Текст книги "По ту сторону кванта"
Автор книги: Леонид Пономарев
Жанр:
Физика
сообщить о нарушении
Текущая страница: 9 (всего у книги 22 страниц)
При взгляде на таблицу Менделеева возникает (и всегда возникал) вопрос: «Что это – удобный способ запоминания элементов – или фундаментальный закон природы?» Понимающему взгляду химика таблица говорит очень много, но сейчас мы не в состоянии обо всём этом рассказать. Мы попытаемся понять только главное: если это закон природы, то:
Что определяет порядок расположения элементов в таблице?
В чём причина их периодических свойств?
От чего зависит длина периодов?
Ответить на эти вопросы пытались в течение полувека – от Менделеева до Паули. Таблицу элементов многократно переписывали, разрезали и снова склеивали на плоскости и в пространстве всеми возможными и невозможными способами. Но, как всегда, причина явления лежала вне его самого: объяснить таблицу смогла только физика после создания теории, атома.
Как мы видели, уже Менделеев знал, что атомный вес лишь приблизительно определяет положение элементов в таблице. И всё же каким-то одному ему известным способом он сумел их расположить в таблице правильно. После уж не составляло труда пронумеровать их все подряд. Но имеет ли подобная нумерация глубокий смысл? Ведь с таким же успехом мы можем пронумеровать кубики из нашей детской игры-мозаики для того, чтобы можно было всегда и быстро восстановить всю картину. Это, конечно, удобно, однако глубокого смысла не имеет, поскольку номера кубиков никак не связаны с тем, что на этих кубиках изображено.
Существует ли глубокая внутренняя связь между химическими свойствами элемента и его порядковым номером в таблице? Или же это внешний и произвольный его признак, вроде порядкового номера дома на улице? Если бы это было действительно так, то с открытием каждого нового элемента пришлось бы менять их нумерацию, точно так же, как меняют нумерацию домов при дополнительной застройке улицы. Одним словом, порядковый номер элемента в таблице – это что: удобный способ найти его в этой таблице или же это его внутренняя характеристика, которая присуща ему независимо от всяких таблиц? История склоняется в пользу последнего предположения: за 100 лет существования таблицы нумерация элементов ни разу не изменилась.
Разгадку такой устойчивости таблицы удалось найти лишь после работ Резерфорда. В том же 1911 году, когда Резерфорд обнародовал свою планетарную модель атома, датчанин Ван дер Брок написал в немецкий журнал короткую заметку, в которой высказал предположение:
порядковый номер элемента в таблице Менделеева равен заряду ядра его атомов.
Два года спустя, изучая рентгеновские спектры различных элементов, эту гипотезу доказал один из лучших учеников Резерфорда Генри Гвин Джеффрис Мозли (1887–1915). Работа Мозли стала главным событием в физике даже в те полные открытий годы. Ему не удалось её завершить: в августе 1915 года он был убит наповал в Греции в окопах Галлипольского полуострова.
В чём суть и важность этих открытий?
Прежде всего из них следует, что элементы в таблице расставлены верно.
Кроме того, они доказывают, что все элементы уже открыты, за исключением тех, для которых в таблице оставлены пустые места.
Такая окончательность утверждений всегда обладает необъяснимой притягательной силой. Она становится особенно ценной, когда речь идёт о системе мира. После работ Мозли система химических элементов была наконец установлена окончательно и оставалось только понять её особенности.
Природа позаботилась о том, чтобы как можно дальше упрятать свои главные свойства от глаз естествоиспытателей: заряд ядра атома надёжно укрыт шубой из электронов и недоступен измерению никакими химическими и большинством физических методов. Это свойство атомов нащупали только после того, как начали обстреливать их такими снарядами, как α-частицы. Вместе с тем именно это так глубоко запрятанное свойство определяет структуру атома и все наблюдаемые свойства элементов, состоящих из этих атомов. И если мы хотим по-настоящему узнать атом, то вначале должны докопаться до его ядра. (Как в сказке о Кащее Бессмертном: высоко на горе растёт дуб, на дубу – сундук, в сундуке – заяц, в зайце – утка, в утке – яйцо, в яйце – игла, а в кончике той иглы – жизнь и смерть Кащея.)
