Текст книги "Абсолютный минимум. Как квантовая теория объясняет наш мир"
Автор книги: Майкл Файер
сообщить о нарушении
Текущая страница: 18 (всего у книги 29 страниц)
Гибридные атомные орбитали: треугольные молекулы
Как отмечалось при обсуждении рис. 14.3, молекула BH3 треугольная с углами 120° между связями. Атом бора имеет три валентных электрона: два на 2s-орбитали и один на 2p-орбитали. Для образования трёх электронных пар, совместно используемых с тремя атомами водорода, атому бора требуется три неспаренных электрона. В верхней части рис. 14.7 показано, что атом B поднимает один электрон с 2s-орбитали на 2p-орбиталь, чтобы получить три неспаренных электрона. Если молекула лежит в плоскости xy, то задействованными в образовании связей 2p-орбиталями будут 2px и 2py. Для того чтобы молекула BH3 имела форму равностороннего треугольника, три атомные орбитали бора гибридизируются и дают три гибридные атомные орбитали: spa2, spb2 и spc2. Обозначение sp2 указывает на то, что гибридные орбитали состоят из одной s-орбитали и двух разных p-орбиталей. Мы начинаем с трёх разных орбиталей: 2s, 2px и 2py. Орбитали никогда не возникают и не пропадают, поэтому получаются три различные гибридные орбитали. Они показаны в средней части рис. 14.7. Каждая орбиталь имеет положительный и отрицательный лепестки. Соседние лепестки расположены под углом 120° по отношению друг к другу. Каждая из орбиталей содержит по одному из трёх неспаренных валентных электронов атома бора.
В нижней части рис. 14.7 показано связывание атома B с тремя атомами H. Каждый атом H имеет единственный 1s-электрон. 1s-орбиталь атома H объединяется с sp2-орбиталью атома B и образует связывающую молекулярную орбиталь. В результате появляются связывающие пары электронов. Каждая из этих связей между атомами B и H является σ-связью, поскольку имеется ненулевая электронная плотность на прямой, соединяющей ядра. Модель молекулы BH3 представлена на рис. 14.3.
Рис. 14.7.Вверху: валентные электроны бора, один из которых поднят на 2p – орбиталь. Посередине: 2s-, 2px– и 2py-орбитали бора объединяются тремя способами и образуют три гибридные атомные орбитали: spa2, spb2и spc2. Угол между лепестками составляет 120°. Внизу: три гибридные орбитали атома бора образуют связи с 1s-орбиталями трёх атомов H
Гибридные атомные орбитали: тетраэдрические молекулы
В молекуле метана углерод создаёт четыре связи с четырьмя атомами водорода. Как говорилось выше и показано на рис. 14.1 и 14.2, молекула метана имеет форму тетраэдра. На рис. 14.4 видно, что для создания четырёх валентных связей, совместно использующих электронные пары, углерод поднимает один из своих 2s-электронов на 2p-орбиталь. В результате у него появляется четыре неспаренных электрона на 2s-, 2px-, 2py– и 2pz-орбиталях. При обсуждении рис. 14.4 уже довольно подробно объяснялось, что эти четыре атомные орбитали не могут породить одинаковые связи с четырьмя атомами водорода и привести к появлению тетраэдрической молекулы. Поэтому 2s-, 2px-, 2py– и 2pz-орбитали объединяются в четырёх различных комбинациях и образуют четыре гибридные атомные орбитали: spa3, spb3, spc3 и spd3. Обозначение sp3 указывает на то, что каждая из четырёх гибридных атомных орбиталей является комбинацией s-орбитали и трёх различных p-орбиталей.
На рис. 14.8 показано, что четыре sp3-орбитали перекрываются с четырьмя 1s-орбиталями атомов водорода. Изображены только положительные лепестки sp3-орбиталей. Каждая из них имеет небольшой отрицательный лепесток, направленный в сторону, противоположную положительному лепестку, аналогично тому, как это показано на среднем изображении рис. 14.7 для sp2-орбиталей. Орбитали, изображённые штриховыми кривыми, лежат в плоскости страницы. Орбиталь, показанная сплошной кривой, выступает под углом над плоскостью страницы, а орбиталь, показанная штрихпунктирной линией, уходит под углом за плоскость страницы. Угол между любой парой sp3-лепестков составляет 109,5°, что обеспечивает правильную тетраэдрическую форму, о которой говорилось при обсуждении рис. 14.1 и 14.2.
