355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Манжит Кумар » Квант. Эйнштейн, Бор и великий спор о природе реальности » Текст книги (страница 2)
Квант. Эйнштейн, Бор и великий спор о природе реальности
  • Текст добавлен: 3 октября 2016, 21:47

Текст книги "Квант. Эйнштейн, Бор и великий спор о природе реальности"


Автор книги: Манжит Кумар


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 2 (всего у книги 32 страниц)

Клаузиус определил энтропию как количество тепла, получаемого или отдаваемого телом или системой, деленное на температуру, при которой происходит процесс. Если горячее тело при температуре 500°С передает 1000 единиц энергии более холодному телу, находящемуся при температуре 250°С, его энтропия уменьшается: -1000 ÷ 500 = -2. Если более холодное тело, находящееся при температуре 250°С, приобретает 1000 единиц энергии, то: 1000 ÷ 250 = 4, и энтропия этого тела возрастает на 4. Суммарная энтропия системы, объединяющей горячее и холодное тело, возросла на 2 единицы энергии на градус. Все действительно имеющие место процессы необратимы, поскольку должны приводить к возрастанию энтропии. Это тот закон природы, который препятствует самопроизвольной передаче тепла от холодного к горячему. Только идеальные процессы, в которых энтропия остается постоянной, могут быть обратимы. Они, однако, никогда не реализуются и происходят только в головах физиков. Энтропия Вселенной стремится к максимуму.

Планк считал, что энтропия является, наряду с энергией, “самым важным из свойств физических систем”26. Вернувшись в Мюнхенский университет после годичного пребывания в Берлине, он посвятил диссертацию концепции необратимости. Эта работа должна была стать его визитной карточкой. Однако, к ужасу Планка, “даже те физики, которым эта проблема была близка, не только не одобрили, но даже не проявили интерес” к его исследованию27. Гельмгольц даже не прочитал диссертацию; Кирхгоф прочитал, но не согласился с выводами, а Клаузиус, оказавший такое сильное влияние на Планка, так и не ответил на его письмо. “Воздействие моей диссертации на физиков тех дней было нулевым”, – с горечью вспоминал Планк даже семьдесят лет спустя. Но, повинуясь “некоему внутреннему импульсу”, он не отступил28. Термодинамика, в частности второй ее закон, – вот чем занимался Планк в начале своей научной карьеры29.

Немецкие университеты были государственными учреждениями. Экстраординарные и ординарные профессора (и те, и другие занимали кафедру, при этом оклад экстраординарного профессора был меньше) становились государственными служащими. Их утверждением в должности занималось Министерство образования. В 1880 году Планк стал приват-доцентом Мюнхенского университета. Он не был ни государственным служащим, ни сотрудником университета, а просто приобрел право преподавать за вознаграждение, которое платили студенты, посещавшие лекции. Пять лет спустя он все еще ждал должности экстраординарного профессора. Шансов было мало. Планк был теоретиком. Постановка экспериментов его не интересовала, а теоретическая физика еще не оформилась как самостоятельная дисциплина. Даже в 1900 году в Германии было всего шестнадцать профессоров теоретической физики.

Планк знал: продвижение по карьерной лестнице будет означать, что ему “удалось добиться научного признания”30. Его час пробил, когда было объявлено, что работа, которую следовало представить для получения престижной премии Геттингенского университета, должна называться “Природа энергии”. Когда он работал над ней, в мае 1885 года пришло “спасительное письмо”31: двадцатисемилетнему Планку предложили место экстраординарного профессора в Киле. Макс заподозрил, что этим он обязан дружбе своего отца с главой факультета физики в Киле. Он знал, что перед ним в очереди было много известных людей, ждущих места. Тем не менее он принял предложение, а работу для участия в конкурсе закончил сразу после прибытия в родной город.

Хотя на соискание премии было представлено всего три работы, прошло два года, прежде чем объявили, что победителей не будет. Планку присудили второе место, но жюри отказалось вручить ему премию из-за того, что он поддержал Гельмгольца во время научного диспута с представителем Геттингенского университета. Поведение судей заставило Гельмгольца обратить внимание на Планка и его работу. Планк провел в Киле немногим более трех лет, когда в ноябре 1888 года его удостоили неожиданной чести. В списке возможных кандидатов Планк не был ни первым, ни вторым, но когда те, кто был впереди него, отказались, при поддержке Гельмгольца именно его пригласили занять вместо Густава Кирхгофа пост профессора теоретической физики в Берлинском университете.

