиталей имеют в целом одинаковую форму. У каждой имеется четыре лепестка и две узловые плоскости. Два из этих лепестков положительные, а другие два отрицательные. При пересечении узловой плоскости волновая функция меняет знак. Пятая орбиталь (dx2) имеет другую форму, но у неё по-прежнему две узловые поверхности. Это конические поверхности, изображённые на диаграмме. Как и в случае с p-орбиталями, на рис. 10.8 тоном выделены области с наибольшей амплитудой вероятности обнаружения электрона. Эти волны амплитуды вероятности спадают к нулю с увеличением расстояния от ядра.

Рис. 10.8. Схематическое изображение пяти 3d-орбиталей атома водорода, обозначенных в соответствии с их формой. Каждая орбиталь имеет две узловые поверхности, а также положительные и отрицательные лепестки. На четырёх из них узловые поверхности имеют вид плоскостей, а на пятой – форму конусов. При пересечении узловых поверхностей волновая функция меняет знак. Лепестки на каждой диаграмме показывают, где расположены области наибольшей амплитуды вероятности для электрона. Четыре орбитали содержат по четыре лепестка каждая. Однако d x2 – орбиталь имеет другую форму. У неё по-прежнему две узловые поверхности, но они имеют коническую форму. Все эти волны амплитуды вероятности плавно спадают к нулю с удалением от ядра (протона), а не обрываются резко, как на этих диаграммах

При n=4 в дополнение к s, p, d-орбиталям число l может быть равно 3, что позволяет числу m принимать семь различных значений. Существует семь f-орбиталей. Эти f-орбитали имеют по три узловые поверхности и обладают очень сложными формами. Как объясняется в следующей главе, посвящённой атомам тяжелее водорода, лишь очень тяжёлые элементы обладают электронами на f-орбиталях, и эти электроны обычно не принимают участия в образовании химических связей. Многие молекулы, в особенности те, в которых основным элементом является углерод, так называемые органические молекулы, зависят в основном от 2s– и 2p-орбиталей. Однако молекулы, содержащие тяжёлые элементы, например металлы, могут зависеть также и от d-орбиталей.

В главе 11 мы построим обсуждение так, чтобы, отталкиваясь от свойств атома водорода, понять свойства всех атомов. Поскольку эти более крупные атомы содержат больше одного электрона, в игру вступает четвёртое квантовое число s. Опираясь на ряд простых правил, мы сможем понять многие свойства атомов и разобраться в том, как они образуют молекулы.

11. Многоэлектронные атомы и Периодическая таблица элементов

Свойства атомарной и молекулярной материи определяются квантовомеханическими особенностями атомов, из которых состоит вещество. Обычная поваренная соль – это хлорид натрия, NaCl. Na – это символ атома натрия. Его атомный номер – 11. Атомный номер – это число протонов в ядре, то есть величина положительного заряда ядра. У атома натрия 11 протонов в ядре и 11 отрицательно заряженных электронов. Хлор (обозначается Cl) имеет атомный номер 17. У атома хлора 17 протонов в ядре и 17 электронов. Когда поваренную соль, состоящую из маленьких белых кристаллов NaCl, опускают в воду, она растворяется. В воде Na становится положительно заряженным ионом натрия Na+ (это натрий, потерявший один электрон), хлор обращается в отрицательно заряженный хлорид-ион Cl (это хлор, присоединивший дополнительный электрон). Натрий отдаёт электроны хлору, и в результате получается катион натрия (положительно заряженный ион) и анион хлора (отрицательно заряженный ион). Заряды, которые несут катион натрия и анион хлора, делают эти ионы легко растворимыми в воде.