На рис. 14.2 изображены молекулы метана, аммиака и воды. Как уже говорилось, все они имеют тетраэдрическую форму, если включить в рассмотрение неподелённые пары, но молекулы аммиака и воды имеют форму не совсем правильных тетраэдров. Подобно метану, аммиак и вода также используют sp3-гибридизацию для образования связей. Азот в аммиаке NH3 имеет пять валентных электронов. Два из них образуют неподелённую пару. Она не участвует в образовании химических связей. Азот использует три из своих четырёх гибридных sp3-орбиталей для соединения с тремя атомами H. Четвёртая sp3-орбиталь содержит неподелённую пару.
Рис. 14.8. Четыре sp 3 -гибридизированные атомные орбитали углерода и четыре 1s-орбитали водорода в молекуле метана, где атом углерода соединён с четырьмя атомами водорода. Штриховые орбитали лежат в плоскости страницы. Сплошная орбиталь выступает над этой плоскостью. Штрихпунктирная орбиталь лежит за плоскостью страницы. Показаны только положительные лепестки гибридных sp 3 -орбиталей. Четыре гибридные sp 3 -орбитали образуют правильный тетраэдр
Как уже говорилось, угол, образуемый связями H−N−H, немного меньше угла в правильном тетраэдре (109,5°), поскольку пространственное распределение неподелённой пары электронов несколько шире, чем у связывающей пары электронов N−H, и эта более широкая неподелённая пара подталкивает N−H-связи немного ближе друг к другу. Кислород в молекуле воды H2O имеет шесть валентных электронов. Четыре из них образуют две неподелённые пары, которые не участвуют в химической связи. Кислород использует две свои гибридные sp3-орбитали для образования связей с двумя атомами водорода. Две другие sp3-орбитали заняты неподелёнными парами. Эти две неподелённые пары приводят к тому, что угол HOH оказывается меньше, чем угол в правильном тетраэдре, равный 109,5°(см. 14.2).
Углеводороды с одиночной связью
Углеводороды – это молекулы, целиком состоящие из атомов углерода и водорода. Мы начнём обсуждение более сложных, чем метан, углеводородов с молекул, имеющих лишь одиночные связи. Следующим по простоте углеводородом после метана является этан. Он содержит два атома углерода и шесть атомов водорода, а его химическая формула – C2H6. На рис. 14.9 строение этана представлено тремя способами. Вверху показаны только связи между атомами. Каждый атом углерода имеет одиночные связи с тремя атомами водорода и одиночную связь с другим углеродом. В средней части рисунка показаны гибридные атомные орбитали, обеспечивающие химическую связь. Для создания четырёх связей, совместно использующих электронные пары, каждый атом углерода задействует четыре гибридные sp3-орбитали – так же, как и в метане. Три из этих орбиталей у каждого атома углерода служат для создания связи с тремя атомами водорода. Эти sp3-орбитали объединяются с водородными 1s-орбиталями, образуя связывающие МО, обеспечивающие σ-связи. Четвёртая sp3-орбиталь каждого атома углерода образует МО с sp3-орбиталью другого углерода и порождает углерод-углеродную σ-связывающую МО.
В нижней части рис. 14.9 представлено стандартное схематическое изображение пространственного расположения атомов в молекуле. Атомы, которые связаны и лежат в плоскости страницы, соединяются сплошными линиями. Связанные атомы, которые выступают над плоскостью страницы, соединяются узкими закрашенными треугольниками, острый конец которых направлен на атом в плоскости страницы, а противолежащее ему основание располагается возле атома, выступающего над плоскостью. Связанные атомы, которые лежат за плоскостью страницы, соединяются незакрашенными треугольниками, основание которых прилегает к атому в плоскости страницы, а острый угол указывает на атом, находящийся за этой плоскостью. Из представленного схематического изображения видно, что оба атома углерода находятся в центрах тетраэдров. Между любой парой связей атома углерода имеется характерный для тетраэдра угол, равный 109,5°. Длина C−H-связи составляет 1,07 Å (1,07∙10−10 м), а длина связи C−C – 1,54 Å. Атомы углерода крупнее атомов водорода, поэтому расстояние между центрами двух атомов углерода больше, чем в случае атомов C и H.
