Текст книги "Абсолютный минимум. Как квантовая теория объясняет наш мир"
Автор книги: Майкл Файер
сообщить о нарушении
Текущая страница: 11 (всего у книги 29 страниц)
Четыре квантовых числа
Энергии различных состояний атома водорода описываются единственным квантовым числом n. Однако в действительности есть четыре квантовых числа, связанных с электронами в атомах. Они появляются при решении задачи об атоме водорода в рамках квантовой теории. Одно из них существенно лишь для атомов и молекул, имеющих более одного электрона. В этом смысле атом водорода является частным случаем, поскольку в нём всего один электрон. Для атома водорода, помимо главного квантового числа n, есть ещё два квантовых числа – l и m. Число l называется орбитальным квантовым числом, m – магнитным квантовым числом. От них в сочетании с квантовым числом n зависит, сколько различных состояний связано с конкретным значением энергии, они также определяют форму волновых функций. Четвёртое квантовое число обозначается s. Его называют спи́новым квантовым числом.
Когда Бор решал задачу об атоме водорода, в рамках старой квантовой теории считалось, что электрон движется по орбитам, имеющим разные формы и значения энергии. Корректное квантовое решение Шрёдингера для атома водорода даёт энергетические уровни и волновые функции, которые соответствуют боровским орбитам и называются «орбиталями». Обсуждая атомы и молекулы, мы часто используем термины «волновая функция» и «орбиталь» в качестве синонимов. Орбитали являются волнами амплитуды вероятности, которые подчиняются принципу неопределённости Гейзенберга, чем отличаются от боровских орбит.
Как уже отмечалось выше, главное квантовое число n может принимать целочисленные значения n≥1, то есть 1, 2, 3, 4 и так далее, а l может принимать значения от 0 до n−1 с целым шагом. Число m может иметь значения от l до −l с целым шагом. Наконец, число s может принимать только два значения: +½ и −½. Сводка возможных значений квантовых чисел приведена в таблице ниже.
По историческим причинам состояния с различными значениями квантового числа l имеют индивидуальные обозначения. Состояние l=0 называется s-орбиталью. При l=1 говорят о p-орбитали, при l=2 – это d-орбиталь, а при l=3 – f-орбиталь. Для обсуждения всех атомов нам не понадобится заходить далее f-орбиталей, то есть l=3. Как показано ниже, различные орбитали имеют разные формы.
Поскольку энергии состояний (орбиталей) атома водорода зависят только от квантового числа n, для n>1 имеется более одного состояния с одинаковой энергией. Для n=1 имеем l=0 и m=0 (см. таблицу), поэтому существует единственная орбиталь с n=1. Для этой орбитали l=0, так что её обозначают как 1s-орбиталь. Для n=2 число l может быть равно 0, что даёт 2s-орбиталь. Однако для n=2 число l также может равняться 1. При l=1 число m может быть равно 1, 0 или −1 (см. таблицу). При l=1 – это p-орбиталь, причём существуют три разные p-орбитали, обозначаемые 2p1, 2p0 и 2p−1. Здесь 2 – это главное квантовое число n, p означает l=1, а три индекса– это три возможных значения m. Таким образом, для n=2 существует четыре различных состояния.
Если n=3, то l может быть равно нулю, что даёт 3s-орбиталь. Также l может быть равно 1, что при m = 1, 0 и −1 даёт орбитали 3p1, 3p0, и 3p−1. Кроме того, l может быть равно 2. Для l=2 число m может иметь значения 2, 1, 0, −1 и −2. Это d-орбитали: 3d2, 3d1, 3d0, 3d−1 и 3d−2. Всего имеется пять d-орбиталей. Таким образом, для n=3 имеется девять различных состояний: одна s-орбиталь, три p-орбитали и пять d-орбиталей. Когда n=4, есть 4s-орбиталь, три различные 4p-орбитали (4p1, 4p0 и 4p−1), пять различных 4d-орбиталей (4d2, 4d1, 4d0, 4d−1 и 4d−2). Дополнительно имеется семь f-орбиталей: 4f3, 4f2, 4f1, 4f0, 4f−1, 4f−2 и 4f−3. Таким образом, для n=4 имеется в общей сложности 16 состояний: одна s-орбиталь, три p-орбитали, пять d-орбиталей и семь f-орбиталей.
Как уже говорилось, каждая из этих орбиталей имеет свою форму. Довольно часто орбитали называют в соответствии с их формой. Например, три различных 2p-орбитали, вместо того чтобы обозначать их 2p1, 2p0 и 2p−1, называют 2px, 2pz и 2py. Связь между этими индексами и формами прояснится, когда мы познакомимся с соответствующими формами.