Метан – это природный газ, горящий в наших печах, в газовых сушилках для одежды и на тепловых электростанциях. Его химическая формула CH4. Это означает, что он состоит из одного атома углерода (символ C, атомный номер 6), связанного с четырьмя атомами водорода (символ H, атомный номер 1). Метан не превращается в ионы, попадая в воду. В действительности он не растворяется в воде. Если не разогреть его до очень высокой температуры, как в пламени, он вообще не распадается на части. Почему NaCl распадается на отдельные ионы Na+ и Cl при растворении в воде, почему углерод всегда образует четыре химические связи и почему метан не распадается на части в воде, образуя ионы? Ответы на эти вопросы и объяснение множества свойств всех атомов можно получить, рассматривая природу многоэлектронных атомов и совокупность систематизированной информации об атомах, содержащейся в Периодической таблице элементов.

Водород – особый

Атом водорода отличается от всех прочих атомов, и это отличие чрезвычайно важно. Атом водорода состоит из положительно заряженного ядра (протона) и одного отрицательно заряженного электрона. Единственное электростатическое взаимодействие в нём – это притяжение электрона к протону, поскольку противоположно заряженные частицы притягиваются. Следующий по простоте атом – гелий. Гелий состоит из положительно заряженного ядра с зарядом +2 (символ He, атомный номер 2) и двух электронов, каждый с отрицательным зарядом −1. Каждый электрон притягивается к ядру; кроме того, два электрона отталкиваются друг от друга, поскольку оба заряжены отрицательно. Это взаимодействие называют электрон-электронным отталкиванием{15}. Поскольку атом водорода имеет лишь один электрон, в нём нет электрон-электронного отталкивания.

На диаграмме энергетических уровней атома водорода (рис. 10.1) орбитали с одинаковым главным квантовым числом n имеют одну и ту же энергию. Таким образом, орбитали 2s и 2p обладают одинаковой энергией. У орбиталей 3s, 3p и 3d энергия тоже одинакова и т. д. Тот факт, что энергия зависит лишь от главного квантового числа, является следствием наличия у водорода единственного электрона. На рис. 10.2, 10.7 и 10.8 формы s-, p– и d-орбиталей существенно различаются. Однако в атоме водорода электрон в среднем находится на одинаковом расстоянии от ядра независимо от формы орбиталей. Поэтому он обладает одинаковой энергией вне зависимости от того, находится он на 3s-, 3p– или 3d-орбитали. Почему? Потому что электрон испытывает одинаковое притяжение к ядру, если усреднять его по пространственному распределению, задаваемому волновыми функциями 3s, 3p или 3d.

Формы орбиталей важны для атомов крупнее водорода

При наличии в атоме более чем одного электрона форма орбиталей становится важна. В атоме гелия, если два его электрона поместить на 2s-орбиталь, энергия будет ниже, чем если поместить их на 2p-орбиталь. В среднем два электрона на 2s-орбитали находятся дальше друг от друга, чем два электрона на 2p-орбитали. Электрон-электронное отталкивание увеличивает энергию. Поскольку два электрона на 2s-орбитали находятся дальше друг от друга, электрон-электронное отталкивание (повышающее энергию) будет не таким сильным, как если бы два электрона находились на 2p-орбитали. Поэтому в многоэлектронных атомах (во всех атомах, кроме водорода) 2s-орбиталь имеет более низкую энергию, чем 2p-орбиталь. При n=3 два электрона на 3s-орбитали в среднем находятся дальше друг от друга, чем если бы они занимали 3p-орбиталь, а два электрона на 3p-орбитали находятся дальше друг от друга, чем если бы они находились на 3d-орбитали. Поэтому 3s-орбиталь ниже по энергии, чем 3p-орбитали, которые, в свою очередь, ниже по энергии, чем 3d-орбитали. Однако 3s-орбитали выше по энергии, чем 2s-орбитали. В среднем электроны на 3s-орбитали находятся дальше от ядра, поскольку 3s-орбиталь больше, чем 2s-орбиталь (см. рис. 10.2, 10.5 и 10.6), а значит, слабее притягиваются к ядру. Следствием более слабого притяжения является более высокая энергия. Притяжение к ядру связывает электрон с ядром. Принятое в физике соглашение о знаке потенциальной энергии устанавливает, что более сильная связь соответствует более низкой энергии. Электроны проваливаются в притягивающий колодец положительно заряженного ядра. Чем сильнее притяжение, тем глубже погружается электрон в потенциальную яму и тем больше нужно энергии, чтобы извлечь из неё электрон, то есть оторвать его от ядра.