Весной 1889 года столица была уже не той, какой Планк покинул ее одиннадцать лет назад. Зловоние, шокировавшее приезжих, исчезло после того, как современная канализационная система заменила открытые стоки. Главные улицы теперь освещались электрическими фонарями. Гельмгольц уже не был главой университетского института физики. Он возглавлял Имперский физико-технический институт – удивительное исследовательское учреждение, расположенное в трех милях от университета. Август Кундт, его преемник, к назначению Планка отношения не имел, но приветствовал “чудесное приобретение” и считал нового профессора “прекрасным человеком”32.

В 1884 году семидесятитрехлетний Гельмгольц и Кундт, которому было всего пятьдесят пять, умерли один за другим в течение месяца. Тридцатишестилетний Планк, который лишь двумя годами ранее получил наконец должность ординарного профессора, остался во главе физического отделения самого известного немецкого университета. Ему пришлось взвалить на себя весь груз ответственности. В обязанности Планка входило также рецензирование статей для “Аннален дер физик”. Теперь он обладал огромным влиянием, поскольку имел право наложить вето на публикацию любой работы по теоретической физике, представленной в главный немецкий физический журнал. Ощущая гнет нового высокого положения и глубоко скорбя о потере коллег, Планк искал утешения в работе.

Как глава группы берлинских физиков он был хорошо осведомлен о связанных с интересами промышленников исследованиях по проблеме абсолютно черного тела, идущих в PTR. Хотя термодинамика была основой теоретического анализа излучения абсолютно черного тела, Планка останавливало отсутствие надежных экспериментальных данных. Он и не пытался вывести уравнение, которое не сумел получить Кирхгоф. Однако вскоре открытие, сделанное одним из его старых друзей из PTR, не позволило Планку больше уклоняться от решения задачи об абсолютно черном теле.

В феврале 1893 года двадцатидевятилетний Вильгельм Вин получил простую математическую формулу, описывающую, как изменение температуры влияет на распределение излучения абсолютно черного тела33. Вин обнаружил, что при возрастании температуры абсолютно черного тела длина волны, при которой излучение достигает своего максимального значения, всегда уменьшается34. Уже было известно, что увеличение температуры приводит к увеличению полной излученной энергии, но, согласно закону смещения Вина, тут имеет место точное соотношение: произведение длины волны, на которую приходится максимум излучения, и температуры абсолютно черного тела остается постоянным. Если температура увеличивается вдвое, пиковая длина вдвое уменьшается.

Рис. 2. Распределение интенсивности излучения абсолютно черного тела, иллюстрирующее закон смещения Вина.

Открытие Вина означало, что достаточно вычислить значение этого остающегося постоянным числа, измеряя при данной температуре “пиковую” длину волны (длину волны, соответствующей максимальной интенсивности излучения), и тогда пиковую длину волны можно будет найти при любой другой температуре35. Этот закон объяснял и изменение цвета нагретого железного прута. Если нагревать прут, то при низкой температуре излучаются главным образом длинные волны из инфракрасной области спектра. При повышении температуры интенсивность излучения при всех длинах волн становится больше, а длина волны, на которую приходится пик излучения, уменьшается. Соответственно и цвет излученного света меняется от красного к оранжевому, затем прут становится желтым и, наконец, светло-голубым, по мере того, как увеличивается излучение из ультрафиолетовой области спектра.

Вин принадлежал к тому уже почти исчезнувшему типу физиков, которые были одновременно очень образованными теоретиками и искусными экспериментаторами. Он открыл закон смещения в свободное от работы время и после уговоров опубликовал его как “частное сообщение”, не получив разрешения PTR на публикацию. В то время он работал в лаборатории оптики PTR под руководством Отто Люммера. В обязанности Вина входила практическая работа по подготовке экспериментального исследования излучения абсолютно твердого тела.

Первой ступенью этих исследований было конструирование достаточно хорошего фотометра – прибора, позволяющего сравнивать интенсивность света (количество энергии в данном диапазоне длин волн) от разных источников, таких как газовая лампа и электрическая лампочка. Лишь осенью 1895 года Люммеру и Вину удалось улучшить модель полого абсолютно черного тела, которое можно было однородно нагревать.