В силу каких-то глубоких причин, которые мы пока не вполне знаем, заряд ядра атома примерно вдвое меньше, чем его атомный вес. Поэтому, располагая элементы в порядке возрастания их атомных весов, мы более или менее правильно выстроим их и в порядке возрастания зарядов ядер их атомов. Менделеев, конечно, не знал о существовании ядер, но он почувствовал, что у атомов есть ещё какое-то свойство, более глубокое, чем атомный вес, и поэтому, располагая элементы в таблице, доверял больше интуиции, чем атомным весам. Он как бы заглянул под электронную оболочку атомов, пересчитал там положительные заряды в ядре и затем это число присвоил элементу, назвав его порядковым номером. Очевидно, порядковый номер – внутренняя характеристика элемента, и, конечно, она не зависит от нашего произвола, как, например, номер дома на улице. (Если продолжить нашу аналогию с детской игрой-мозаикой, то можно сказать, что все её кубики в действительности оказались пронумерованными. Только номера эти были запрятаны внутри кубиков.)
Теперь наконец можно дать точное определение элемента.
Элемент – это вещество, состоящее из атомов с одинаковым зарядом ядра.
Нам осталось выяснить последнее: почему монотонное изменение заряда ядра атомов приводит к периодическим изменениям их химических свойств? Изменяются при этом не только химические, но и физические свойства: удельный вес, твёрдость и даже агрегатное состояние. Например, элементы с порядковыми номерами 2, 10, 18, 36 – это газы гелий, неон, аргон, криптон, получившие название благородных за свою неспособность вступать в обычные химические реакции. Но если заряд ядер этих атомов увеличить всего на единицу, то мы получим элементы 3, 11, 19, 37 – щелочные металлы литий, натрий, калий, рубидий, которые никак не похожи на соседние газы ни по физическим, ни по химическим свойствам. Например, натрий и калий так легко вступают в химические реакции, что их нельзя держать на открытом воздухе – они там самовоспламеняются.
Последняя загадка
Очевидно, причину периодического изменения свойств элементов следует искать не в ядре, а в окружающей его электронной оболочке. Первая мысль, при этом возникающая, состоит в том, что электроны вокруг ядра расположены не беспорядочно, а слоями-оболочками. Начало заполнения новой оболочки совпадает с началом нового периода, и как раз в этот момент скачком изменяются химические свойства элементов. После работ Бора подобная мысль казалась очень естественной, и он сам же её впервые и высказал.
Однако приведённые наблюдения не подсказывают способа вычислить длину периода. На первый взгляд длина периодов в таблице меняется весьма прихотливо: в I периоде – два элемента, во II и III – восемь, в IV и V – восемнадцать, в VI – тридцать два. Но ещё в 1906 году Иоганн Ридберг заметил, что ряд чисел 2, 8, 18, 32 подчиняется простой формуле: 2∙n2. Эту закономерность удалось объяснить Паули только в 1924 году, после открытия им принципа запрета.
Ход рассуждений Паули легко понять. В самом деле, движение электрона в атоме описывается четырьмя квантовыми числами, о которых мы подробно говорили в предыдущей главе и которые напомним теперь ещё раз:
n – главное квантовое число, которое может принимать значения 1, 2, 3, …;
l – орбитальное квантовое число, которое при заданном n принимает значения 0, 1, 2, …, (n−1);
m – магнитное квантовое число; при заданных n и l оно пробегает ряд значений −l, −(l−1), …, −1, 0, 1, …, (l−1), l, – всего 2∙l + 1 значений;
S – спиновое квантовое число, принимающее значения +½ и −½.
Принцип запрета Паули гласит:
В атоме не может быть двух электронов с одинаковыми квантовыми числами.
Поэтому на оболочке с порядковым номером n может поместиться только ограниченное число электронов. Например, на первой оболочке умещаются только два электрона. В самом деле, если главное квантовое число n = 1, то для орбитального момента допустимо только одно значение l = 0, а следовательно, и магнитное квантовое число m = 0; спин электрона не зависит от других квантовых чисел и может принимать два значения S = +½ и S = −½. В соответствии с этим на первом квантовом уровне могут поместиться только два электрона с квантовыми числами: (n = 1; l = 0; m = 0; S = +½) и (n = 1; l = 0; m = 0; S = −½). Рассуждая точно так же, можно убедиться, что на второй оболочке умещается 8 электронов, на третьей – 18 и вообще на оболочке с главным квантовым числом n помешается 2∙n2 электронов. То есть число электронов на заполненных оболочках атомов равно длине периодов таблицы Менделеева.