Энергетические уровни многоэлектронного атома

Для заданного главного квантового числа n энергия упорядочена следующим образом: ns<np<nd<nf. Для одного и того же типа орбитали чем больше n, тем выше энергия. Важная особенность многоэлектронных атомов состоит в том, что энергия зависит от двух квантовых чисел: n и l. Квантовое число l называют орбитальным, поскольку оно определяет форму орбитали.

На рис. 11.1 приведена диаграмма энергетических уровней для многоэлектронных атомов. При n=1 существует единственный тип орбитали: l=0 – это s-орбиталь, так что 1s-орбиталь имеет самый низкий уровень энергии. Для n=2 значение l может быть равно 0 или 1. Эти значения l порождают 2s-орбиталь и три различные 2p-орбитали. При l=1 существуют три возможных значения m:m = 1, 0, −1. Тут всё так же, как и у водорода. Важное отличие состоит в том, что у многоэлектронных атомов 2s-орбиталь имеет более низкую энергию, чем 2p-орбитали (см. рис. 11.1). При n=3 существуют 3s-орбиталь, 3p-орбитали и 3d-орбитали. Как видно из рис. 11.1, 3s-орбитали лежат ниже (по энергии), чем 3p-орбитали, которые, в свою очередь, лежат ниже 3d-орбиталей.

Очень важная особенность этого упорядочения энергетических уровней состоит в том, что энергетические уровни с разными значениями квантового числа n перемежаются. Хотя 3d-орбитали лежат выше 3p-орбиталей, энергия 4s-орбитали всё же ниже, чем 3d-орбитали (см. рис. 11.1). Порядок орбиталей также показан на рис. 11.1, где видно, что энергетические уровни следуют в порядке: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d и т. д. Как объясняется далее, перестановка уровней 4s и 3d приводит к появлению первого ряда переходных металлов, а перестановка 5s и 4d порождает второй ряд переходных металлов{16}. Этот порядок очень важен при определении свойств различных атомов. Перестановки в этом порядке и смысл рядов переходных металлов прояснятся после обсуждения Периодической таблицы элементов. Однако сначала надо разобраться, как электроны заполняют энергетические уровни, изображённые на рис. 11.1.

Рис. 11.1.Диаграмма энергетических уровней для атомов с множеством электронов. Для интервалов между уровнями масштаб не соблюдается. Энергия зависит от главного квантового числа n и орбитального квантового числа l, и в этом заключается отличие от атома водорода (см. рис. 10.1), где энергия зависит только от n. Для n=4 существует одна s-орбиталь (l=0), три различные p-орбитали (l=1), пять различных d-орбиталей (l=2) и семь различных f-орбиталей (l=3)

Три правила заполнения энергетических уровней электронами

Атом водорода имеет ядро с зарядом +1 и единственный отрицательно заряженный электрон. Атом гелия имеет ядро с зарядом +2 и два отрицательно заряженных электрона. Далее идёт литий (Li) с зарядом ядра +3 (атомный номер 3) и тремя отрицательными электронами, за которым следует бериллий (Be) с ядром +4 и четырьмя отрицательными электронами и т. д. Вопрос состоит в следующем: если есть атом с определённым числом электронов вроде бериллия, у которого их четыре, то на каких энергетических уровнях будут располагаться эти электроны? У водорода самое низкое энергетическое состояние – то, в котором единственный электрон находится на 1s-орбитали. Если возбудить 1s-электрон водорода до, скажем, состояния 2p (добавив ему энергии за счёт поглощения света или с помощью электрической дуги), он свалится обратно в низшее энергетическое состояние и, согласно закону сохранения энергии, испустит фотон. Такая эмиссия фотонов с различных энергетических уровней атома водорода порождает линейчатый спектр, обсуждавшийся в главах 9 и 10. Однако неясно, что делать, когда электронов больше одного. Должны ли все четыре электрона бериллия переходить на 1s-орбиталь? Оказывается, это невозможно.