Рис. 14.9.Три схемы молекулы этана C2H6. Вверху: связи между атомами. В середине: каждый атом углерода имеет четыре sp3-гибридизированные атомные орбитали, три из которых связывают с атомами водорода, а четвёртая – с другим атомом углерода. Сплошные кривые лежат в плоскости страницы, штриховые – над плоскостью страницы, пунктирные – за плоскостью страницы. Внизу: пространственное строение молекулы. Линии лежат в плоскости страницы; закрашенные треугольники поднимаются над плоскостью страницы; незакрашенные треугольники уходят за плоскость страницы. Конфигурация связей обоих атомов углерода тетраэдрическая с углом между связями 109,5°. Связь C−C длиннее связей C−H
На рис. 14.10 представлены шаростержневая (вверху) и объёмная (внизу) модели этана. В совокупности на рис. 14.9 и 14.10 приведено пять различных представлений молекулы этана. Лишь объёмная модель даёт близкое к реальности представление о пространственном строении молекулы. Остальные четыре модели преувеличивают для ясности расстояния между атомами. Атомы в шаростержневой и объёмной моделях на рис. 14.10 имеют одинаковые размеры. В шаростержневой модели связи изображены цилиндрами, а атомы отделены друг от друга связями. Важно понимать, что связи возникают за счёт образования молекулярных орбиталей. Электроны совместно используются атомами, которые не отделены друг от друга, как в шаростержневой модели или в других представлениях. Поверхность объёмной модели охватывает бо́льшую часть электронного распределения вероятностей. В объёмной модели атомы окрашены по-разному, чтобы их легче было различать.
Рис. 14.10. Модель этана: шаростержневая (вверху) и объёмная (внизу). Атомы в обеих моделях изображаются шарами одинакового размера
Нам понадобится обсудить ещё одну относительно простую молекулу – молекулу пропана, прежде чем углеводороды станут достаточно большими, чтобы начали обнаруживаться некоторые их общие свойства. Пропан состоит из трёх атомов углерода и восьми атомов водорода. Его химическая формула – C3H8. Это формула ничего не говорит о том, как соединены атомы. Её также можно записать в виде H3C−H2C−CH3. При такой записи становится понятно, что атомы водорода соединены с атомами углерода. Атомы углерода соединены друг с другом одиночными связями. Концевые атомы углерода соединены с тремя атомами водорода и одним атомом углерода. Центральный атом углерода соединён с двумя атомами водорода и двумя атомами углерода. На рис. 14.11 приведены два представления молекулы пропана. На верхней диаграмме обозначены связи и углы между ними. Атомы углерода имеют тетраэдрическую конфигурацию связей с углами C−C−C и H−C−H, равными 109,5°. В нижней части рисунка представлена шаростержневая модель пропана.
Рис. 14.11. Диаграмма и шаростержневая модель пропана C 3 H 8 . Атомы углерода находятся в центрах тетраэдров
Большие углеводороды имеют множество структур
Для метана, этана и пропана существует лишь один способ, которым их атомы могут быть связаны друг с другом, и только одна пространственная конформация. Бутан и всё более крупные углеводороды имеют множество структурных конфигураций (способы, которыми атомы связаны друг с другом) и более одной пространственной конформации для конкретной структурной конфигурации. Бутан содержит четыре атома углерода. Его химическая формула – C4H10. Имеется две различные структурные формы бутана. Их называют структурными изомерами. Их молекулы содержат одинаковое число атомов углерода и водорода, но они имеют совершенно разную форму. Бутан может быть н-бутаном, что означает нормальный бутан. Если взять молекулу пропана и добавить к её концу ещё один атом углерода, получится н-бутан. О нём говорят как о линейной цепи, поскольку атомы углерода в нём связаны не более чем с двумя другими атомами углерода – по одному с каждой стороны. Его молекула, как видно из шаростержневой модели, в действительности не является прямой, поскольку каждый атом углерода имеет тетраэдрическую конфигурацию связей, образованных с использованием четырёх гибридных sp3-орбиталей.
На рис. 14.12 показано, что бутан имеет другой изомер, называемый изобутаном. В изобутане центральный атом углерода соединён с тремя другими атомами углерода и одним атомом водорода, а остальные атомы углерода соединены только с центральным атомом углерода и тремя атомами водорода каждый. Все четыре атома углерода используют для образования связей sp3-гибридизированные атомные орбитали и имеют тетраэдрическую конфигурацию. Об изобутане также говорят как о разветвлённой цепи. Тот факт, что бутан может при одинаковом числе атомов углерода и водорода иметь две разные структуры, очень важен. У молекулы с бо́льшим числом атомов углерода число возможных вариантов строения может быть намного больше двух.