Энергетические уровни атома водорода
На рис. 10.1 представлена диаграмма энергетических уровней атома водорода. Изображены уровни с n от 1 до 5. Для удобства восприятия масштаб интервалов не соблюдается, но, как и показано, с увеличением n интервал между уровнями становится меньше. Также с увеличением n возрастает число различных состояний (орбиталей), соответствующих конкретному значению n. Водород – это особый случай, поскольку у него имеется лишь один электрон. Для водорода все орбитали с одинаковым значением n обладают равной энергией. В следующей главе будет объяснено, что в атомах с несколькими электронами орбитали с разными значениями l при одном и том же n обладают разными энергиями.
Рис. 10.1. Диаграмма энергетических уровней водорода. Изображены первые пять энергетических уровней. Для удобства восприятия масштаб интервалов между уровнями не соблюдается. Энергия зависит только от главного квантового числа n. Показано количество орбиталей каждого типа. При n=4 имеется одна s-орбиталь, три разные p-орбитали, пять разных d-орбиталей и семь разных f-орбиталей{13}. Диаграмму можно продолжить для n=6. Различные уровни иногда называют оболочками
s-орбитали атома водорода
Хотя значения энергии в атоме водорода зависят только от главного квантового числа n, квантовые числа l и m тоже играют важную роль. Они определяют форму орбиталей и другие свойства, присущие атому водорода. Например, квантовое число m называется магнитным квантовым числом. Три 2p-орбитали (2p1, 2p0 и 2p−1) различаются значениями квантового числа m. Когда атом водорода помещают в магнитное поле, энергии этих трёх орбиталей перестают быть одинаковыми.
Из диаграммы энергетических уровней, вычисленных с помощью уравнения Шрёдингера (см. рис. 10.1), становится ясно, как возникает эмпирическая диаграмма, представленная на рис. 9.3. Оптические переходы, видимые как линии в спектре атома водорода и описываемые формулой Ридберга, – это переходы между энергетическими уровнями атома водорода, энергии которых вычисляются на основе квантовой теории без каких-либо подгоночных параметров.
Как уже упоминалось, квантовые числа n, l и m вместе определяют формы волновых функций. Для s-орбиталей l=0. Это означает, что электрон не имеет углового момента{14} в своём движении относительно ядра атома. Все направления выглядят равноценными, так что s-орбитали – это сферически симметричные трёхмерные волны амплитуды вероятности. На рис. 10.2 схематически показаны орбитали (волны амплитуды вероятности) 1s, 2s и 3s. Более тёмный тон означает бо́льшую вероятность обнаружить электрон на соответствующем расстоянии от центра. Расстояния, на которых вероятности достигают максимума, показаны сплошными окружностями. Середины белых областей внутри орбиталей 2s и 3s (пунктирные окружности) – это узлы, то есть области, где вероятность обнаружить электрон обращается в нуль. При переходе от 1s к 2s и 3s размеры орбиталей значительно возрастают. С увеличением квантового числа n повышается вероятность обнаружить электрон вдали от ядра.
Рис. 10.2.Двумерные представления орбиталей 1s, 2s и 3s. В действительности они сферические. Более тёмный тон соответствует более высокой вероятности обнаружения электрона. Сплошными окружностями обозначены максимальные значения этой вероятности. Пунктирные окружности – это узлы, где данная вероятность обращается в нуль. При данном способе изображения орбитали имеют довольно чёткую внешнюю границу. Орбитали – это волны, которые становятся очень малыми на больших расстояниях, но обращаются в нуль лишь тогда, когда расстояние от центра стремится к бесконечности
Увеличение размера орбиталей – одна из причин того, что энергия возрастает с увеличением квантового числа n. Формула для энергетических уровней атома водорода начинается со знака «минус»: En=−RH/n2. Принято считать, что более низкая энергия – это бо́льшая по абсолютной величине отрицательная энергия. Атом водорода состоит из протона и электрона, притягивающихся друг к другу в результате кулоновского, то есть электростатического, взаимодействия. Противоположные заряды притягиваются. Протон – это положительно заряженная частица, а электрон заряжен отрицательно. Когда протон и электрон разнесены бесконечно далеко, они не ощущают влияния друг друга. Взаимодействия между ними из-за большого расстояния нет. Система имеет нулевую энергию, когда её частицы разнесены на бесконечно большое расстояние.