Квантовая теория, подтверждённая бесчисленными экспериментами, дала три правила, которые определяют, как размещать электроны по энергетическим уровням (см. рис. 11.1) для получения электронных конфигураций различных атомов. Мы будем опираться на так называемый ауфбау-принцип{17}, три правила которого указывают, как размещать электроны по энергетическим уровням в правильном порядке – как в настоящих атомах. Мы будем строить атомы и конструировать Периодическую таблицу, «заселяя» всё больше электронов во всё более крупные атомы на соответствующие энергетические уровни. Многие свойства атомов, их склонность приобретать или терять электроны, образуя ионы, число химических связей, которые они образуют, становятся понятны благодаря ауфбау-принципу, позволяющему построить Периодическую таблицу.

Правило 1: принцип запрета Паули

Правило 1 – это принцип запрета Паули. Он утверждает, что ни у каких двух электронов в атоме (или молекуле) не могут совпадать все четыре квантовых числа. Существуют четыре квантовых числа: n, l, m и s. Для водорода мы использовали первые три, но теперь становится важным и s. Число s может принимать лишь два значения: s = +½ или −½. Поэтому на конкретной орбитали, заданной квантовыми числами n, l, m, может располагаться не более двух электронов. Один из этих электронов будет иметь s=+½, а другой – s=−½. Например, 1s-орбиталь имеет n=1, l=0, m=0 и s = +½ или −½. Таким образом, 1s-орбиталь могут занимать два электрона: один со спином +½ и один со спином −½.

Для 2p-орбиталей n=2, l=1, m=1, 0, −1 и s = +½ или −½. Орбитали px, py и pz (см. рис. 10.7) могут содержать по два электрона каждая: один с s=+½, а другой обязательно с s=−½. Таким образом, всего может быть шесть 2p-электронов – по два на каждой из трёх орбиталей. 3d-орбитали имеют квантовые числа n=3, l=2, m = 2, 1, 0, −1, −2 и s = +½ или −½. Существует пять 3d-орбиталей, и на каждой могут размещаться два электрона (s = +½ или −½) – всего 10 d-электронов по два на пяти орбиталях. Наконец, существует семь 4f-орбиталей с квантовыми числами n=4, l=3, m = 3, 2, 1, 0, −1, −2, −3 и s = +½ или −½. Следовательно, всего может быть 14 f-электронов, по два на каждой из семи орбиталей.

Когда два электрона находятся на одной орбитали, их спины называют спаренными. Электрон на орбитали (энергетическом уровне) изображается стрелкой (см. рис. 11.2). Спиновое квантовое число s=+½ изображается стрелкой, направленной вверх. Спиновое квантовое число s=−½ изображается стрелкой, направленной вниз. На любой отдельно взятой орбитали может быть не более одной стрелки вверх и одной стрелки вниз.

Рис. 11.2.Слева: электрон изображён стрелкой на орбитали. Справа: два электрона на одной орбитали. Чтобы удовлетворять принципу запрета Паули, их квантовые числа s должны иметь значения +½ и −½, представленные стрелками, направленными вверх и вниз. О таких спинах говорят, что они спаренные

Правило 2: сначала наименьшая энергия, но без нарушения принципа Паули

Правило 2 состоит в том, что орбитали заполняются электронами в порядке увеличения энергии. Электроны сначала заселяют самый нижний доступный энергетический уровень, но при этом не должен нарушаться принцип Паули. Таким образом, в атоме гелия (He) электроны могут занять энергетический уровень 1s – один со спином «вверх» (s=+½) и один со спином «вниз» (s=−½). Три квантовых числа совпадают, но значения s различаются, так что принцип Паули не нарушается. Li – следующий по величине атом, с тремя электронами. Третий электрон не может разместиться на уровне 1s, поскольку все четыре его квантовых числа (n, l, m и s) совпадали бы с одним из двух других электронов, и, значит, третий электрон должен занять более высокий уровень – 2s-орбиталь. Это самый низкий из доступных уровней для третьего электрона. Поэтому правило 2 предписывает ему заселиться именно сюда.