Чтобы нагляднее уяснить себе причину появления этих чисел, представьте, что вам надлежит заселить жилой квартал, в котором n домов, пронумерованные числом l = 0, 1, 2, …, (n−1), причём в доме с номером l только (2∙l + 1) квартир. Если в каждую квартиру запрещено поселять больше двух жильцов, то во всём квартале поместится 2∙n2 человек и не более.
Каждый период в таблице Менделеева начинается щелочным металлом и заканчивается инертным газом. Химические свойства этих элементов резко различны. Теперь легко понять и причину их различия. Инертные газы – гелий, неон, аргон и т. д. – отличаются от всех остальных элементов тем, что у них оболочки полностью заполнены.
Атомы щелочных металлов: лития, натрия, калия и т. д., которые в таблице расположены следом за инертными газами, содержат по одному электрону в следующей, более высокой оболочке. Эти электроны связаны с ядром много слабее, чем остальные, и поэтому атомы щелочных металлов легко их теряют и становятся положительными однозарядными ионами: Li+, Na+, K+ и т. д.
Наоборот, в атомах фтора, хлора, брома и т. д. недостаёт одного электрона, чтобы замкнуть их внешнюю оболочку до оболочки благородного газа. Поэтому-то галогены так охотно присоединяют электрон, образуя отрицательные ионы F−, Cl−, Br− и т. д. Когда атомы натрия и хлора встречаются, то натрий отдаёт свой внешний электрон хлору, в результате чего возникают ионы Na+ и Cl−. Ионы эти притягиваются, образуя молекулы NaCl, из которых состоит хорошо известная всем поваренная соль.
Попутно нам удалось выяснить смысл понятия валентности, которое так трудно определить химически: валентность элемента в соединении – это число электронов его атома, участвующих в образовании химической связи. Легко видеть, что валентность вместе с другими химическими свойствами должна повторяться периодически через 2, 8, 18, 32 элемента при начале заполнения каждой следующей оболочки.
В прошлом веке числа 2, 8, 18, 32 вызывали недоумение и получили название «магических». Объяснить их пытались по-разному, например, вспоминали, что октаэдр – самый прочный многогранник и что в буддийской философии есть учение о восьмеричном пути добра. Но вряд ли кто предполагал, что для них существует такое простое и рациональное объяснение.
Если бы Дальтон, Лавуазье, Менделеев – все, кто в своё время посвятил жизнь и силы изучению системы химических элементов, попали хоть ненадолго в наше время, они бы, без сомнения, испытали совершенную радость чистого знания, которое наконец достигнуто в учении об элементах. Вместо случайного набора веществ, относительно которых даже не всегда было известно, элементы ли это или смеси, они увидели бы стройную иерархию атомов: от водорода до курчатовия.
Этой гармонией мы обязаны квантовой механике, к знакомству с которой теперь и перейдём.
ВОКРУГ КВАНТАВероятно, бог, создавая уже на пятый день творения «всех животных, и птиц, и рыб» целиком, не знал ничего об атомах или же не хотел вникать в такие детали. Но если бы он захотел заготовить вначале все атомы, то проще всего ему было бы пойти по пути, который предлагал в своё время Праут: построить их все из атома водорода.
Ясно, однако, что при сближении двух ядер водорода (протонов) они отталкиваются, поэтому природа изобрела ещё один тип частиц – нейтроны, которые вместе с протонами уже могут образовать устойчивые ядра.
Заряд нейтрона равен нулю, а масса почти в точности равна массе протона. Если соединить вместе два протона и два нейтрона, то они образуют очень прочное ядро гелия (те самые α-частицы, которые использовал Резерфорд в своих опытах). Очевидно, что атом гелия в четыре раза тяжелее атома водорода и потому его атомный вес равен 4. Два электрона гелия занимают нижнюю оболочку с квантовыми числами n = 1, l = 0, m = 0, S = +½ и −½.
Если к ядру гелия добавить ещё один протон и один нейтрон, то получится ядро лития с атомным весом 6. Третий электрон лития уже не помещается на первой оболочке и попадает на следующую, с квантовым числом n = 2. Данный факт как раз и соответствует тому, что с лития начинается новый период таблицы Менделеева. На оболочке с n = 2 помещается 2n2 = 8 электронов (2 электрона на орбите n = 2, l = 0 и 6 электронов на орбитах n = 2, l = 1, m = −1, 0, 1). Постепенно добавляя к ядру лития протоны и нейтроны, а к его оболочке – электроны, мы таким образом последовательно построим весь второй период – от лития до неона.