В то время как Вин и Люммер продолжали днем разрабатывать новую модель абсолютно черного тела, вечером первый пытался найти уравнение Кирхгофа для распределения излучения абсолютно черного тела. В 1896 году Вин на основании своих данных об энергии излучения абсолютно черного тела в коротковолновой области спектра вывел формулу, которую очень скоро подтвердил Фридрих Пашен из университета в Ганновере.

В июне того же года, когда сообщение о законе распределения появилось в печати, Вин оставил PTR ради должности экстраординарного профессора в Высшей технической школе в Ахене. В 1911 году он получил Нобелевскую премию по физике за открытия в области законов, управляющих тепловым излучением. А Люммер, оставшийся в PTR, продолжил экспериментальную проверку закона распределения. Для чистоты эксперимента ему требовалось провести измерения в таком широком диапазоне высоких температур, который никогда прежде не исследовался. Два долгих года совместной работы с Фердинандом Курльбаумом и Эрнстом Прингсгеймом ушли на усовершенствование модели абсолютно черного тела. Наконец в 1898 году у него в руках оказалось соответствовавшее последнему слову техники нагревающееся электричеством устройство – итог более чем десятилетней кропотливой работы. С его помощью можно было достичь температуры 1500°С.

Отложив на графике интенсивность излучения вдоль вертикальной оси, а длину волны излучения – вдоль горизонтальной, Люммер и Прингсгейм обнаружили, что сначала при росте длины волны интенсивность возрастает, а затем, достигнув максимума, начинает падать. Спектральное распределение энергии излучения абсолютно черного тела по форме напоминает плавник акулы. Форма кривой тем отчетливее, чем выше температура. Нагревая абсолютно черное тело до разных температур, снимая показания приборов и строя графики, Люммер и Прингсгейм убедились, что при увеличении температуры длина волны, при которой излучение достигает максимума, смещается по направлению к ультрафиолетовому концу спектра.

Свои результаты они представили 3 февраля 1899 года на заседании Немецкого физического общества36. Доклад делал Люммер. Он объявил собравшимся (среди них был Планк), что измерения подтверждают закон смещения Вина, однако ситуация с этим законом ясна не до конца. Экспериментальные данные в целом согласуются с теорией Вина, но имеет место небольшое расхождение в инфракрасной области спектра37. Все считали такие результаты ошибкой эксперимента. Но это будет достоверно доказано, только “если удастся поставить новые эксперименты, охватывающие еще более широкий интервал длин волн и еще более широкую область температур”38.

Через три месяца Фредерик Пашен сообщил, что его измерения, хотя и выполненные при более низких температурах, чем измерения Люммера и Прингсгейма, полностью согласуются с предсказаниями закона смещения Вина. Планк вздохнул с облегчением и представил работу Пашена на сессии Прусской академии наук. Закон Вина овладел его воображением. Для Планка теоретический вывод выражения для спектрального распределения энергии излучения абсолютно черного тела был ничем иным, как поиском абсолюта, а поскольку он “всегда считал поиск абсолюта сверхзадачей всей научной деятельности, то с легким сердцем принялся за работу”39.

В мае 1896 года, вскоре после того, как Вин опубликовал свой закон распределения, Планк предпринял попытку обосновать этот закон и вывести формулу Вина, исходя из начал термодинамики. Тремя годами позднее, в мае 1899-го, ему показалось, что, призвав на помощь непререкаемый авторитет второго закона термодинамики, он добился успеха. С ним согласились и, несмотря на непрекращающиеся споры экспериментаторов, начали называть закон Вина законом Вина – Планка. Последний был убежден в своей правоте и утверждал, что “границы применимости нового закона, если они вообще есть, совпадают с границами применимости второго закона термодинамики в теории теплоты”40. Планк выступал за проверку закона распределения, считая ее необходимой, поскольку для него это одновременно означало проверку второго закона термодинамики. И он получил то, что хотел.

В начале ноября 1899 года, потратив девять месяцев на дополнительные измерения с целью исключить возможность экспериментальных ошибок, Люммер и Прингсгейм сообщили: обнаружено “систематическое расхождение между теорией и экспериментом”41. Хотя при малых длинах волн теория и эксперимент прекрасно согласовались, при больших длинах волн закон Вина систематически завышает интенсивность излучения. Однако через несколько недель Пашен выступил с противоположным заявлением. Его новые данные свидетельствовали, что закон распределения “представляется строго исполняющимся законом природы”42.