Взаимодействие электрона и протона усиливается по мере того, как они сближаются. Энергия системы убывает, становясь всё более отрицательной. На орбитали 2s электрон в среднем находится дальше от протона, чем на орбитали 1s, на орбитали 3s электрон в среднем ещё дальше от протона. Это видно на рис. 10.2. С увеличением квантового числа энергия выражается всё меньшими отрицательными числами. При больших значениях n требуется меньше энергии, чтобы разделить электрон и протон, то есть ионизировать атом. Ионизация – это процесс отрыва электрона от атома, так что они более не связаны друг с другом. При n=1 для ионизации атома требуется энергия RH. Её нужно передать атому, чтобы превзойти энергию связи, равную – RH. При n=2 энергия, требуемая для ионизации атома водорода, составляет всего RH/4, а при n=3 необходимая энергия ещё меньше и составляет RH/9.
Пространственное распределение s-орбиталей
Чтобы лучше представить себе пространственное распределение вероятности обнаружить электрон в определённом положении, полезно построить для волновых функций два типа графиков. Один из них – это просто график волновой функции в зависимости от расстояния до ядра. Это полезный график, но кое в чём он вводит в заблуждение. Второй тип графика называют радиальным распределением функции, и мы вкратце его опишем.
На рис. 10.3 представлен график волновой функции Ψ(r) в зависимости от расстояния до протона, который находится в центре атома. График этого типа показывает амплитуду вероятности обнаружить электрон вдоль одной прямой линии, уходящей радиально от центра. Значение r отсчитывается от тёмного центра распределения электрона на рис. 10.2 вправо в горизонтальном направлении. На рис. 10.3 видно, что вероятность обнаружить электрон быстро убывает вдоль отдельно взятой прямой и приближается к нулю, когда расстояние от ядра достигает 3 Å.
Рис. 10.3. График волновой функции Ψ(r) для орбиталей 1s в зависимости от расстояния r до протона. Значение Ψ(r) пропорционально вероятности обнаружить электрон вдоль линии, радиально уходящей от центра атома. Расстояние r выражено в ангстремах (1 Å = 10−10 м)
Проблема с графиком того типа, который представлен на рис. 10.3, состоит в том, что он не учитывает трёхмерную природу атома. Рассматривая 1s-орбиталь на рис. 10.2, мы понимаем, что можно обнаружить электрон на некотором расстоянии от центра, двигаясь не только вдоль линии, направленной вправо, но и вдоль линии, направленной влево, вверх или вниз. Можно также сдвинуться в любом диагональном направлении на расстояние r и получить ту же самую вероятность обнаружить электрон. Поскольку атом трёхмерен, можно также выйти из плоскости страницы и тоже обнаружить электрон. Если нужно знать вероятность обнаружения электрона на определённом расстоянии r от протона, то следует произвести суммирование по всем таким радиальным направлениям.
В действительности вопрос состоит в том, какова вероятность обнаружить электрон на некотором расстоянии от ядра, если сложить все возможные направления. Можно сформулировать этот вопрос иначе: какова вероятность обнаружить электрон в тонком сферическом слое радиусом r? Поскольку с увеличением r объём этого тонкого сферического слоя возрастает, то на некоторых расстояниях это нивелирует тот факт, что волновая функция убывает. Чтобы понять роль этого тонкого сферического слоя, рассмотрим ряд пустых резиновых мячей с одинаковой толщиной оболочки. Мяч маленького радиуса (r) будет содержать меньше резины, чем мяч большого радиуса. Если же вы просто пойдёте по одной прямой линии от центра мяча и, добравшись до его оболочки, поинтересуетесь толщиной резины, то она не будет зависеть от радиуса мяча. Ясно, однако, что в оболочке большого мяча содержится больше резины, чем в оболочке маленького.
Площадь поверхности сферы составляет 4π∙r2, где r – радиус сферы. Умножив эту величину на толщину оболочки, вы получите объём резины в мяче. Теперь ясно, что большой мяч содержит намного больше резины в своей оболочке, чем маленький. Если удвоить радиус, количество резины увеличится в 4 раза. Другой важный факт: когда r стремится к нулю, количество резины в мяче тоже стремится к нулю, поскольку к нулю стремится площадь поверхности 4π∙r2. Спрашивать, находится ли электрон на расстояние r от ядра, – это всё равно что спрашивать, сколько резины содержится в оболочке мяча радиусом r. Тут необходимо учитывать увеличение площади поверхности при увеличении радиуса.