В дополнение к двум структурным изомерам н-бутан имеет два конформера. Конформеры – это различные формы, конформации, одного и того же набора атомов, соединённых одним и тем же способом. Они различаются за счёт того, что вокруг одиночной связи C−C может происходить вращение.
Рис. 14.12. Два структурных изомера бутана C 4 H 10 . Вверху CH 3 соответствует углероду, связанному с тремя атомами водорода. н-бутан– это линейная цепь в том смысле, что каждый атом углерода связан не более чем с двумя другими атомами углерода. Изобутан имеет разветвлённую структуру. Центральный атом углерода связан с тремя другими атомами углерода
На рис. 14.13 представлен н-бутан в двух конформациях, называемых транс и гош. Оба изображённых на рисунке конформера являются н-бутаном, поскольку атомы углерода соединены одинаковым образом. Если взять верхний конформер и выполнить поворот вокруг средней углерод-углеродной связи на 120° в направлении, указанном стрелкой, то получится гош-форма. У транс-конформера все атомы углерода лежат в одной плоскости. В гош-форме три атома углерода лежат в плоскости страницы, а четвёртый выступает над ней. В действительности существует и другая гош-форма, которая образуется путём поворота транс-формы вокруг средней C−C-связи на 120° в направлении, противоположном указанному стрелкой. В этом случае те же три атома углерода остаются в плоскости страницы, а четвёртый оказывается позади неё. Эти два гош-конформера в некотором смысле имеют одинаковую форму, но они не идентичны. Они подобны левой и правой перчаткам. Как и перчатки, эти две гош-формы нельзя совместить одну с другой. Они являются зеркальными копиями друг друга. Углеродная основа, которая может иметь левую и правую форму в зависимости от направления вращения, называется хиральной.
Рис. 14.13. Два конформера н-бутана. Гош-форма получается из транс-формы вращением на 120° вокруг средней C−C-связи
Вращение вокруг одиночной C−C-связи, переводящее молекулу между транс– и гош-конформациями, в жидкости при комнатной температуре может происходить очень быстро. Согласно теории, подтверждённой недавними экспериментами с ультрабыстрым инфракрасным лазером, гош-транс-переходы занимают всего 50 пс (1 пикосекунда = 10−12 сек), или 50 триллионных долей секунды. Поэтому в жидкости при комнатной температуре эти две формы бутана настолько быстро сменяют друг друга, что их невозможно изолировать в качестве отдельных молекул.
Двойные и тройные углерод-углеродные связи
Если вокруг одиночной C−C-связи совершить поворот очень легко, то для двойной или тройной углерод-углеродной связи это совсем не так. В главе 13 говорилось, что молекула O2 имеет двойную связь, а молекула N2 – тройную. Углерод-углеродные связи могут быть одиночными, двойными или тройными. Вращение вокруг двойной или тройной C−C-связи практически невозможно. Поэтому двойные связи могут фиксировать различные конформации молекул, имеющих одинаковые структурные изомеры. Как будет показано в главе 16, именно отсюда возникает термин «транс-жиры». Однако прежде, чем мы доберёмся до обсуждения таких больших молекул, как транс-жиры, нам надо поговорить о двойных и тройных C−C-связях.
В обсуждавшихся до сих пор соединениях углерод использует четыре sp3-гибридизированные атомные орбитали для создания четырёх одиночных σ-связей с другими атомами. В таких соединениях каждый атом углерода имеет тетраэдрическую конфигурацию четырёх связей. На рис. 14.3 изображена молекула формальдегида. Формальдегид содержит атом углерода с двойной связью. Чтобы показать, каким образом углерод создаёт одиночные, двойные и тройные связи, мы рассмотрим химические связи в этане, этилене и ацетилене. Эти три вещества имеют химические формулы H3C−CH3, H2C=CH2 и HC≡CH соответственно. Этан имеет одиночную связь, этилен – двойную, а ацетилен – тройную. На рис. 14.14 показано строение этих трёх молекул. В этане каждый атом углерода образует четыре связи в тетраэдрической конфигурации. В этилене каждый атом углерода образует три связи в форме треугольника, а в ацетилене атомы углерода образуют две связи, вытянутые в линию.
Хотя в каждой из трёх молекул два атома углерода связаны друг с другом, порядок их связи вносит большие различия. В табл. 14.1 приводятся значения длины и энергии C−C-связей для этих трёх молекул в зависимости от порядка связи. С увеличением порядка длина связи значительно сокращается, а энергия почти утраивается при переходе от одиночной связи к тройной.