Здесь, однако, мы впервые столкнёмся с новым явлением. В самом деле, мы точно знаем: для того чтобы получить ядро кислорода, нужно к ядру лития добавить 5 протонов, поскольку заряд ядра лития равен трём, а заряд кислорода – восьми. Но сколько при этом надо добавить нейтронов? Оказывается, что иногда 5, а иногда 7. В соответствии с этим атомный вес кислорода иногда равен 16, а иногда 18. Но что в таком случае мы понимаем под словом «кислород»? Тот кислород, которым мы дышим? Сейчас мы знаем, что это естественная смесь изотопов кислорода с атомными весами 16 и 18, которая однажды образовалась в природе и которую никакими химическими способами разделить нельзя, поскольку химические свойства элементов зависят не от их атомного веса, а лишь от заряда ядра их атомов и от особенностей строения их электронной оболочки. (Только теперь мы можем по-настоящему оценить глубину мысли Менделеева, который к понятию атомного веса относился уважительно, но с большой осторожностью и, располагая элементы в таблице, доверял больше своей интуиции, чем естественному порядку атомных весов.)
Мысли Менделеева о кислороде
Термин изотопы ввёл Фредерик Содди в 1912 году. Его буквальный перевод с греческого означает «занимающие одно и то же место» (в таблице Менделеева). Оказалось, что в природе существует по нескольку изотопов каждого элемента, иногда очень много; например, у водорода их три (водород, дейтерий и тритий), а у свинца – десять.
Больше всего изотопов у олова – двадцать шесть. А всего в природе насчитывается около полутора тысяч изотопов различных элементов.
После открытия изотопов стали различать «чистый элемент» и «смешанный».
«Чистый элемент» – это вещество, состоящее только из одного вида атомов: с одинаковым зарядом ядра и одинаковой массой. Чтобы обозначить такой элемент, пишут коротко, например: 8O16. Это означает: кислород с зарядом 8 и атомным весом 16. «Смешанный элемент», или – что то же – обычный химический элемент, – это естественная смесь «чистых элементов».
С открытием изотопов возникла новая проблема: а как измерять теперь атомные веса? То есть с весом какого элемента их надо теперь сравнивать? Оказалось, что сравнивать их с весом атома водорода уже неудобно, и с 1961 года во всём мире принята углеродная шкала, в которой за единицу атомного веса принята 1/12 веса изотопа углерода 6C12.
Благодаря работам Фрэнсиса Вильяма Астона (1877–1945) и многих других мы умеем теперь измерять атомные веса очень точно. Скажем, атомный вес водорода 1H1 в углеродной шкале равен 1,00782522.
«Чистый элемент» или «смешанный» – для химии всё равно; она их не различает даже с помощью самых тонких методов анализа. Тем более недоступно это для человеческих несовершенных чувств. Но иногда это различие становится для всех видимым, а для многих – гибельным. Оставшиеся после атомной бомбардировки в живых жители Хиросимы и Нагасаки навсегда запомнят разницу между безобидными изотопами урана и изотопом 92U235, которым была начинена первая атомная бомба.
Случайно это или нет, но факт остаётся фактом: среди учёных, которые установили систему элементов, было много интересных людей.
Роберт Бойль (1627–1691). Это был незаурядный человек. Решающее влияние на него оказала философия Фрэнсиса Бэкона с его учением об опыте как основном мериле истины. Быть может, поэтому он установил один из первых количественных законов в физике, известный теперь как газовый закон Бойля-Мариотта. Любопытно, что по стилю своей работы Бойль ближе к нам, чем к своей эпохе: он не писал статей, а диктовал их секретарю, он не делал сам опытов, а поручал их ассистенту (с которым ему, впрочем, повезло: это был знаменитый впоследствии Роберт Гук).
Бойль был четырнадцатым ребёнком и седьмым сыном в богатой семье. С детских лет его мучили камни в почках, которые, быть может, отчасти определили его образ жизни. Бойль не был женат, был глубоко религиозен и, по свидетельству друзей, знавших его в течение сорока лет, никогда не произносил слова «бог» без благоговейной паузы. В течение 16 лет (1661–1677) он был председателем знаменитой Ост-Индской компании и на этом посту больше всего заботился о деятельности миссионеров в колониях. Примерно треть его учёных трудов посвящена теологии. Он самолично финансировал переводы библии на турецкий, арабский, малайский языки и даже на язык американских индейцев.
Но вместе с тем Бойль был одним из основателей Королевского общества и в числе первых его членов.