Функция радиального распределения
Функция радиального распределения – это как раз то, что нужно для учёта трёхмерной природы атома. Чтобы по мере увеличения r учесть все направления поиска электрона, необходимо добавить множитель 4π∙r2. Функция радиального распределения задаёт вероятность обнаружить электрон на расстоянии r от ядра для всех направлений. В главе 5 говорилось, что, согласно интерпретации волновой функции Бора, вероятность обнаружить частицу в некоторой области пространства пропорциональна квадрату абсолютного значения волновой функции. Сейчас мы хотим найти вероятность обнаружения электрона в тонком сферическом слое радиусом r. Это и будет функция радиального распределения, задаваемая формулой 4π∙r2∙|Ψ|2. Вертикальные линии, как и прежде, обозначают абсолютную величину. Для функций, с которыми мы имеем дело, потребуется лишь возвести в квадрат волновую функцию.
Рис. 10.4. График функции радиального распределения для 1s-орбитали в зависимости от расстояния r до протона. Функция радиального распределения – это вероятность обнаружить электрон в тонком сферическом слое на расстоянии r от протона. Функция радиального распределения учитывает тот факт, что электрон может быть найден в любом направлении от протона. Расстояние r измеряется в ангстремах (1 Å = 10−10 м)
На рис. 10.4 показана функция радиального распределения для 1s-состояния атома водорода.
Расстояние, на котором достигается максимальная вероятность, – это не центр атома, поскольку объём сферического слоя стремится к нулю, когда r обращается в нуль. Вертикальная линия показывает положение максимума распределения вероятности, который находится на отметке r = 0,529 Å. Это значение представляет особый интерес. В старой боровской квантовой теории атома водорода электрон в 1s-состоянии движется по круговой орбите радиусом 0,529 Å. Это расстояние называется радиусом Бора и обозначается a0. Корректное квантовомеханическое описание атома водорода гласит, что электрон – это волна амплитуды вероятности с расстоянием максимальной вероятности, равным радиусу Бора a0. Это не случайное совпадение. Радиус Бора в действительности является фундаментальной постоянной. Он определяется формулой
a0=ε0∙h2/π∙μ∙e2,
где все параметры те же, что и в выражении для постоянной Ридберга через фундаментальные постоянные. На самом деле энергетические уровни атома водорода можно выразить через радиус Бора следующим образом:
En=−e2/8π∙ε0∙a0∙n2.
На рис. 10.5 и 10.6 представлены графики волновых функций (вверху) и функций радиального распределения (внизу) для орбиталей 2s и 3s. Волновая функция для 2s-орбитали имеет узел, то есть место, где она обращается в нуль. Об узлах мы говорили в связи с волновой функцией частицы в ящике (см. рис. 8.4). Вблизи узла вероятность обнаружить частицу, в данном случае электрон, равна нулю. Волновая функция состояния 2s начинается с положительного значения, пересекает нулевое значение в узле, расположенном на расстоянии, равном удвоенному радиусу Бора (2а0), а затем становится отрицательной. Далее волновая функция спадает до нуля. На расстоянии 8 Å значение волновой функции уже очень мало́.
Рис. 10.5. Волновая функция (вверху) и функция радиального распределения (внизу) для 2s-орбитали атома водорода в зависимости от расстояния r до протона. Волновая функция начинается с положительного значения, проходит через узел чуть дальше точки 1 Å (2a0) и затем спадает до нуля. Функция радиального распределения демонстрирует максимум вероятности обнаружения электрона на отметке 2,8 Å, причём наиболее вероятно найти его в интервале от 2 до 4 Å (см. рис. 10.2). Расстояние r измеряется в ангстремах (1 Å = 10−10 м)
Рис. 10.6. Волновая функция (вверху) и функция радиального распределения (внизу) для 3s-орбитали атома водорода в зависимости от расстояния r до протона. Волновая функция начинается с положительного значения, проходит через узел, становясь отрицательной, проходит через второй узел, вновь становясь положительной, и затем спадает до нуля. Функция радиального распределения показывает, что вероятность обнаружения электрона достигает максимума на отметке 7 Å, причём наиболее вероятно найти его в интервале от 5 до 11 Å (см. рис. 10.2). Расстояние r измеряется в ангстремах (1 Å = 10−10 м)
Как уже подробно говорилось, волновые функции – это волны амплитуды вероятности. Подобно другим волнам, они могут быть положительными и отрицательными. В нижней части рис. 10.5 показана функция радиального распределения для состояния 2s. Это вероятность обнаружить данный электрон на расстоянии r от ядра. Вероятности всегда имеют положительные значения, поскольку являются квадратами волновой функции, которые всегда положительны.