Рис. 14.14. Этан: одиночная связь, тетраэдрическая конфигурация связей углерода. Этилен: двойная связь, треугольная конфигурация связей углерода. Ацетилен: тройная связь, линейная конфигурация связей углерода
Таблица 14.1. Одиночные, двойные и тройные C−C-связи
Порядок связи, Длина связи, Энергия связи ( Дж )
Этан, Одиночная (1), 1,54Å, 5,8∙10−19
Этилен, Двойная (2), 1,35Å, 8,7∙10−19
Ацетилен, Тройная (3), 1,21Å, 16∙10−19
Двойная углерод-углеродная связь – этилен
Для начала рассмотрим связь в молекуле этилена. Из рис. 14.15 видно, что углеродные центры здесь имеют треугольную форму. Как уже говорилось, для получения треугольной формы связей атом углерода будет использовать три sp2-гибридизированные атомные орбитали для образования МО (см. рис. 14.7). Углерод имеет четыре валентные орбитали, служащие для образования химических связей: 2s, 2px, 2py и 2pz. В верхней части указанного рисунка молекула этилена располагается в плоскости xy. Таким образом, атомы углерода и водорода лежат в плоскости страницы, которая и есть xy. Чтобы образовать треугольную конфигурацию гибридных sp2-орбиталей, служащих для формирования трёх связей, оба атома углерода используют 2s-, 2px– и 2py-орбитали. С тремя гибридными sp2-орбиталями каждый атом углерода будет создавать три σ-связи: одну – с другим атомом углерода и две – с атомами водорода. Эти σ-связи показаны в верхней части рис. 14.15.
Когда углерод образует три гибридные sp2-орбитали из 2s-, 2px– и 2py-орбиталей, у него остаётся 2pz-орбиталь, которая не принимает участия в σ-связывании. В верхней части рис. 14.15 2pz-орбиталь направлена поперёк страницы, выступая над ней и позади неё. Каждый атом углерода имеет один неспаренный электрон на 2pz-орбитали. В нижней части рисунка молекула этилена изображена повёрнутой. Сигма-связь показана линией, соединяющей атомы. Положительные лепестки 2pz-орбиталей перекрываются конструктивно, и то же самое происходит с отрицательными лепестками. Две 2pz-орбитали объединяются и образуют π-связывающую молекулярную орбиталь (см. рис. 13.3). Это π-связь, поскольку у неё нет электронной плотности на линии, соединяющей центры атомов углерода. Совокупный результат состоит в том, что два атома углерода имеют двойную связь, состоящую из σ-связи, образованной sp2-орбиталями каждого атома, и π-связью, образованной 2pz-орбиталями тех же атомов.
Вращение вокруг двойной углерод-углеродной связи невозможно. Для него потребовалось бы, чтобы перекрытие двух 2pz-орбиталей становилось всё хуже по мере увеличения угла поворота. При угле, равном 90°, две 2p-орбитали были бы направлены перпендикулярно друг другу и не давали бы никакого перекрытия. Такой поворот разрушил бы π-связь, на что потребовалось бы значительное количество энергии.
Рис. 14.15.Орбитали, образующие двойную связь в этилене. Вверху: каждый атом углерода использует три гибридные sp2-орбитали для образования трёх σ-связей в треугольной конфигурации. Страница соответствует плоскости xy, ось z направлена перпендикулярно этой плоскости. Внизу: каждый атом углерода имеет 2pz-орбитали, которые не используются в sp2-гибридизации. 2pz-орбитали объединяются и порождают π-связывающую молекулярную орбиталь, которая даёт вторую связь между атомами углерода
Как уже говорилось, измерения и теория позволили определить, что молекула бутана в жидкой фазе поворачивается вокруг одиночной C−C-связи примерно за 50 пс. Для этана это время составляет около 12 пс. Бутан вращается вокруг одиночной C−C-связи медленнее этана, поскольку содержит две дополнительные метильные группы (CH3) – по одной с каждой стороны от двух центральных атомов углерода. Если поместить этилен в такую же жидкую среду при комнатной температуре, то, по грубым оценкам, потребуется около ста миллиардов лет для того, чтобы совершить поворот вокруг двойной связи, поскольку на разрушение π-связи требуется огромное количество энергии. Таким образом, в любом практическом смысле двойная связь (как и тройная) препятствует вращательной изомеризации между конформерами, которые различаются конфигурацией относительно двойной связи.