Правило 3 (правило Хунда): спины не спариваются, если это возможно без нарушения правил 1 и 2

Правило 3 называется правилом Хунда. Оно утверждает, что, заполняя орбитали с одинаковой энергией, электроны остаются по возможности неспаренными. На рис. 11.3 правило Хунда проиллюстрировано на примере 2p-орбиталей. Первый электрон, обозначенный на рисунке цифрой 1, занимает 2px-орбиталь. Этот выбор произволен, поскольку все три 2p-орбитали имеют одинаковую энергию. Согласно правилу Хунда, второй электрон займёт одну из двух других 2p-орбиталей, имеющих одинаковую энергию, так чтобы спины не спаривались. В нашем примере он попадает на 2py-орбиталь. Третий электрон должен заселиться на 2pz-орбиталь – это единственный способ соблюсти правило Хунда, а также правила 1 и 2. Наконец, четвёртый электрон спаривается с одним из остальных электронов. Как показано на рисунке, он занимает 2px-орбиталь. Его спин должен быть направлен вниз, чтобы соблюдался принцип Паули, правило 1.

Рис. 11.3. Иллюстрация правила Хунда. При заселении 2p-орбиталей электрон 1 занимает 2p x -орбиталь, электрон 2 – 2p y , электрон 3 – 2p z . Все они имеют спин, направленный вверх. Электрон 4 обязан будет иметь спин, направленный вниз, чтобы спариться во избежание нарушения принципа Паули

Правило Хунда возникает потому, что оно даёт электронные конфигурации с наименьшей возможной энергией. При заселении двух электронов на две разные 2p-орбитали они размещаются в среднем дальше друг от друга, чем при заселении на одну и ту же орбиталь. Энергия уменьшается, поскольку удаление электронов друг от друга приводит к ослаблению их взаимного отталкивания. Таким образом, правило Хунда, по сути, требует помещать электроны по возможности на разные орбитали. Хотя факт уменьшения энергии при сохранении электронов неспаренными весьма важен, величина, на которую снижается энергия, незначительна. Поэтому лучше спарить электрон 4 на 2px-орбитали, чем разместить его неспаренным на более высокоэнергетической 3s-орбитали.

Периодическая таблица элементов

Итак, мы изложили правила расселения электронов по энергетическим уровням, изображённым на рис. 11.1. Теперь эти правила будут использоваться для понимания многочисленных свойств атомов и Периодической таблицы элементов. Кроме того, точно такие же правила будут очень важны при обсуждении молекул в последующих главах. Однако сначала нам необходимо познакомиться с Периодической таблицей (рис. 11.4).

В Периодической таблице каждому элементу соответствует клетка. В этой клетке записан символ элемента, а также его атомный номер. Атомный номер – это число положительно заряженных протонов в ядре элемента. Для нейтрального атома (в отличие от положительно или отрицательно заряженного иона) атомный номер – это также число отрицательно заряженных электронов. О строении Периодической таблицы будет во всех подробностях рассказано далее. В её левом верхнем углу расположен водород (символ H, атомный номер 1). В правом верхнем углу находится гелий (символ He, атомный номер 2). Под водородом располагается литий (символ Li, атомный номер 3).

Рис. 11.4. Периодическая таблица элементов

Многие символы являются просто аббревиатурами названий. Но это не всегда так. Например, свинцу (элемент 82) соответствует буквенный символ Pb, производный от латинского названия свинца plumbum. Поскольку по символам не всегда легко понять, как называется элемент, в табл. 11.1 приведены названия, символы и атомные номера элементов. Названия элементов в таблице упорядочены по алфавиту. Если по буквенному символу элемента вы не можете определить его название, просматривайте сверху вниз колонку символов, пока не найдёте нужный.