Волна может быть положительной или отрицательной, но имеющие смысл значения вероятности являются положительными числами или нулём. Функция радиального распределения показывает, что бо́льшая часть вероятности приходится на интервал от 2 до 4 Å; это также видно на рис. 10.2, но без количественного описания. Пик вероятности приходится на отметку приблизительно 2,8 Å.
Из рис. 10.6 видно, что волновая функция 3s-орбитали имеет два узла, то есть дважды пересекает ноль. В этом отношении волновые функции атома водорода подобны волновым функциям частицы в ящике (см. рис. 8.4). При n=1 узлов нет. При n=2 имеется узел. При n=3 имеется два узла. Число узлов для s-орбиталей равно n−1. Волновая функция 3s начинается с положительного значения, затем становится отрицательной, а потом вновь положительной. В конце концов она спадает до нуля, становясь очень малой за отметкой 16 Å. Функция радиального распределения для 3s-орбитали показывает, что область наибольшей вероятности обнаружить электрон находится относительно далеко от ядра. Пик вероятности расположен приблизительно на 7 Å, а на интервал от 5 до 11 Å приходится наибольшая вероятность найти электрон. Три функции радиального распределения, изображённые на рис. 10.4–10.6, дают количественное выражение для информации, схематически представленной на рис. 10.2. По мере увеличения главного квантового числа (n) s-орбитали становятся больше и количество узлов возрастает.
Формы p-орбиталей
Для 2s-орбитали n=2, l=0 и m=0. Однако при n=2 число l также может быть равно 1 и с ним могут быть связаны три значения m:m = 1, 0, −1. Эти три значения m соответствуют трём различным 2p-орбиталям. Они показаны на диаграмме энергетических уровней на рис. 10.1.
Рис. 10.7. Схематическое изображение трёх 2p-орбиталей атома водорода: 2p z , 2p y и 2p x . У каждой из них имеется два лепестка: один положительный и один отрицательный. У каждой есть узловая плоскость, то есть плоскость, где вероятность обнаружить электрон равна нулю. Лепестки 2p z -орбитали располагаются вдоль оси z, а узловой является плоскость xy, выделенная серым тоном. У 2p y -орбитали лепестки расположены вдоль оси y, а основная плоскость – в плоскости xz. Лепестки 2p x -орбитали лежат вдоль оси z, а узловая плоскость – это yz. Лепестки на этой схеме показывают, где находится область с максимальной амплитудой вероятности для электрона. Волны амплитуды вероятности плавно спадают к нулю вдали от ядра (протона), а не обрываются резко, как на этих диаграммах
Три разные 2p-орбитали схематически представлены на рис. 10.7. Как уже говорилось, 2p-орбитали с учётом их формы обычно обозначают 2pz, 2py и 2px. Каждая из этих орбиталей имеет два лепестка – положительный и отрицательный. Какой лепесток считать положительным, а какой – отрицательным, не важно, но знак должен меняться, поскольку имеется узловая плоскость. Лепестки 2pz-орбитали расположены вдоль оси z. Узловая плоскость (на рисунке показана серым тоном) – это плоскость xy (z=0). Вероятность обнаружить электрон на этой плоскости равна нулю. Знак волновой функции меняется при переходе через узел. У 2s-орбитали имеется радиальный узел. Это сферическая поверхность на определённом расстоянии от центра, представляющая собой узел. Каждая из p-орбиталей имеет узловую плоскость, то есть совокупность направлений (плоскость), где располагается узел. У 2p-орбиталей нет радиального узла, но у 3p-орбиталей в дополнение к узловой плоскости есть радиальный узел, а у 4p-орбиталей имеется два радиальных узла и т. д.
Лепестки 2py-орбитали направлены вдоль оси y, а её узловая плоскость – это xy. У 2px-орбитали лепестки направлены вдоль оси x, а узловой является плоскость yz. Приведённые на рис. 10.7 схематические изображения 2p-орбиталей подобны изображениям s-орбиталей на рис. 10.2. Рисунок 10.7 позволяет понять, в каких областях амплитуда вероятности для электрона велика. Однако важно понимать, что эти волны амплитуды вероятности плавно спадают с удалением от ядра. На рисунке лепестки обрываются резко, но волновые функции на больших расстояниях ведут себя подобно тому, как это показано на рис. 10.3 для 1s-орбитали. Тем не менее рис. 10.7 полезен для того, чтобы представить себе формы 2p-орбиталей. Эти формы окажутся очень важными, когда речь пойдёт о молекулярных связях и формах молекул.