Это был высокий худой человек, в концу жизни бледный и измождённый. Несмотря на свою известность, он вёл простую жизнь, был дисциплинирован, благороден и предельно учтив. Когда ему в 1680 году пожаловали звание пэра, он отказался от такой чести, поскольку его совесть не позволила ему принести необходимую в таких случаях присягу. Умер Бойль в постели за правкой корректуры своих «Очерков общей истории воздуха».
Джон Дальтон родился 5 сентября 1766 года в семье бедного ткача, в Камберленде, на севере Англии. Когда пришло время, его отправили в школу в селение неподалёку. В 12 лет, после того как учитель этой школы ушёл в отставку, он сам открыл школу сначала в своём доме, а затем в местном доме собраний квакеров и преподавал там два года. Факт этот сам по себе необычайный, но комментариев и воспоминаний о нём не сохранилось.
Ещё год он работал на ферме и в возрасте 15 лет уехал к старшему брату Джонатану. Вместе с ним они открыли школу и преподавали в ней 12 лет, пока в 1793 году Джона не пригласили в Манчестерский новый колледж, где он ещё шесть лет преподаёт математику и физику. Здесь он вступает в Манчестерское литературное и философское общество и читает научные доклады. Первый его доклад был посвящён цветовому дефекту зрения, которым он сам страдал и который известен теперь под названием дальтонизма.
В Манчестере он прожил до конца своих дней и закончил их 27 июля 1844 года, разбитый параличом за семь лет до этого.
Дальтон происходил из семьи квакеров, одной из самых строгих протестантских сект. Быть может, именно это обстоятельство усугубило природные черты его характера. Он жил размеренной жизнью, его день никогда не менялся: соседи с точностью до минут узнавали время, когда он поутру выходил записывать показания термометра и барометра. Рабочий день Дальтона заканчивался в 9 часов вечера. После ужина он молча сидел в кругу семьи, курил трубку, лишь изредка вставляя краткие замечания.
Каждый четверг после обеда он шёл не на работу, а на лужайку для игры в шары, примыкавшую к таверне «Собака и куропатка». Здесь он неожиданно утрачивал свои трезвые и размеренные манеры, к удивлению зрителей, возбуждённо размахивал руками и бросал шары с неожиданным энтузиазмом. Несколько умеренных пари, всегда точно рассчитанных, чай и неизменная трубка заканчивали этот день. Домой он возвращался к началу вечерних метеорологических наблюдений. В воскресенье, одетый в квакерские бриджи до колен, серые чулки и башмаки с пряжками, он дважды посещал публичное богослужение, хотя по вопросам веры никогда не высказывался.
Он почти ничего не читал и часто хвастал, что
«может унести всю свою библиотеку на спине и что даже из этих книг он не прочёл и половины».
«Как у всех самоучек, в нём было меньше развито желание знать то, что сделали другие, чем твёрдая уверенность в правильности найденного им самим»,
– писал о нём один из биографов.
На современников его человеческие качества действовали удручающе. Брат Хэмфри Дэви вспоминал впоследствии:
«Его вид и манеры были отталкивающими… голос у него был резкий и сварливый, а походка жёсткая и неуклюжая».
Примерно так же воспринимали его члены Манчестерского философского общества, которые тем не менее за научные заслуги избрали Дальтона в 1817 году своим президентом. К концу жизни он признан повсюду: в 1822 году его избирают членом Королевского общества, а в 1830 году – одним из восьми иностранных членов Парижской академии вместо умершего за год до этого Хэмфри Дэви.
Как всегда в таких случаях, последующие поколения полностью равнодушны к личным недостаткам учёного. Они помнят только лучшее в нём – его идеи. Наверное, в этом и состоит одна из причин человеческого прогресса.
Антониус Ван дер Брок (1870–1926) был по профессии юристом, а наукой занимался в свободное от работы время. Уже само по себе в XX веке это было редкостью, но и во всём остальном Ван дер Брок был личностью примечательной. Он глубоко интересовался наукой, но не любил научных собраний и дискуссий; его философия жизни сделала его вегетарианцем, а его наряд и особенно сандалии, которые он носил, явно относились к другой эпохе.
Когда Резерфорду рассказали о гипотезе Ван дер Брока, он с раздражением заметил, что
«…только любитель может позволить себе высказывать забавы ради много догадок сразу без достаточных на то оснований».
Следы этой неприязни сохранились надолго, и ещё много лет спустя Резерфорд настойчиво выражал недовольство, когда Бор в своих работах по теории атома ссылался на Ван дер Брока.