Так как большинство ведущих экспертов работало в Берлине, проходившие в столице заседания Немецкого физического общества стали основной ареной дискуссий об излучении абсолютно черного тела и статусе закона Вина. Это стало главной темой собрания Немецкого физического общества 2 февраля 1900 года (такие собрания проходили каждые две недели), когда Люммер и Прингсгейм обнародовали результаты новейших измерений. В инфракрасной области спектра они обнаружили систематическое расхождение между результатами измерений и предсказаниями закона Вина. Оно не могло быть ошибкой эксперимента.

Когда стало очевидно, что закон Вина неверен, начались отчаянные попытки найти ему замену. Но все предлагавшиеся паллиативные варианты не подходили. Было ясно: чтобы установить, где и в какой мере нарушается этот закон, требуются новые опыты при еще больших длинах волн. Ведь выполнялся же он в области более коротких длин волн и не противоречил всем экспериментам, кроме тех, которые были выполнены Люммером и Прингсгеймом.

Планк прекрасно понимал, что любая теория отдана на милость твердо установленным экспериментальным данным. Но столь же хорошо он понимал: “Можно не сомневаться, что расхождение между экспериментом и теорией имеет место, если данные разных наблюдателей в основном согласуются”43. Тем не менее раскол между экспериментаторами заставил его пересмотреть обоснованность своих рассуждений. В конце сентября 1900 года, когда Планк еще занимался проверкой вывода своей формулы, нарушение закона Вина глубоко в инфракрасной области спектра подтвердилось.

Точку в этом вопросе поставили Генрих Рубенс (близкий друг Планка) и Фердинанд Курльбаум. Постоянным местом работы Рубенса была Высшая техническая школа на Берлинер-штрассе, где тридцатипятилетний физик незадолго до этого получил должность профессора. Однако основное время Рубенс проводил в расположенном по соседству PTR, куда его приглашали работать коллеги. Именно здесь вместе с Фердинандом Курльбаумом он изготовил модель абсолютно черного тела, позволявшую проводить измерения в неисследованной далекой инфракрасной области спектра. В течение лета они проверяли выполнение закона Вина в интервале длин волн от 0.03 мм до 0.06 мм в интервале температур от 200 до 1500°С. Оказалось, что при таких больших длинах волн различие между теорией и экспериментом настолько велико, что может свидетельствовать только об одном: закон Вина не выполняется.

Рубенс и Курльбаум хотели представить свои результаты в виде доклада Немецкому физическому обществу. Ближайшее заседание было назначено на пятницу, 5 октября. На написание доклада времени почти не оставалось, и они решили подождать две недели до следующего заседания. Однако Рубенс знал, что Планку не терпится узнать новости.

Дом, в котором полвека прожил Планк, стоял посреди огромного сада в Грюневальде, богатом пригороде Западного Берлина, среди элегантных вилл профессоров, банкиров и юристов. Седьмого октября, в воскресенье, на обед к Планку пришли Рубенс с женой. Вскоре разговор друзей неизбежно свернул на физику и на задачу об абсолютно черном теле. Рубенс рассказал, что его последние измерения не оставляют места для сомнений: закон Вина нарушается при больших длинах волн и высоких температурах. Планк узнал, что при таких длинах волн интенсивность излучения абсолютно черного тела пропорциональна температуре.

Тем вечером Планк попытался вывести формулу, которая позволила бы воспроизвести энергетический спектр излучения абсолютно черного тела. Ему было известно три очень важных факта. Во-первых, в области коротких длин волн закон Вина для интенсивности излучения справедлив. Во-вторых, он нарушается в инфракрасной области спектра, где, как показали Рубенс и Курльбаум, интенсивность пропорциональна температуре. В-третьих, закон смещения Вина правилен. Планку предстояло найти способ собрать вместе эти три детали головоломки и написать формулу для интенсивности излучения. Взявшись за решение этой задачи, он использовал весь свой опыт, накопленный за годы упорной работы.