Таблица 11.1. Список элементов (в алфавитном порядке названий)

Элемент, Символ, Атомный №

Азот N 7

Актиний Ac 89

Алюминий Al 13

Америций Am 95

Аргон Ar 18

Астат At 85

Барий Ba 56

Бериллий Be 4

Берклий Bk 97

Бор B 5

Борий Bh 107

Бром Br 35

Ванадий V 23

Висмут Bi 83

Водород H 1

Вольфрам W 74

Гадолиний Gd 64

Галлий Ga 31

Гафний Hf 72

Гелий He 2

Германий Ge 32

Гольмий Ho 67

Дармштадтий Ds 110

Диспрозий Dy 66

Дубний Db 105

Европий Eu 63

Железо Fe 26

Золото Au 79

Индий In 49

Иод I 53

Иридий Ir 77

Иттербий Yb 70

Иттрий Y 39

Кадмий Cd 48

Калий K 19

Калифорний Cf 98

Кальций Ca 20

Кислород O 8

Кобальт Co 27

Коперниций Cn 112

Кремний Si 14

Криптон Kr 36

Ксенон Xe 54

Кюрий Cm 96

Лантан La 57

Ливерморий Lv 116

Литий Li 3

Лоуренсий Lr 103

Лютеций Lu 71

Магний Mg 12

Марганец Mn 25

Медь Cu 29

Мейтнерий Mt 109

Менделевий Md 101

Молибден Mo 42

Мышьяк As 33

Натрий Na 11

Неодим Nd 60

Неон Ne 10

Нептуний Np 93

Никель Ni 28

Ниобий Nb 41

Нобелий № 102

Олово Sn 50

Осмий Os 76

Палладий Pd 46

Платина Pt 78

Плутоний Pu 94

Полоний Po 84

Празеодим Pr 59

Прометий Pm 61

Протактиний Pa 91

Радий Ra 88

Радон Rn 86

Резерфордий Rf 104

Рений Re 75

Рентгений Rg 111

Родий Rh 45

Ртуть Hg 80

Рубидий Rb 37

Рутений Ru 44

Самарий Sm 62

Свинец Pb 82

Селен Se 34

Сера S 16

Серебро Ag 47

Сиборгий Sg 106

Скандий Sc 21

Стронций Sr 38

Сурьма Sb 51

Таллий Tl 81

Тантал Ta 73

Теллур Te 52

Тербий Tb 65

Технеций Tc 43

Титан Ti 22

Торий Th 90

Тулий Tm 69

Углерод C 6

[Унунпентий] Uup 115

[Унунтрий] Uut 113

Уран U 92

Фермий Fm 100

Флеровий Fl 114

Фосфор P 15

Франций Fr 87

Фтор F 9

Хассий Hs 108

Хлор Cl 17

Хром Cr 24

Цезий Cs 55

Церий Ce 58

Цинк Zn 30

Цирконий Zr 40

Эйнштейний Es 99

Эрбий Er 68

В Периодической таблице (см. рис. 11.4) отмечены металлы (белый тон), полуметаллы (полупроводники, тёмно-серый тон) и неметаллы (светло-серый тон). Полуметаллы – эта полоса между металлами (к которым относится большинство элементов) и неметаллами, которые располагаются в верхней правой части таблицы. В нижней части таблицы находятся два ряда элементов, называемых лантаноидами и актиноидами. Лантаноиды начинается с элемента лантана (La), а актиноиды – с актиния (Ac). Они заполняют пробел, отмеченный в таблице. Эти два ряда атомов, в которых задействованы f-орбитали, помещают под остальной таблицей, чтобы она не становилась слишком широкой.

Прежде чем перейти к рассмотрению свойств элементов, мы вкратце пройдёмся по первым двум строкам Периодической таблицы, чтобы почувствовать её структуру и понять, что такое «заполненная оболочка» в применении к электронной конфигурации. Затем мы обсудим, как использовать таблицу для понимания свойств элементов.


    Ваша оценка произведения:

Популярные книги за неделю