После нескольких неудачных попыток формулу он получил. Она выглядела многообещающе. Но было ли это именно то уравнение Кирхгофа, которое так давно искали? Справедливо ли оно при любых температурах и для любой области спектра? Планк написал Рубенсу записку и среди ночи пошел ее отправлять. Через несколько дней Рубенс снова появился в доме Планка. Сравнив формулу Планка со своими данными, он обнаружил почти идеальное совпадение.

В пятницу 19 октября на заседании Немецкого физического общества, где присутствовали Рубенс и Планк, Фердинанд Курльбаум сделал формальное сообщение о том, что закон Вина справедлив только для коротких длин волн и что он нарушается при больших длинах волн в инфракрасной области спектра. После того как Курльбаум закончил говорить, встал Планк. В повестке дня тема его краткого “сообщения” была обозначена так: “Об одном улучшении закона излучения Вина”. Планк начал выступление словами: “Я сам на заседаниях общества высказывал ту точку зрения, что закон Вина с необходимостью должен быть справедлив”44. Но когда Планк продолжил, стало ясно, что предлагается не просто “улучшение”, не просто попытка поправить закон Вина: речь идет о совершенно новом законе – собственном законе Планка.

Проговорив менее десяти минут, Планк написал на доске свое уравнение для излучения абсолютно черного тела. Обернувшись, он посмотрел на знакомые лица в зале и сказал, что эта формула, “насколько я могу судить, соответствует всем экспериментальным данным, опубликованным к настоящему времени”45. Ответом были вежливые кивки. Молчание зала можно было понять. В конце концов то, что только что предложил Планк, было еще одной подгоночной формулой для описания экспериментальных результатов. Ведь уже предлагались другие уравнения, призванные восполнить пробел, если все же подтвердится отклонение от закона Вина при больших длинах волн.

На следующий день Рубенс пришел поддержать Планка и сказать ему, что “после окончания заседания он в ту же ночь сравнил формулу с результатами своих измерений... и обнаружил удовлетворительное согласие по всем пунктам”46. Меньше чем через неделю Рубенс и Курльбаум сообщили, что они проверили пять разных формул. Сравнив их со своими данными, они выяснили, что наиболее точной является формула Планка. Пашен также подтвердил, что формула Планка согласуется с экспериментом. Однако, несмотря на поддержку экспериментаторов, Планк был озабочен.

Формулу он получил, но что она означала? Какова стоящая за этим физика? Планк понимал, что если ответа на эти вопросы не будет, его результат в лучшем случае окажется “улучшением” закона Вина, “просто формулой, обнаруженной в результате счастливой догадки”, “лишь формально имеющей какое-то значение”47. “Именно поэтому, – скажет Планк позднее, – в первый же день после того, как я сформулировал этот закон, я постарался сделать все, чтобы наполнить его истинным физическим смыслом”48. Для этого надо было вывести искомую формулу, используя шаг за шагом основные физические принципы. Планк знал, куда он должен прийти, но ему надо было определить путь, которым туда можно было попасть. У него был бесценный указатель: уравнение. Вопрос заключался лишь в том, какую цену он готов заплатить за путешествие?

Следующие шесть недель, вспоминал Планк, он “работал так рьяно, как никогда в жизни”, а затем “тьма рассеялась, и неожиданно забрезжил свет в конце туннеля”49. Тринадцатого ноября он написал Вину: “Моя новая формула хороша, а теперь у меня есть и ее теоретическое обоснование, которое через четыре недели я представлю здесь [в Берлине] на Физическом обществе”50. Планк ничего не сказал Вину ни о той напряженной интеллектуальной борьбе, результатом которой стала эта теория, ни о самой теории. Все это время он долго и упорно добивался того, чтобы привести свою формулу в соответствие с двумя великими теориями, лежащими в основании физики XIX столетия: с термодинамикой и электродинамикой. Эту борьбу он проиграл.

Планк был убежден, что “теоретическое объяснение должно быть получено любой ценой, не важно, сколь она будет высока”51. Он “готов был пожертвовать любым из физических законов, в справедливость которых свято верил”52. Планк уже не заботился о том, чего это будет ему стоить, лишь бы удалось “получить правильный ответ”53. Для удивительно сдержанного человека, чувствовавшего себя свободно только за пианино, это было очень громкое заявление. Доведенный до изнеможения борьбой за объяснение своей формулы, он был вынужден совершить “акт отчаяния”. Это и привело его к открытию кванта54.

При нагревании стенок абсолютно черного тела внутрь полости излучается весь спектр частот: инфракрасные, видимые и ультрафиолетовые. Последовательный теоретический вывод формулы Планка должен был основываться на физической модели, с помощью которой можно было бы воспроизвести спектральное распределение энергии излучения абсолютно черного тела. Кое-что уже приходило Планку на ум. Его не смущало, что такая модель не отражала в полной мере реальность. Единственное, чего хотел Планк, – найти правильное соотношение между частотами и, следовательно, длинами волн излучения внутри полости. Наиболее простую модель удалось придумать, воспользовавшись тем, что распределение частот зависит только от температуры, но не от материала, из которого изготовлено абсолютно черное тело.

В 1882 году Планк писал: “Несмотря на все успехи, достигнутые атомной теорией, ясно, что в конце концов она уступит место предположению о непрерывности материи”55. Восемнадцать лет спустя он все еще не верил в атомы: неопровержимого доказательства их существования не было. Из теории электромагнетизма Планк знал, что электрический заряд, колеблющийся с определенной частотой, испускает и поглощает излучение только той же частоты. Поэтому он представил себе стенки абсолютно черного тела в виде набора огромного числа осцилляторов. Хотя каждый осциллятор излучает всего одну частоту, вместе они могут излучать весь спектр частот, которые присутствуют внутри абсолютно черного тела.

Маятник – это осциллятор, частота которого равна числу колебаний за одну секунду. Одно колебание – это отдельное качание туда и обратно, возвращающее маятник в исходное положение. Другой пример осциллятора – груз на пружине. Его частота равна числу прыжков вверх и вниз, совершаемых грузом за секунду, если покоящийся груз потянуть вниз и отпустить. К тому времени, когда Планк для своей теоретической модели использовал то, что он назвал осцилляторами, физика таких колебаний давно уже была известна, а сами колебания маятника или груза получили название “простого гармонического движения”.

Чтобы иметь возможность генерировать разные частоты, Планк представил себе совокупность осцилляторов как набор невесомых пружинок различной жесткости, каждая из которых обладает электрическим зарядом. Нагревание стенок абсолютно черного тела доставляет системе энергию, нужную, чтобы привести осцилляторы в движение. Возбужден данный осциллятор или нет, зависит только от температуры. Если осциллятор активен, он испускает и поглощает излучение внутри полости. Если поддерживать постоянную температуру, через определенное время устанавливается баланс такого динамического обмена энергией излучения и достигается состояние термодинамического равновесия.

Спектральное распределение энергии излучения абсолютно черного тела описывает то, как полная энергия делится между частотами. Планк предположил, что интенсивность излучения определяется числом осцилляторов, колеблющихся на данной частоте, и теперь должен был придумать способ, позволяющий распределить энергию излучения по осцилляторам. Через несколько недель упорного труда Планк понял, что не может вывести формулу, исходя из физических представлений, так долго воспринимавшихся им как символ веры. В отчаянии он обратился к идеям австрийского физика Людвига Больцмана, наиболее рьяного сторонника теории атомов. На пути к заветной формуле Планку пришлось стать вероотступником и после долгой “открытой неприязни к атомной теории”56 признать, что атом представляет собой нечто большее, чем просто удобное допущение.

Людвиг Больцман был плотным, небольшого роста человеком со впечатляющей бородой, какие носили в конце XIX века. Он родился в Вене 20 февраля 1844 года в семье акцизного чиновника. Некоторое время Больцман учился игре на пианино у композитора Антона Брукнера, но физиком оказался лучшим, нежели пианистом. В 1866 году Больцман защитил докторскую диссертацию в Венском университете и быстро стал известен благодаря своему фундаментальному вкладу в кинетическую теорию газов, названную так потому, что ее сторонники верили: газы состоят из атомов или молекул, находящихся в постоянном движении. Позднее, в 1884 году, Больцман теоретически обосновал закон, ранее сформулированный на основе анализа экспериментальных данных его прежним наставником Йозефом Стефаном. Согласно этому закону, полная энергия излучения абсолютно черного тела возрастает пропорционально четвертой степени температуры T4, или T x T x T x T. Это значит, что если температуру абсолютно черного тела увеличить в два раза, излученная энергия увеличится в шестнадцать раз.

Больцман был знаменитым педагогом. Несмотря на сильную близорукость, он, хотя и был теоретиком, оказался очень талантливым экспериментатором. Когда в одном из ведущих европейских университетов освобождалось место профессора, его имя обычно стояло в списке претендентов. Только после того, как Больцман отказался от места профессора Берлинского университета, освободившегося после смерти Густава Кирхгофа, эту вакансию, переведя ее в более низкую категорию, предложили Планку. К 1900 году Больцман, всеми признанный теоретик, много раз переезжавший с места на место, был преподавателем Лейпцигского университета. Однако многие, в их числе и Планк, все еще считали его подход к термодинамике неприемлемым.

Больцман верил, что свойства газов, например давление, – это макроскопическое проявление микроскопических процессов, управляемых законами механики и теории вероятности. Те, кто верил в существование атомов, полагали, что законы классической физики Ньютона управляют движением каждой молекулы газа, но использовать эти законы для определения положения и скоростей всего несметного числа молекул газа практически невозможно. В 1860 году двадцативосьмилетнему шотландскому физику Джеймсу Клерку Максвеллу удалось описать движение молекул газа, не измеряя отдельно скорость каждой из них. Воспользовавшись методами статистики и теории вероятности, он нашел наиболее вероятное распределение скоростей молекул газа, беспрестанно сталкивающихся друг с другом и со стенками сосуда. Применение статистики и теории вероятности было смелым новаторством, позволившим Максвеллу объяснить многие свойства газов. Больцман, который был на тринадцать лет моложе Максвелла, пошел по его стопам при обосновании кинетической теории газов. В 70-х годах он продвинулся еще на шаг вперед. Связав энтропию с беспорядком, он предложил статистическую интерпретацию второго закона термодинамики.

Согласно утверждению, известному как принцип Больцмана, энтропия есть мера вероятности осуществления какого-либо определенного состоянии системы. Например, хорошо перетасованная колода карт – это неупорядоченная система с высокой энтропией. Однако новая упаковка, в которой карты упорядочены по мастям и по значениям от двойки до туза, – строго упорядоченная система с низкой энтропией. Согласно Больцману, второй закон термодинамики имеет отношение к эволюции системы из состояния, реализующегося с малой вероятностью (и поэтому с малой энтропией) в более вероятное состояние с большой энтропией. Второй закон термодинамики не является непреложным. Система может перейти из неупорядоченного состояния в более упорядоченное, как и перетасованную колоду можно упорядочить, разложив карты по мастям. Однако шанс, что такой переход произойдет самопроизвольно, настолько мал, что время, которое предстоит ждать этого события, может во много раз превышать возраст Вселенной.

Планк верил, что второй закон термодинамики непреложен и энтропия возрастает всегда. Согласно же интерпретации Больцмана, энтропия возрастает почти всегда. С точки зрения Планка, между этими двумя формулировками лежала огромная пропасть. Для него стать на точку зрения Больцмана было равнозначно отречению от всего, что он как физик считал святым, но выбора у него не оставалось – надо было вывести правильную формулу для излучения абсолютно черного тела: “До тех пор я не обращал внимания на соотношение между энтропией и вероятностью, совершенно не интересовался им, считая, что каждый вероятностный закон допускает существование исключений. А я в то время был убежден, что второй закон термодинамики справедлив без всяких исключений”57.

Состояние с максимальной энтропией и максимальным беспорядком – наиболее вероятное состояние системы. Для абсолютно черного тела это состояние теплового равновесия – именно то, что требовалось Планку, чтобы найти наиболее вероятное распределение энергии по осцилляторам. Если имеется всего тысяча осцилляторов и десять из них колеблются с частотой ν, именно они определяют интенсивность излучения на этой частоте. Поскольку частота каждого из электрических осцилляторов Планка фиксирована, количество излучаемой и поглощаемой им энергии зависит только от его амплитуды, то есть от размаха колебаний. Частота колебаний маятника, совершающего пять взмахов за пять секунд, равна одному колебанию в секунду. Однако если при раскачивании движение происходит по большой дуге, маятник обладает большей энергией, чем если бы дуга была меньше. Частота остается неизменной, поскольку она определяется длиной маятника, но избыточная энергия позволяет ему двигаться быстрее, описывая большую дугу. Поэтому маятник совершает то же число колебаний, как такой же маятник, двигающийся по более короткой дуге.


    Ваша оценка произведения:

Популярные книги за неделю